Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.contributor.advisorOlaya Flores, Jhon Jairo
dc.contributor.advisorVelasco Estrada, Leonardo
dc.contributor.authorCastillo Figueroa, Juan Sebastian
dc.date.accessioned2022-08-23T14:51:06Z
dc.date.available2022-08-23T14:51:06Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82017
dc.descriptionfotografías a color, gráficas, tablas
dc.description.abstractLos proyectos de diseño y fabricación de materiales requieren muchos esfuerzos de tiempo y dinero. Por este motivo, el desarrollo de nuevas tecnologías para la investigación es imperativo y será de gran utilidad para el aumento en la probabilidad de descubrimiento en el campo de los nuevos materiales. Por ejemplo, con la metodología de alto rendimiento, soportado por el aprendizaje autónomo, es posible hacer predicciones teóricas que facilitará la formulación de nuevas combinaciones de componentes químicos. En este estudio, se presenta el desarrollo de una librería de materiales multicomponentes de alta entropía basada en tierras raras como cerio, praseodimio, lantano, samario e itrio. Se exploró el espacio composicional de estos materiales variando en 5 at.% la composición química de cada uno de los elementos hasta el óxido de alta entropía equiatómico que corresponde al 20 at.% de cada uno de los elementos y en consecuencia se generaron 106 muestras. La síntesis se llevó a cabo por medio de la técnica de pipeteo automatizada con el equipo Opentrons OT-2, el cual tiene diferentes aplicaciones investigativas en el sector de la biología, la farmacéutica y en este trabajo se extendió a la ciencia de los materiales. Este equipo presenta gran versatilidad en los procesos investigativos, alta precisión en la toma de muestras (±1µL) y el espacio físico requerido por la máquina es pequeño, gracias a esto se implementó una metodología de alto rendimiento y de bajo costo. Posterior a la fabricación, se realizó la caracterización de 5 óxidos simples, 10 óxidos binarios, 10 óxidos ternarios, 5 cuaternarios y 76 óxidos de alta entropía, mediante difracción de rayos X automatizado (XRD) con ayuda de una mesa XY, espectroscopia Raman automatizada, espectroscopia de rayos X de energía dispersiva (EDS) con mapas de composición química sobre los materiales producidos y espectroscopia de reflectancia difusa automatizada (Uv-Vis) con ayuda de una mesa XYZ. La visualización de los resultados se realizó mediante diagramas de fase-propiedad multidimensionales, donde se relaciona la estructura cristalina de los materiales producidos con la composición química, brecha de energía prohibida (BG) y concentración de vacancias de oxígeno (OVC). Se pudo observar que tanto el cerio como el praseodimio pueden estabilizar los óxidos de tierras raras multicomponentes en una estructura cristalina monofásica. En este estudio, al menos 78 de las muestras producidas no han sido reportadas antes en la literatura, incluso 2 ternarios no fueron reportados posiblemente porque no forman estructuras cristalinas monofásicas. Además, el valor del band gap varió entre ~1,86 eV y ~2,26 eV dentro de los sistemas quinarios. Se ha demostrado que el band gap del óxido de alta entropía equiatómico puede ajustarse aún más, desde ~2 eV hasta ~3,21 eV. Además, al menos 10 de los materiales fabricados son posibles candidatos para celdas de combustible de óxido sólido. Con esta investigación se pretende dar un primer paso para establecer librerías de materiales de sistemas multicomponentes integrando las estructuras cristalinas y propiedades, junto con el análisis de datos y los enfoques teóricos, lo cual abre caminos hacia el desarrollo virtual de nuevos materiales para aplicaciones tanto funcionales como estructurales. (Texto tomado de la fuente)
dc.description.abstractMaterials design and fabrication projects require a lot of time and money; for this reason, the development of new technologies for research is imperative and will be used for increasing the probability of discovery in the field of new materials. For example, the highthroughput methodology, supported by artificial intelligence, allows making theoretical predictions, thus facilitating the formulation of new combinations of chemical components. This study presents the development of a material library of high entropy oxides based on rare earths such as cerium, praseodymium, lanthanum, samarium and yttrium. The compositional space of these materials was explored by varying the chemical composition of each of the elements in 5 at. % up to the equiatomic high entropy oxide that corresponds to 20 at.