Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorWenzl, Peter
dc.contributor.authorVélez Tobón, Mónica Lorena
dc.date.accessioned2022-08-23T16:06:36Z
dc.date.available2022-08-23T16:06:36Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82026
dc.descriptionIlustraciones, tablas
dc.description.abstractLa electroterapia puede usarse como método de limpieza eficaz para eliminación de virus y fitoplasma de yuca in vitro. Sin embargo, se deben tener en cuenta los efectos secundarios de los tratamientos a los que se exponen las plantas para remover patógenos. En este estudio se evaluó la estabilidad genética de materiales sometidos a electroterapia mediante el estudio de los sitios metilados del ADN de 6 genotipos genéticamente diversos de yuca in vitro. Las plantas fueron propagadas clonalmente a partir de una única planta y fueron divididas en dos grupos: materiales que sólo fueron sometidos a subcultivo y materiales que fueron sometidos a electroterapia. Se tomaron muestras de tejido de hojas y raíces antes y después de cada una de estas etapas, se realizó la extracción de ADN genómico y se envió para la secuenciación con la tecnología MS-DArT-Seq (Secuenciación DArT sensible a la metilación) y para el mapeo de las lecturas de los fragmentos generados en el genoma de referencia de M. esculenta. Se identificaron 103607 sitios sensibles a metilación (MSD) distribuidos en todo el genoma. La cantidad e identidad de los sitios metilados fue variable para los genotipos y entre los tratamientos. No se identificaron marcas epigenéticas únicas asociadas con la electroterapia en los materiales. Se concluye que otros factores como el genotipo, el tipo de tejido y el cultivo in vitro podrían estar causando las variaciones de metilación observadas para todas las muestras. (Texto tomado de la fuente)
dc.description.abstractElectrotherapy can be used as an effective cleaning method for elimination of cassava viruses and phytoplasma in vitro. However, the secondary effects of the treatments to which the plants are exposed to remove pathogens must be taken into account. The genetic stability of materials subjected to electrotherapy was evaluated by studying the DNA methylated sites of 6 genetically diverse genotypes of in vitro cassava. The plants were clonally propagated from a single plant and were divided into two groups: materials that were only micropropagated and materials that were subjected to electrotherapy. Leaf and root tissue samples were taken before and after each of these steps, genomic DNA extraction was performed and DNA was sent for sequencing with MS-DArT-Seq technology (Methyl Sensitive DArT Sequencing) and for mapping of the reads of the generated fragments against the reference genome of M. esculenta. 103,607 methylation-sensitive sites (MSD) distributed throughout the genome were identified. The quantity and identity of the methylated sites was variable for genotypes and between treatments. No unique epigenetic marks associated with electrotherapy were identified on the materials. It is concluded that other factors such as genotype, tissue type and in vitro culture could be causing the methylation variations observed for all samples.
dc.format.extentxiv, 97 páginas + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.titleEstabilidad genética de genotipos de Manihot esculenta sometidos a electroterapia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.contributor.educationalvalidatorMuñoz Flórez, Jaime Eduardo
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Biológicas
dc.description.methodsSe utilizaron plantas in vitro de accesiones de M. esculenta pertenecientes a la colección de yuca del programa de recursos genéticos de la Alianza Bioversity-CIAT, en Palmira, Valle del Cauca, Colombia. 