% of each element, which generated 106 samples. The synthesis was carried out by an automated pipetting technique with the Opentrons OT-2 liquid handler, which has different research applications in biology, pharmaceutics and, in this work, it was extended to materials science. This equipment presents high versatility in the research processes, high precision in liquid handling (±1µL) and the physical space required by the machine is small. Thanks to these advantages, a high throughput methodology was implemented with high performance and low cost. After synthesis, the characterization was performed of 5 single oxides, 10 binary oxides, 10 ternary oxides, 5 quaternary oxides and 76 high entropy oxides by automated X-ray diffraction (XRD) using a XY table, automated Raman spectroscopy, energy dispersive Xray spectroscopy (EDS) with chemical composition maps on the materials produced and automated diffuse reflectance spectroscopy with a XYZ table. The results were depicted by means of multidimensional phase-property diagrams, where the crystalline structure of the produced materials is related to chemical composition, band gap (BG) and oxygen vacancy concentration (OVC). Cerium and praseodymium proved to be able to stabilize multicomponent rare earth oxides in a single-phase crystal structure. In this study, at least 78 of the produced samples had not been reported before in the literature, even 2 ternaries had not been reported as they form no single-phase crystal structures. The band gap value ranged from ~1.86 eV to ~2.26 eV within quinary systems. The band gap of the equiatomic high entropy oxide can be tuned from ~2 eV to ~3.21 eV. Additionally, at least 10 of the fabricated materials are possible candidates for solid oxide fuel cells due to their high oxygen vacancies concentration. Finally, this research aims to be a first step toward establishing material libraries of multicomponent systems by integrating crystal structures and properties, together with data analysis and theoretical approaches, which opens paths for the virtual development of new materials for both functional and structural applications
dc.format.extentxix, 103 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.titleProducción masiva de óxidos multicomponentes de alta entropía con enfoque en el estudio de vacancias de oxígeno
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo de investigación en corrosión, tribología y energía
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Materiales y Procesos
dc.description.researchareaMateriales y Procesos de Manufactura
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesB. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A, vol. 375– 377, no. 1-2 SPEC. ISS., pp. 213–218, 2004, doi: 10.1016/j.msea.2003.10.257.
dc.relation.referencesJ. W. Yeh et al., “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, no. 5, pp. 299-303+274, 2004, doi: 10.1002/adem.200300567.
dc.relation.referencesA. Sarkar et al., “High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties,” Adv. Mater., vol. 31, no. 26, 2019, doi: 10.1002/adma.201806236.
dc.relation.referencesJ. W. Yeh and S. J. Lin, “Breakthrough applications of high-entropy materials,” J. Mater. Res., vol. 33, no. 19, pp. 3129–3137, 2018, doi: 10.1557/jmr.2018.283.
dc.relation.referencesT. Gebhardt, D. Music, T. Takahashi, and J. M. Schneider, “Combinatorial thin film materials science: From alloy discovery and optimization to alloy design,” Thin Solid Films, vol. 520, no. 17, pp. 5491–5499, 2012, doi: 10.1016/j.tsf.2012.04.062.
dc.relation.referencesR. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and high-throughput screening of materials libraries: Review of state of the art,” ACS Combinatorial Science, vol. 13, no. 6. American Chemical Society, pp. 579–633, Nov. 14, 2011, doi: 10.1021/co200007w.
dc.relation.referencesD. P. Tabor et al., “Accelerating the discovery of materials for clean energy in the era of smart automation,” Nature Reviews Materials, vol. 3, no. 5. Nature Publishing Group, pp. 5–20, Apr. 26, 2018, doi: 10.1038/s41578-018-0005-z.
dc.relation.referencesC. M. Rost et al., “Entropy-stabilized oxides,” Nat. Commun., vol. 6, pp. 1–8, 2015, doi: 10.1038/ncomms9485.
dc.relation.referencesE. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, “Processing and Properties of High-Entropy Ultra-High Temperature Carbides,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018, doi: 10.1038/s41598-018-26827-1.
dc.relation.referencesJ. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci. Rep., vol. 6, no. October, pp. 2–11, 2016, doi: 10.1038/srep37946.
dc.relation.referencesT. Jin et al., “Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy,” Adv. Mater., vol. 30, no. 23, pp. 1–5, 2018, doi: 10.1002/adma.201707512.
dc.relation.referencesR. Z. Zhang, F. Gucci, H. Zhu, K. Chen, and M. J. Reece, “Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides,” Inorg. Chem., vol. 57, no. 20, pp. 13027–13033, 2018, doi: 10.1021/acs.inorgchem.8b02379.
dc.relation.referencesQ. Wang et al., “High entropy oxides as anode material for Li-ion battery applications: A practical approach,” Electrochem. commun., vol. 100, no. January, pp. 121–125, 2019, doi: 10.1016/j.elecom.2019.02.001.
dc.relation.referencesX. Yan and Y. Zhang, “Functional properties and promising applications of high entropy alloys,” Scr. Mater., vol. 187, pp. 188–193, 2020, doi: 10.1016/j.scriptamat.2020.06.017.