46 accesiones de la colección fueron micropropagadas en medio MS (Murashige y Skoog, 1962) con vitaminas. La micropropagación se realizó a partir de una única planta de la que se utilizaron ápices y nudos con yemas axilares hasta obtener entre 6 a 8 plantas de cada genotipo, lo cual requirió dos ciclos de subcultivos de ocho semanas cada uno a una temperatura de 28°C, un fotoperiodo de 12 horas luz/ 12 horas de oscuridad, y una intensidad lumínica de 18,5 μmol.m-2 s -1. Posteriormente, para la aplicación de los tratamientos se utilizaron únicamente segmentos apicales; de allí la importancia de contar con al menos 6 a 8 plantas para utilizar de estas solamente los ápices al inicio de los tratamientos A y B. Los principales criterios para la selección de estos materiales fueron que se encontraran positivos para fitoplasma 16srIII-L asociado a la enfermedad de cuero de sapo y que no hubieran pasado por procesos de limpieza tales como la termoterapia o crioterapia al momento de iniciar la propagación a partir de una única planta. Una vez se obtuvo el tejido de hojas y raíces de las 46 accesiones mencionadas, se verificó si existían datos de genotipificación previos para alguna de estas accesiones, que pudieran apoyar la selección de materiales genéticamente diversos para estudiar la metilación del ADN. Para esto se utilizó la herramienta CurlyWhirly, v. 1.19.09.04 (Curly Whirly, 2019), que permitió visualizar los datos de diversidad genética como puntos en un plano 3D después de calcular las distancias genéticas entre todas las accesiones para las que se tenían datos.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAdil, S., Singh, V., Anjum, A., & Quraishi, A. (2022). A mini-review on electrotherapeutic strategy for the plant viral elimination. In Plant Cell, Tissue and Organ Culture. https://doi.org/10.1007/s11240-022-02265-w
dc.relation.referencesAfgan, E., Baker, D., Van Den Beek, M., Blankenberg, D., Bouvier, D., Cech, M., Chilton, J., Clements, D., Coraor, N., Eberhard, C., Bj¨, B., Grüning, B., Grüning, G., Guerler, A., Hillman-Jackson, J., Kuster, G. Von, Rasche, E., Soranzo, N., Turaga, N., … Goecks, J. (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research, 44(2), 3–10. https://doi.org/10.1093/nar/gkw343
dc.relation.referencesAlbuquerque, H. Y. G. de, Oliveira, E. J. de, Brito, A. C., Andrade, L. R. B. de, Carmo, C. D. do, Morgante, C. V., Vieira, E. A., Moura, E. F., & Faleiro, F. G. (2019). Identification of duplicates in cassava germplasm banks based on single-nucleotide polymorphisms (SNPs). Scientia Agricola, 76(4), 328–336.
dc.relation.referencesAlvarez, E., Mejía, J. F., Llano, G. A., Loke, J. B., Calari, A., Duduk, B., & Bertaccini, A. (2009). Characterization of a Phytoplasma Associated with Frogskin Disease in Cassava. Plant Disease, 93, 1139–1145. https://doi.org/10.1094/pdis-93-11-1139
dc.relation.referencesAngelescu, R., & Dobrescu, R. (2021). MIDGET:Detecting differential gene expression on microarray data. Computer Methods and Programs in Biomedicine, 211, 106418. https://doi.org/10.1016/j.cmpb.2021.106418
dc.relation.referencesAranzales, E. (2013). Evaluación de técnicas in vitro alternativas para la erradicación de virus de interés cuarentenario en yuca Manihot esculenta Crantz. Universidad Nacional de Colombia.
dc.relation.referencesBădărău, C. L., Florentina, D., & Chiru, N. (2014). Effects of some electrotherapy treatments of pvx infected potato plantlets cv . Roclas , on several biological development indicators. Journal of Horticulture, Forestry and Biotechnology, 18(3), 25–29.
dc.relation.referencesBaránek, M., Křižan, B., Ondrušíková, E., & Pidra, M. (2010). DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell, Tissue and Organ Culture, 101(1), 11–22. https://doi.org/10.1007/s11240-009-9656-1
dc.relation.referencesBarros-Silva, D., Marques, C. J., Henrique, R., & Jerónimo, C. (2018). Profiling DNA methylation based on next-generation sequencing approaches: New insights and clinical applications. In Genes (Vol. 9, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/genes9090429
dc.relation.referencesBartels, A., Han, Q., Nair, P., Stacey, L., Gaynier, H., Mosley, M., Huang, Q. Q., Pearson, J. K., Hsieh, T. F., An, Y. Q. C., & Xiao, W. (2018). Dynamic DNA methylation in plant growth and development. In International Journal of Molecular Sciences (Vol. 19, Issue 7). https://doi.org/10.3390/ijms19072144
dc.relation.referencesBayati, S., Shams-Bakhsh, M., & Moieni, A. (2011). Elimination of Grapevine Virus A ( GVA ) by Cryotherapy and Electrotherapy Elimination of Grapevine Virus A ( GVA ) by Cryotherapy and Electrotherapy. Journal of Agricultural Science and Technology, 13(3), 443–450.