dc.relation.referencesF. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, “An understanding of high entropy alloys from phase diagram calculations,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 45, pp. 1–10, 2014, doi: 10.1016/j.calphad.2013.10.006.
dc.relation.referencesY. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater., vol. 10, no. 6, pp. 534–538, Jun. 2008, doi: 10.1002/adem.200700240.
dc.relation.referencesB. Burger et al., “A mobile robotic chemist,” Nature, 2020, doi: 10.1038/s41586- 020-2442-2.
dc.relation.referencesZ. Li et al., “Robot-Accelerated Perovskite Investigation and Discovery,” Chem. Mater., vol. 32, no. 13, pp. 5650–5663, Jul. 2020, doi: 10.1021/acs.chemmater.0c01153.
dc.relation.referencesS. Sun et al., “A data fusion approach to optimize compositional stability of halide perovskites,” Matter, vol. 4, no. 4, pp. 1305–1322, Apr. 2021, doi: 10.1016/j.matt.2021.01.008.
dc.relation.referencesK. Higgins, S. M. Valleti, M. Ziatdinov, S. V. Kalinin, and M. Ahmadi, “Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning,” ACS Energy Lett., vol. 5, no. 11, pp. 3426– 3436, Nov. 2020, doi: 10.1021/acsenergylett.0c01749.
dc.relation.referencesP. Nikolaev et al., “Autonomy in materials research: A case study in carbon nanotube growth,” npj Comput. Mater., vol. 2, no. 1, pp. 1–6, Oct. 2016, doi: 10.1038/npjcompumats.2016.31.
dc.relation.referencesS. Noda, Y. Tsuji, Y. Murakami, and S. Maruyama, “Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 86, no. 17, pp. 1–3, Apr. 2005, doi: 10.1063/1.1920417.
dc.relation.referencesA. M. Cassell, S. Verma, L. Delzeit, M. Meyyappan, and J. Han, “Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes,” Langmuir, vol. 17, no. 2, pp. 260–264, Jan. 2001, doi: 10.1021/la001273a.
dc.relation.referencesA. Rar et al., “PVD synthesis and high-throughput property characterization of NiFe-Cr alloy libraries,” Meas. Sci. Technol., vol. 16, no. 1, pp. 46–53, Dec. 2005, doi: 10.1088/0957-0233/16/1/007.
dc.relation.referencesJ. J. Hanak, “The ‘multiple-sample concept’ in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems,” J. Mater. Sci., vol. 5, no. 11, pp. 964–971, Nov. 1970, doi: 10.1007/BF00558177.
dc.relation.referencesK. Kennedy, T. Stefansky, G. Davy, V. F. Zackay, and E. R. Parker, “Rapid method for determining ternary-alloy phase diagrams,” J. Appl. Phys., vol. 36, no. 12, pp. 3808–3810, 1965, doi: 10.1063/1.1713952.
dc.relation.referencesH. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, and D. Raabe, “Combinatorial Alloy Design by Laser Additive Manufacturing,” steel Res. Int., vol. 88, no. 8, p. 1600416, Aug. 2017, doi: 10.1002/SRIN.201600416.
dc.relation.referencesP. Wilson, R. Field, and M. Kaufman, “The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co-Cr-Fe-Mn-Ni high entropy alloy system,” Intermetallics, vol. 75, pp. 15–24, 2016, doi: 10.1016/j.intermet.2016.04.007.
dc.relation.referencesT. Borkar et al., “A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1–xFeNi,” Adv. Eng. Mater., vol. 19, no. 8, p. 1700048, Aug. 2017, doi: 10.1002/adem.201700048.
dc.relation.referencesK. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, and D. Raabe, “Nonequiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design,” Mater. Sci. Eng. A, vol. 648, pp. 183–192, Nov. 2015, doi: 10.1016/j.msea.2015.09.010.
dc.relation.referencesA. Sarkar et al., “Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency,” Dalt. Trans., vol. 46, no. 36, pp. 12167–12176, Sep. 2017, doi: 10.1039/c7dt02077e.
dc.relation.referencesH. Xu et al., “Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports,” Nat. Commun., vol. 11, no. 1, pp. 1–9, Aug. 2020, doi: 10.1038/s41467-020-17738-9.
dc.relation.referencesA. Sarkar et al., “Nanocrystalline multicomponent entropy stabilised transition metal oxides,” J. Eur. Ceram. Soc., vol. 37, no. 2, pp. 747–754, Feb. 2017, doi: 10.1016/j.jeurceramsoc.2016.09.018.