dc.relation.referencesBeeching, J. R., Marmey, P., Hughes, M. A., & Charrier, A. (1994). Evaluation of molecular approaches for determining genetic diversity in Cassava germplasm. Proc. 2nd Internat.Scient. Meet. The Cassava Biotechnology Network., 22–26.
dc.relation.referencesBetancourt, C., Pardo, J. M., Muñoz, J., & Alvarez Cabrera, E. (2019). Aislamiento de fitoplasmas asociados a cuero de sapo en yuca. Revista U.D.C.A Actualidad & Divulgación Científica, 22(1). https://doi.org/10.31910/rudca.v22.n1.2019.1177
dc.relation.referencesCalvert, L. A., Cuervo, M., Lozano, I., Villareal, N., & Arroyave, J. (2008). Identification of three strains of a virus associated with cassava plants affected by Frogskin disease. Journal of Phytopathology, 156(11–12), 647–653. https://doi.org/10.1111/j.1439-0434.2008.01412.x
dc.relation.referencesCalvert, L., Cuervo, M., & Lozano, I. (2012). Cassava Viral Diseases of South America. In B. Ospina Patiño & H. Ceballos (Eds.), Cassava in the third millennium : modern production, processing, use, and marketing systems (pp. 309–318). CIAT Publication No. 377. http://ciat-library.ciat.cgiar.org/Articulos_ciat/cassava_in_third_millennium_1.pdf#page=316%0Ahttps://hdl.handle.net/10568/54610
dc.relation.referencesCao, X., Zhai, X., Zhao, Z., Deng, M., Li, Y., & Fan, G. (2020). Genome-wide DNA methylation analysis of paulownia with phytoplasma infection. Gene, 755. https://doi.org/10.1016/j.gene.2020.144905
dc.relation.referencesCarvajal-Yepes, M., Olaya, C., Lozano, I., Cuervo, M., Castaño, M., & Cuellar, W. J. (2014). Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 186, 76–86. https://doi.org/10.1016/j.virusres.2013.12.011
dc.relation.referencesCeballos, H. (2002). La Yuca en Colombia y el Mundo : Nuevas Perspectivas para un Cultivo Milenario. In B. Ospina P., H. Ceballos, E. Alvarez, A. C. Bellotti, L. A. Calvert, B. Arias V., L. F. Cadavid L., B. Pineda L., G. A. Llano R., & M. I. Cuervo (Eds.), La Yuca en el Tercer Milenio (pp. 1–13). Publicación CIAT No. 327.
dc.relation.referencesCeballos, H., Iglesias, C. A., Pérez, J. C., & Dixon, A. G. O. (2004). Cassava breeding: Opportunities and challenges. Plant Molecular Biology, 56(4), 503–516. https://doi.org/10.1007/s11103-004-5010-5
dc.relation.referencesChamorro Poyo, C. (2019). Análisis de datos de RNA-Seq empleando diferentes paquetes desarrollados dentro del proyecto Bioconductor para estudios de expresión génica diferencial. In Master thesis. Universitat Oberta de Catalunya.
dc.relation.referencesChen, H. (2021). VennDiagram: Generate High-Resolution Venn and Euler Plots. (R package version 1.7.0.). https://cran.r-project.org/package=VennDiagram
dc.relation.referencesChen, Y., McCarthy, D., Ritchie, M., Robinson, M., & Smyth, G. (2020). edgeR: differential analysis of sequence read count data User’s Guide (Issue June, pp. 1–121). https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
dc.relation.referencesChetty, C. C., Rossin, C. B., Gruissem, W., Vanderschuren, H., & Rey, M. E. C. (2013). Empowering biotechnology in southern Africa: Establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. New Biotechnology, 30(2), 136–143. https://doi.org/10.1016/j.nbt.2012.04.006
dc.relation.referencesChwialkowska, K., Nowakowska, U., Mroziewicz, A., Szarejko, I., & Kwasniewski, M. (2016). Water-deficiency conditions differently modulate the methylome of roots and leaves in barley (Hordeum vulgare L.). Journal of Experimental Botany, 67(4), 1109–1121. https://doi.org/10.1093/jxb/erv552
dc.relation.referencesCogălniceanu, G. C. (2006). Electrical control of plant morphogenesis. In S. . Gupta & Y. Ibaraki (Eds.), Plant Tissue Culture Engineering (pp. 397–415). Springer.