dc.relation.referencesM. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, and V. M. Sglavo, “Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods,” J. Mater. Sci., vol. 53, no. 11, pp. 8074–8085, 2018, doi: 10.1007/s10853-018-2168-9.
dc.relation.referencesD. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., vol. 122, pp. 448–511, 2017, doi: 10.1016/j.actamat.2016.08.081.
dc.relation.referencesO. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis,” Acta Mater., vol. 61, no. 5, pp. 1545–1557, Mar. 2013, doi: 10.1016/j.actamat.2012.11.032.
dc.relation.referencesC. Zhang, F. Zhang, S. Chen, and W. Cao, “Computational thermodynamics aided high-entropy alloy design,” JOM, vol. 64, no. 7, pp. 839–845, Jun. 2012, doi: 10.1007/s11837-012-0365-6.
dc.relation.referencesS. Kirklin et al., “The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies,” npj Comput. Mater., vol. 1, no. 1, pp. 1–15, Dec. 2015, doi: 10.1038/npjcompumats.2015.10.
dc.relation.referencesA. Sarkar et al., “Role of intermediate 4 f states in tuning the band structure of high entropy oxides,” APL Mater., vol. 8, no. 5, p. 051111, May 2020, doi: 10.1063/5.0007944.
dc.relation.referencesE. M. Chan et al., “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett., vol. 10, no. 5, pp. 1874–1885, May 2010, doi: 10.1021/nl100669s.
dc.relation.referencesH. Fleischer et al., “Analytical measurements and efficient process generation using a dual–arm robot equipped with electronic pipettes,” Energies, vol. 11, no. 10, p. 2567, Sep. 2018, doi: 10.3390/en11102567.
dc.relation.referencesL. Velasco, J. S. Castillo, M. V. Kante, J. J. Olaya, P. Friederich, and H. Hahn, “Phase–Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries,” Adv. Mater., vol. 33, no. 43, p. 2102301, Oct. 2021, doi: 10.1002/adma.202102301.
dc.relation.referencesB. L. Musicó et al., “The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties,” APL Mater., vol. 8, no. 4, p. 040912, Apr. 2020, doi: 10.1063/5.0003149.
dc.relation.referencesZ. Wang, S. Guo, and C. T. Liu, “Phase Selection in High-Entropy Alloys: From Nonequilibrium to Equilibrium,” Jom, vol. 66, no. 10, pp. 1966–1972, 2014, doi: 10.1007/s11837-014-0953-8.
dc.relation.referencesS. J. McCormack and A. Navrotsky, “Thermodynamics of high entropy oxides,” Acta Mater., vol. 202, pp. 1–21, Jan. 2021, doi: 10.1016/J.ACTAMAT.2020.10.043.
dc.relation.referencesW. Hume Rothery and R. G.V., The Structure of Metals and Alloys Institute of Metals. 1962.
dc.relation.referencesM. B.S., J. W. Yeh, S. Ranganathan, and B. P. P., High-entropy alloys, second Volume, ASMT Handbook. 2019.
dc.relation.referencesJ. W. Yeh, Overview of high-entropy alloys. 2016
dc.relation.referencesR. A. Swalin, “Thermodynamics of Solids.” p. 386, 1972.
dc.relation.referencesRafael Schmitt et al., “A review of defect structure and chemistry in ceria and its solid solutions,” Chem. Soc. Rev., vol. 49, no. 2, pp. 554–592, Jan. 2020, doi: 10.1039/C9CS00588A.
dc.relation.referencesChangjie Mao, Yixin Zhao, Xiaofeng Qiu, Junjie Zhu, and Clemens Burda, “Synthesis, characterization and computational study of nitrogen -doped CeO 2 nanoparticles with visible-light activity,” Phys. Chem. Chem. Phys., vol. 10, no. 36, pp. 5633–5638, Sep. 2008, doi: 10.1039/B805915B.
dc.relation.referencesG. R. Bamwenda and H. Arakawa, “Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species,” J. Mol. Catal. A Chem., vol. 161, no. 1–2, pp. 105–113, Nov. 2000, doi: 10.1016/S1381- 1169(00)00270-3.
dc.relation.referencesA. Corma, P. Atienzar, H. García, and J.-Y. Chane-Ching, “Hierarchically mesostructured doped CeO2 with potential for solar-cell use,” Nat. Mater. 2004 36, vol. 3, no. 6, pp. 394–397, May 2004, doi: 10.1038/nmat1129.
dc.relation.referencesR. Djenadic et al., “Nebulized spray pyrolysis of Al-doped Li7La3Zr 2O12 solid electrolyte for battery applications,” Solid State Ionics, vol. 263, pp. 49–56, 2014, doi: 10.1016/j.ssi.2014.05.007.
dc.relation.referencesA. Sarkar, R. Djenadic, N. J. Usharani, and K. P. Sanghvi, “Nanocrystalline multicomponent entropy stabilised transition metal oxides Journal of the European Ceramic Society Nanocrystalline multicomponent entropy stabilised transition metal oxides,” J. Eur. Ceram. Soc., vol. 37, no. 2, pp. 747–754, 2016, doi: 10.1016/j.jeurceramsoc.2016.09.018.
dc.relation.referencesE.-E. M. Sherif, Mechanical Alloying, vol. 53, no. 9. 2019
dc.relation.referencesA. J. Lynch and C. A. Rowland, The History of Grinding. 2015.
dc.relation.referencesH. Aono, T. Nagamachi, T. Naohara, Y. Itagaki, T. Maehara, and H. Hirazawa, “Synthesis conditions of nano-sized magnetite powder using reverse coprecipitation method for thermal coagulation therapy,” J. Ceram. Soc. Japan, vol. 124, no. 1, pp. 23–28, 2016, doi: 10.2109/jcersj2.15183.
dc.relation.referencesH. KAZEMZADEH, A. ATAIE, and F. RASHCHI, “ Synthesis of Magnetite Nano-Particles By Reverse Co -Precipitation ,” Int. J. Mod. Phys. Conf. Ser., vol. 05, pp. 160–167, 2012, doi: 10.1142/s2010194512001973.
dc.relation.referencesJ. M. Morales Tatay, “Modulación de la mesoestructura y composición en sílices nanoparticuladas con porosidad jerárquica,” 2014.
dc.relation.referencesJ. Livage, “Sol±gel synthesis of heterogeneous catalysts from aqueous solutions.”
dc.relation.referencesM. Henry, J. P. Jolivet, and J. Livage, “Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation,” Chem. Spectrosc. Appl. Sol-Gel Glas., pp. 153–206, 2006, doi: 10.1007/bfb0036968.
dc.relation.referencesG. Y. Adachi and N. Imanaka, “The binary rare earth oxides,” Chem. Rev., vol. 98, no. 4, pp. 1479–1514, 1998, doi: 10.1021/cr940055h.
dc.relation.references“Un nuevo tipo de manipulador de líquidos | Opentrons OT-2.” https://www.opentrons.com/ot-2 (accessed Oct. 29, 2019)
dc.relation.referencesA. Ludwig, “Discovery of new materials using combinatorial synthesis and highthroughput characterization of thin-film materials libraries combined with computational methods,” npj Comput. Mater., vol. 5, no. 1, 2019, doi: 10.1038/s41524-019-0205-0
dc.relation.referencesD. König, J. Pfetzing-Micklich, J. Frenzel, and A. Ludwig, “Investigation of ternary subsystems of superalloys by thin-film combinatorial synthesis and high-throughput analysis,” MATEC Web Conf., vol. 14, pp. 4–7, 2014, doi: 10.1051/matecconf/20141418002.
dc.relation.referencesA. Ludwig, R. Zarnetta, S. Hamann, A. Savan, and S. Thienhaus, “HighThroughput Experimentation Methods,” Int. J. Mat. Res., vol. 99, no. NOVEMBER, pp. 1144–1149, 2008.
dc.relation.referencesY. Lederer, C. Toher, K. S. Vecchio, and S. Curtarolo, “The search for high entropy alloys: A high-throughput ab-initio approach,” Acta Mater., vol. 159, pp. 364–383, 2018, doi: 10.1016/j.actamat.2018.07.042.
dc.relation.referencesS. Guerin and B. E. Hayden, “Physical vapor deposition method for the highthroughput synthesis of solid-state material libraries,” J. Comb. Chem., vol. 8, no. 1, pp. 66–73, 2006, doi: 10.1021/cc050117p
dc.relation.referencesS. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The high-throughput highway to computational materials design,” Nat. Mater., vol. 12, no. 3, pp. 191–201, 2013, doi: 10.1038/nmat3568.
dc.relation.referencesJ. G. de Vries and A. H. M. de Vries, “The Power of High‐Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals,” European J. Org. Chem., vol. 2003, no. 5, pp. 799–811, Mar. 2003, doi: 10.1002/ejoc.200390122.
dc.relation.referencesK. Burgess, H. J. Lim, A. M. Porte, and G. A. Sulikowski, “New Catalysts and Conditions for a C-H Insertion Reaction Identified by High Throughput Catalyst Screening,” Angew. Chemie (International Ed. English), vol. 35, no. 2, pp. 220– 222, 1996, doi: 10.1002/anie.199602201.