dc.relation.referencesCordeiro, G. M., Pan, Y. B., & Henry, R. J. (2003). Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Science, 165(1), 181–189. https://doi.org/10.1016/S0168-9452(03)00157-2
dc.relation.referencesCrop Genebank Knowledge Base. (2011). Slow growth storage (SGS) of cassava genetic resources. https://cropgenebank.sgrp.cgiar.org/index.php/cassava-mainmenu-232/conservation-mainmenu-213/in-vitro-bank-mainmenu-216/slow-growth-storage-mainmenu-487
dc.relation.referencesCuervo, M., Martínez, A., Niño, D., Ramírez, J., Gutiérrez, A., Dorado, E., & Muñoz, L. (2017). Certificación Sanitaria del Germoplasma de Yuca (Segunda). Centro Internacional de Agricultura Tropical.
dc.relation.referencesCui, X., & Churchill, G. A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biology, 4, 210. http://genomebiology.com/2003/4/4/210
dc.relation.referencesCurly Whirly (1.19.09.04). (2019). Information & Computational Sciences, The James Hutton Institute.
dc.relation.referencesDe Klerk, G. J. (2007). Stress in plants cultured in vitro. Propagation of Ornamental Plants, 7(3), 129–137.
dc.relation.referencesde Oliveira, S. A. S., Ferreira, C. F., Diamantino, M. S. A. S., Santos, T. A., Pereira, J. dos S., & de Oliveira, E. J. (2020). First report of cassava torrado-like virus, cassava polero-like virus and cassava new alphaflexivirus associated with cassava frogskin disease in Brazil. Journal of Plant Pathology, 102(1), 247. https://doi.org/10.1007/s42161-019-00384-6
dc.relation.referencesDesjardins, Y., Dubuc, J. F., & Badr, A. (2009). In vitro culture of plants: A stressful activity! Acta Horticulturae, 812, 29–50. https://doi.org/10.17660/ActaHortic.2009.812.1
dc.relation.referencesDo Kim, K., Baidouri, M. El, & Jackson, S. A. (2014). Accessing epigenetic variation in the plant methylome. Briefings in Functional Genomics and Proteomics, 13(4), 318–327. https://doi.org/10.1093/bfgp/elu003
dc.relation.referencesDoria, C. A., Arrieta, A. A., Oviedo, J., & Segura, A. (2018). Stimulation of Cassava Germination through the Application of Electrochemical Treatments. Advance Journal of Food Science and Technology, 15(SPL), 109–112. https://doi.org/10.19026/ajfst.14.5880
dc.relation.referencesDoyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
dc.relation.referencesFAO. (2014). Normas para bancos de germoplasma de recursos fitogenéticos para la alimentación y la agricultura. In Comisión de Recursos genéticos para la Alimentación y la Agricultura. www.fao.org/ publications
dc.relation.referencesFerguson, M. E., Shah, T., Kulakow, P., & Ceballos, H. (2019). A global overview of cassava genetic diversity. In PLoS ONE (Vol. 14, Issue 11). https://doi.org/10.1371/journal.pone.0224763
dc.relation.referencesGardiner, L. J., Joynson, R., Omony, J., Rusholme-Pilcher, R., Olohan, L., Lang, D., Bai, C., Hawkesford, M., Salt, D., Spannagl, M., Mayer, K. F. X., Kenny, J., Bevan, M., Hall, N., & Hall, A. (2018). Hidden variation in polyploid wheat drives local adaptation. Genome Research, 28(9), 1319–1332. https://doi.org/10.1101/gr.233551.117
dc.relation.referencesGiardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W. J., & Nekrutenko, A. (2005). Galaxy: A platform for interactive large-scale genome analysis. Genome Research, 15(10), 1451–1455. https://doi.org/10.1101/gr.4086505
dc.relation.referencesGoldsworthy, A. (1986). Switched-on tissue cultures. Trends in Biotechnology, 4(9), 227–230. https://doi.org/10.1016/0167-7799(86)90114-9
dc.relation.referencesGong, H., Igiraneza, C., & Dusengemungu, L. (2019). Major In Vitro Techniques for Potato Virus Elimination and Post Eradication Detection Methods. A Review. American Journal of Potato Research, 96(4), 379–389. https://doi.org/10.1007/s12230-019-09720-z
dc.relation.referencesGonzalez-Arnao, M. T., Panta, A., Roca, W. M., Escobar, R. H., & Engelmann, F. (2008). Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell, Tissue and Organ Culture, 92(1), 1–13. https://doi.org/10.1007/s11240-007-9303-7
dc.relation.referencesGonzález, J. E., Sánchez, R., & Sánchez, A. (2006). Biophysical analysis of electric current mediated nucleoprotein inactivation process. First International Workshop o Bioinformatics, Santa Clara, Cuba.
dc.relation.referencesGraur, D., & Wen-Hsiung, L. (2000). Fundamentals of Molecular Evolution (2nd ed.). Sinauer Associates, Inc.
dc.relation.referencesGuta, I., Buciumeanu, E., Gheorghe, R., & Teodorescu, A. (2010). Solutions to eliminate grapevine leafroll associated virus serotype 1 + 3. Romanian Biotechnological Letters, 15(1), 72–78.
dc.relation.referencesHayatsu, H. (2008). Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis - A personal account. In Proceedings of the Japan Academy Series B: Physical and Biological Sciences (Vol. 84, Issue 8, pp. 321–330). The Japan Academy. https://doi.org/10.2183/pjab.84.321
dc.relation.referencesHernández Pérez, R., González, Y., & Rojas, X. (2005). Sensibilidad de la yuca ( Manihot esculenta Crantz ) clon CMC- 40 a la corriente eléctrica y su futuro uso en el saneamiento a enfermedades. Centro Agrícola, 32(1), 93–94.
dc.relation.referencesHolobiuc, I., Mitoi, M., Blindu, R., & Helepciuc, F. (2010). The establishment of an in vitro gene bank in Dianthus spiculifolius Schur. And D. glacialis ssp. gelidus (Schott Nym. et Kotschy) Tutin: II. Mediumterm cultures characterization in minimal growth conditions. Romanian Biotechnological Letters, 15(2), 5111–5119.
dc.relation.referencesHormozi-Nejad, M. H., Mozafari, J., & Rakhshandehroo, F. (2010). Elimination of Bean common mosaic virus using an electrotherapy technique. Journal of Plant Diseases and Protection, 117(5), 201–205. https://doi.org/10.1007/bf03356361
dc.relation.referencesIgarza, J. (2001). La electroterapia como alternativa para la eliminación del virus DMV en malanga. Manejo Integrado de Plagas (Costa Rica), 60, 57–60.
dc.relation.referencesIta, E. E., Uyoh, E. A., Nakamura, I., & Ntui, V. O. (2020). Efficient elimination of Yam mosaic virus (YMV) from white yam (Dioscorea rotundata Poir.) by cryotherapy of axillary buds. South African Journal of Botany, 130, 123–129. https://doi.org/10.1016/j.sajb.2019.12.022
dc.relation.referencesITPGRFA. (2021). Germplasm flow. Roma: FAO. https://mls.planttreaty.org/itt/index.php?r=stats/pubStats
dc.relation.referencesJaccoud, D., Peng, K., Feinstein, D., & Kilian, A. (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research, 29(4), 25. https://doi.org/10.1093/nar/29.4.e25
dc.relation.referencesJaramilo, G. (2002). Recursos Genéticos de Manihot en el Centro Internacional de Agricultura Tropical (CIAT). In B. Ospina P., H. Ceballos, E. Alvarez, A. C. Bellotti, L. A. Calvert, B. Arias V., L. F. Cadavid L., B. Pineda L., G. A. Llano R., & M. I. Cuervo (Eds.), La yuca del tercer milenio. Publicación CIAT No. 327. https://cgspace.cgiar.org/bitstream/handle/10568/55251/capitulo17.pdf?sequence=1
dc.relation.referencesJones, N., Ougham, H., Thomas, H., & Pašakinskienė, I. (2009). Markers and mapping revisited: finding your gene. New Phytologist, 183(4), 935–966. https://doi.org/10.1111/J.1469-8137.2009.02933.X
dc.relation.referencesKawuki, R. S., Ferguson, M., Labuschagne, M., Herselman, L., & Kim, D. J. (2009). Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Molecular Breeding, 23(4), 669–684. https://doi.org/10.1007/s11032-009-9264-0
dc.relation.referencesKhan, S., Saeed, B., & Kauser, N. (2011). Establishment of genetic fidelity of in-vitro raised banana plantlets. Pak. J. Bot, 43, 233–242.