dc.relation.referencesW. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Challenges and tools,” Comput. Mater. Sci., vol. 49, no. 2, pp. 299– 312, 2010, doi: 10.1016/j.commatsci.2010.05.010.
dc.relation.referencesS. Salomon, F. Wöhrle, P. Hübner, P. Decker, and A. Ludwig, “Influences of Si Substitution on Existence, Structural and Magnetic Properties of the CoMnGe Phase Investigated in a Co–Mn–Ge–Si Thin-Film Materials Library,” ACS Comb. Sci., 2019, doi: 10.1021/acscombsci.9b00107.
dc.relation.referencesM. Faraldos and C. Goberna, Técnicas de análisis y caracterización de materiales. 2011.
dc.relation.referencesS. Kundu, “Synthesis and Characterizations of Some Nanocrystalline Metal Oxide Semiconductors and Composites With Different Morphologies Dissertation Submitted To the University of Burdwan in Partial Fulfillment of the Requirements for the Degree of Doctor of,” UNIVERSITY OF BURDWAN WEST BENGAL713104 INDIA, 2018.
dc.relation.referencesB. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction. Pearson Education Limited, 2014
dc.relation.referencesJ. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy: Second Edition. 2003.
dc.relation.referencesT. Schmid and P. Dariz, “Raman microspectroscopic imaging of binder remnants in historical mortars reveals processing conditions,” Heritage, vol. 2, no. 2, pp. 1662– 1683, Jun. 2019, doi: 10.3390/heritage2020102.
dc.relation.referencesZ. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, “Study of oxygen vacancies in Ce0.9Pr0.1O 2-δ solid solution by in situ X-ray diffraction and in situ raman spectroscopy,” J. Phys. Chem. C, vol. 111, no. 50, pp. 18695–18702, Dec. 2007, doi: 10.1021/jp0759776.
dc.relation.referencesA. Townshen, Principles of Instrumental Analysis, vol. 152. 1983
dc.relation.referencesT. Vickers, “Modern Techniques in Applied Molecular Spectroscopy,” Appl. Spectrosc., vol. 52, pp. 330A-331A, 1998.
dc.relation.referencesJ. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. status solidi, vol. 15, no. 2, pp. 627–637, Jan. 1966, doi: 10.1002/pssb.19660150224.
dc.relation.referencesA. Escobedo-Morales, I. I. Ruiz-López, M. de L. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, and J. E. Moreno-Orea, “Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy,” Heliyon, vol. 5, no. 4, Apr. 2019, doi: 10.1016/j.heliyon.2019.e01505.
dc.relation.references“Origin Help - Creating Contour Graphs.” https://www.originlab.com/doc/OriginHelp/Create-Contour-Graph (accessed Sep. 04, 2020).
dc.relation.references“Opentrons Protocol Designer BETA.” https://designer.opentrons.com/ (accessed Feb. 03, 2022).
dc.relation.referencesPerkinElmer, “OptiPlate-96, White Opaque 96-well Microplate, Case 50.” https://www.perkinelmer.com/product/optiplate-96-50w-6005290 (accessed Oct. 06, 2021).
dc.relation.referencesZ. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, “Study of oxygen vacancies in Ce0.9Pr0.1O 2-δ solid solution by in situ X-ray diffraction and in situ raman spectroscopy,” J. Phys. Chem. C, vol. 111, no. 50, pp. 18695–18702, Dec. 2007, doi: 10.1021/jp0759776.
dc.relation.referencesJ. J. Kim, S. R. Bishop, D. Chen, and H. L. Tuller, “Defect Chemistry of Pr Doped Ceria Thin Films Investigated by in Situ Optical and Impedance Measurements,” Chem. Mater., vol. 29, no. 5, pp. 1999–2007, Mar. 2017, doi: 10.1021/ACS.CHEMMATER.6B03307.
dc.relation.referencesM. Singh, M. Goyal, and K. Devlal, “Size and shape effects on the band gap of semiconductor compound nanomaterials,” J. Taibah Univ. Sci., vol. 12, no. 4, pp. 470–475, Jul. 2018, doi: 10.1080/16583655.2018.1473946.
dc.relation.referencesG. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in Quantum Dots - Fundamental and Applications, IntechOpen, 2020.
dc.relation.referencesM. Mishra, P. Kuppusami, T. N. Sairam, A. Singh, and E. Mohandas, “Effect of substrate temperature and oxygen partial pressure on microstructure and optical properties of pulsed laser deposited yttrium oxide thin films,” Appl. Surf. Sci., vol. 257, no. 17, pp. 7665–7670, Jun. 2011, doi: 10.1016/j.apsusc.2011.03.156.