dc.relation.referencesKidulile, C. E., Miinda Ateka, E., Alakonya, A. E., & Ndunguru, J. C. (2018). Efficacy of chemotherapy and thermotherapy in elimination of East African cassava mosaic virus from Tanzanian cassava landrace. Journal of Phytopathology, 166(10), 739–745. https://doi.org/10.1111/jph.12725
dc.relation.referencesKitimu, S. R., Taylor, J., March, T. J., Tairo, F., Wilkinson, M. J., & Rodríguez López, C. M. (2015). Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation. Frontiers in Plant Science, 6(AUG), 1–12. https://doi.org/10.3389/fpls.2015.00590
dc.relation.referencesKrishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1–18. https://doi.org/10.1007/s13205-016-0389-7
dc.relation.referencesKuznetsova, O. I., Ash, O. A., & Gostimsky, S. A. (2006). The effect of the duration of callus culture on the accumulation of genetic alterations in pea Pisum sativum L. Russian Journal of Genetics, 42(5), 555–562. https://doi.org/10.1134/s1022795406050139
dc.relation.referencesLaw, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology, 15, 29. http://genomebiology.com/2014/15/2/R29
dc.relation.referencesLi, R., Zhou, S., Li, Y., Shen, X., Wang, Z., & Chen, B. (2018). Comparative methylome analysis reveals perturbation of host epigenome in chestnut blight fungus by a hypovirus. Frontiers in Microbiology, 9(MAY), 1–11. https://doi.org/10.3389/fmicb.2018.01026
dc.relation.referencesLi, S., & Tollefsbol, T. O. (2021). DNA methylation methods: Global DNA methylation and methylomic analyses. In Methods (Vol. 187, pp. 28–43). Academic Press Inc. https://doi.org/10.1016/j.ymeth.2020.10.002
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(550), 1–21. https://doi.org/10.1186/s13059-014-0550-8
dc.relation.referencesLozoya-Saldaña, H., Abelló, F., & García de la R, G. (1996). Electrotherapy and shoot tip culture eliminate potato virus X in potatoes. American Potato Journal, 73(4), 149–154. http://repository.upi.edu/1360/1/s_d5451_0604180_chapter1.pdf
dc.relation.referencesMachczyńska, J., Orłowska, R., Mańkowski, D. R., Zimny, J., & Bednarek, P. T. (2014). DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell, Tissue and Organ Culture, 119(2), 289–299. https://doi.org/10.1007/s11240-014-0533-1
dc.relation.referencesMafla, G. (1994). Conservación de germoplasma In vitro. In C. King, J. Osorio, & L. Salazar (Eds.), Memorias I Seminario Nacional sobre Biotecnología (pp. 65–77). Universidad del Tolima.
dc.relation.referencesMagyar-Tábori, K., Mendler-Drienyovszki, N., Hanász, A., Zsombik, L., & Dobránszki, J. (2021). Phytotoxicity and other adverse effects on the in vitro shoot cultures caused by virus elimination treatments: Reasons and solutions. Plants, 10(4). https://doi.org/10.3390/plants10040670
dc.relation.referencesMahmoud, S. Y. M., Hosseny, M. H., & Abdel-Ghaffar, M. H. (2009). Evaluation of Some Therapies to Eliminate Potato Y Potyvirus from Potato Plants. International Journal of Virology, 5(2), 64–76. https://doi.org/10.3923/ijv.2009.64.76
dc.relation.referencesMarín, A., Albarrán, J. G., Fuenmayor, F., & Perdomo, D. (2009). Evaluación del efecto de los reguladores de crecimiento en la regeneración in vitro de cinco cultivares élites de yuca (manihot esculenta crantz). Revista Cientifica UDO Agricola, 9(3), 556–562.