dc.relation.referencesM. G. Paton and E. N. Maslen, “A refinement of the crystal structure of yttria,” Acta Crystallogr., vol. 19, no. 3, pp. 307–310, Sep. 1965, doi: 10.1107/s0365110x65003365.
dc.relation.referencesS. V. Ushakov, S. Hayun, W. Gong, and A. Navrotsky, “Thermal analysis of high entropy rare earth oxides,” Materials (Basel)., vol. 13, no. 14, Jul. 2020, doi: 10.3390/ma13143141.
dc.relation.referencesH. Kohlmann, “The crystal structure of cubic C-type samarium sesquioxide, Sm2O3,” Zeitschrift für Naturforsch. B, vol. 74, no. 5, pp. 433–435, May 2019, doi: 10.1515/ZNB-2019-0042.
dc.relation.referencesA. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, “Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series,” J. Alloys Compd., vol. 242, no. 1–2, pp. 41–44, Sep. 1996, doi: 10.1016/0925-8388(96)02293-1.
dc.relation.referencesMasatomo Yashima, Syuuhei Kobayashi, and Tadashi Yasui, “Positional disorder and diffusion path of oxide ions in the yttria-doped ceria Ce 0.93 Y 0.07 O 1.96,” Faraday Discuss., vol. 134, no. 0, pp. 369–376, Dec. 2006, doi: 10.1039/B601806H.
dc.relation.referencesH. J. Osten, J. P. Liu, and H. J. Müssig, “Band gap and band discontinuities at crystalline Pr2O3/Si(001) heterojunctions,” Appl. Phys. Lett., vol. 80, no. 2, p. 297, Jan. 2002, doi: 10.1063/1.1433909.
dc.relation.referencesC. H. Gardiner, A. T. Boothroyd, S. J. S. Lister, M. J. McKelvy, S. Hull, and B. H. Larsen, “An investigation of the magnetic structure of PrO2,” Appl. Phys. A Mater. Sci. Process., vol. 74, no. SUPPL.II, 2002, doi: 10.1007/S003390201847.
dc.relation.referencesR. Srinivasan, R. Yogamalar, A. Vinu, K. Ariga, and A. C. Bose, “Structural and optical characterization of samarium doped yttrium oxide nanoparticles,” J. Nanosci. Nanotechnol., vol. 9, no. 11, pp. 6747–6752, Nov. 2009, doi: 10.1166/JNN.2009.1467.
dc.relation.referencesM. Mitric, J. Blanusa, T. Barudzija, Z. Jaglicic, V. Kusigerski, and V. Spasojevic, “Magnetic properties of trivalent Sm ions in SmxY2-xO3,” J. Alloys Compd., vol. 485, no. 1–2, pp. 473–477, Oct. 2009, doi: 10.1016/J.JALLCOM.2009.05.142.
dc.relation.referencesR. C. Deus et al., “Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content,” Mater. Res. Bull., vol. C, no. 70, pp. 416–423, Oct. 2015, doi: 10.1016/J.MATERRESBULL.2015.05.006.
dc.relation.referencesX. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, “Lanthanum– Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications,” Adv. Mater., vol. 15, no. 17, pp. 1438–1442, Sep. 2003, doi: 10.1002/ADMA.200304132.
dc.relation.referencesV. Besikiotis, C. S. Knee, I. Ahmed, R. Haugsrud, and T. Norby, “Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7,” Solid State Ionics, vol. 228, pp. 1–7, Nov. 2012, doi: 10.1016/J.SSI.2012.08.023.
dc.relation.referencesA. C. Cabral, L. S. Cavalcante, R. C. Deus, E. Longo, A. Z. Simões, and F. Moura, “Photoluminescence properties of praseodymium doped cerium oxide nanocrystals,” Ceram. Int., vol. 3, no. 40, pp. 4445–4453, Apr. 2014, doi: 10.1016/J.CERAMINT.2013.08.117.
dc.relation.referencesR. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, and H. Arai, “High temperature properties of Ce1-xPrxO2-δ as an active layer material for SOFC cathodes,” Solid State Ionics, vol. 197, no. 1, pp. 42–48, Aug. 2011, doi: 10.1016/J.SSI.2011.03.022.
dc.relation.referencesL. H. Reddy, G. K. Reddy, D. Devaiah, and B. M. Reddy, “A rapid microwaveassisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation,” Appl. Catal. A Gen., vol. 445–446, pp. 297–305, Nov. 2012, doi: 10.1016/J.APCATA.2012.08.024.