dc.relation.referencesMaruthi, M. N., Whit, E. C., Otti, G., Tumwegamire, S., Kanju, E., Legg, J. P., Kawuki, R., Benesi, I., Zacarias, A., Munga, T., Mwatuni, F., & Mbugua, E. (2018). Physiological and Molecular Plant Pathology A method for generating virus-free cassava plants to combat viral disease epidemics in Africa. July. https://doi.org/10.1016/j.pmpp.2018.09.002
dc.relation.referencesMaruthi, M. N., Whitfield, E. C., Otti, G., Tumwegamire, S., Kanju, E., Legg, J. P., Mkamilo, G., Kawuki, R., Benesi, I., Zacarias, A., Munga, T., Mwatuni, F., & Mbugua, E. (2019). A method for generating virus-free cassava plants to combat viral disease epidemics in Africa. Physiological and Molecular Plant Pathology, 105, 77–87. https://doi.org/10.1016/j.pmpp.2018.09.002
dc.relation.referencesMaunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., Dsouza, C., Fouse, S. D., Johnson, B. E., Hong, C., Nielsen, C., Zhao, Y., Turecki, G., Delaney, A., Varhol, R., Thiessen, N., Shchors, K., Heine, V. M., Rowitch, D. H., Xing, X., Fiore, C., … Costello, J. F. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303), 253–257. https://doi.org/10.1038/nature09165
dc.relation.referencesMayne, B. T., Leemaqz, S. Y., Buckberry, S., Rodriguez Lopez, C. M., Roberts, C. T., Bianco-Miotto, T., & Breen, J. (2018). MsgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19655-w
dc.relation.referencesMeybodi, D. E., Mozafari, J., Babaeiyan, N., & Rahimian, H. (2011). Application of electrotherapy for the elimination of potato potyviruses. Journal of Agricultural Science and Technology, 13(6), 921–927.
dc.relation.referencesNassar, N. M. a. (2004). Some Ecological and Physiological Aspects Related to plant Breeding . Gene Conserve, 3(13), 229–245.
dc.relation.referencesNerway, Z. A. ., Duhoky, M. M. ., & Kassim, N. . (2020). In Vitro Elimination of Dahlia Mosaic Virus By Using Meristem Culture, Electrotherapy and Chemotherapy. Iraqi Journal of Agricultural Sciences, 51(2), 665–674. https://doi.org/10.36103/ijas.v51i2.994
dc.relation.referencesNg, J. C., & Zhou, J. S. (2015). Insect vector-plant virus interactions associated with non-circulative, semi-persistent transmission: Current perspectives and future challenges. In Current Opinion in Virology (Vol. 15, pp. 48–55). https://doi.org/10.1016/j.coviro.2015.07.006
dc.relation.referencesNg, N. Q., & Ng, S. Y. C. (2002). Genetic resources and conservation. In J. . Hillocks, Thresh, & A. . Bellotti (Eds.), Cassava: biology, production and utilization (pp. 167–177). https://doi.org/10.1079/9780851995243.0167
dc.relation.referencesOlsen, K. M. (2004). SNPs, SSRs and inferences on cassava’s origin. Plant Molecular Biology, 56(4), 517–526. https://doi.org/10.1007/s11103-004-5043-9
dc.relation.referencesPanattoni, A., Luvisi, A., & Triolo, E. (2013). Review. Elimination of viruses in plants: Twenty years of progress. Spanish Journal of Agricultural Research, 11(1), 173–188. https://doi.org/10.5424/sjar/2013111-3201
dc.relation.referencesPereira, W. J., de Castro Rodrigues Pappas, M., Camargo Campoe, O., Stape, J. L., Grattapaglia, D., & Joannis Pappas, G. (2020). Patterns of DNA methylation changes in elite Eucalyptus clones across contrasting environments. Forest Ecology and Management, 474(July), 118319. https://doi.org/10.1016/j.foreco.2020.118319
dc.relation.referencesPereira, W. J., De Castro Rodrigues Pappas, M., Grattapaglia, D., & Pappas, G. J. (2020). A cost-effective approach to DNA methylation detection by methyl sensitive DArT sequencing. PLoS ONE, 15(6), e0233800. https://doi.org/10.1371/journal.pone.0233800
dc.relation.referencesPerera, M. F., García, M. G., Noguera, A. S., Tusek, M. S., & Filippone, M. P. (2010). Evaluación de la variación somaclonal en vitroplantas de caña de azúcar mediante marcadores moleculares. Revista Industrial y Agrícola de