dc.relation.referencesV. Vibhu et al., “Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La2-PrNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La 2-x Pr x NiO 4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells,” doi: 10.1016/j.jechem.2019.10.012ï.
dc.relation.referencesY. Zhao, K. Kita, K. Kyuno, and A. Toriumi, “Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators,” Appl. Phys. Lett., vol. 94, no. 4, p. 042901, Jan. 2009, doi: 10.1063/1.3075954.
dc.relation.referencesM. Bharathy, A. H. Fox, S. J. Mugavero, and H. C. zur Loye, “Crystal growth of inter-lanthanide LaLn′O3 (Ln′ = Y, Ho-Lu) perovskites from hydroxide fluxes,” Solid State Sci., vol. 11, no. 3, pp. 651–654, Mar. 2009, doi: 10.1016/J.SOLIDSTATESCIENCES.2008.10.005.
dc.relation.referencesJ. A. Lussier, K. M. Szkop, A. Z. Sharma, C. R. Wiebe, and M. Bieringer, “Order/Disorder and in Situ Oxide Defect Control in the Bixbyite Phase YPrO3+δ(0≤δ<0.5),” Inorg. Chem., vol. 55, no. 5, pp. 2381–2389, Mar. 2016, doi: 10.1021/acs.inorgchem.5b02746.
dc.relation.referencesM. S. Anwar et al., “Structural and optical study of samarium doped cerium oxide thin films prepared by electron beam evaporation,” J. Alloys Compd., vol. 509, no. 13, pp. 4525–4529, Mar. 2011, doi: 10.1016/j.jallcom.2011.01.067.
dc.relation.referencesJ. Zhang, C. Ke, H. Wu, J. Yu, J. Wang, and Y. Wang, “Solubility limits, crystal structure and lattice thermal expansion of Ln2O3 (Ln=Sm, Eu, Gd) doped CeO2,” J. Alloys Compd., vol. 718, pp. 85–91, Sep. 2017, doi: 10.1016/J.JALLCOM.2017.05.073
dc.relation.referencesV. Sarasamma Vishnu and M. Lakshmipathi Reddy, “Near-infrared reflecting inorganic pigments based on molybdenum and praseodymium doped yttrium cerate: Synthesis, characterization and optical properties,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 9, pp. 2685–2692, Sep. 2011, doi: 10.1016/J.SOLMAT.2011.05.042.
dc.relation.referencesA. I. Ivanov, I. I. Zver’kova, E. V. Tsipis, S. I. Bredikhin, and V. V. Kharton, “Stability and Functional Properties of Fluorite-Like Ce0.6 –xLa0.4PrxO2 – δ as Electrode Components for Solid Oxide Fuel Cells,” Russ. J. Electrochem. 2020 562, vol. 56, no. 2, pp. 139–146, Mar. 2020, doi: 10.1134/S1023193520020056.
dc.relation.referencesM. Basavad, H. Shokrollahi, H. Ahmadvand, and S. M. Arab, “Structural, magnetic and magneto-optical properties of the bulk and thin film synthesized cerium- and praseodymium-doped yttrium iron garnet,” Ceram. Int., vol. 46, no. 8, pp. 12015– 12022, Jun. 2020, doi: 10.1016/J.CERAMINT.2020.01.242.
dc.relation.referencesY. Qiu-Hong, Z. Hong-Xu, and L. Shen-Zhou, “Spectral properties of Ce3+ doped yttrium lanthanum oxide transparent ceramics,” Chinese Phys. B, vol. 19, no. 2, p. 020701, Feb. 2010, doi: 10.1088/1674-1056/19/2/020701.
dc.relation.referencesN. Poovarawan et al., “Second metals (Lanthanum, Cerium, and Yttrium) modified W/SiO2 catalysts for metathesis of ethylene and 2-butene,” Catal. Today, vol. 309, pp. 43–50, Jul. 2018, doi: 10.1016/J.CATTOD.2017.11.012.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTecnología química
dc.subject.lembChemistry, Technical
dc.subject.lembEstructura Química
dc.subject.lembChemical structure
dc.subject.proposalProducción de alto rendimiento
dc.subject.proposalMateriales de alta entropía
dc.subject.proposalDiagrama de fase-propiedad
dc.subject.proposalLibrerías de materiales
dc.subject.proposalHigh throughput
dc.subject.proposalHigh entropy materials
dc.subject.proposalPhase diagram
dc.subject.proposalMaterials libraries
dc.title.translatedHigh throughput production of high entropy multicomponent oxides with focus on oxygen vacancy studies
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentDataset
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProducción masiva de óxidos multicomponentes de alta entropía con enfoque en el estudio de vacancias de oxígeno
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito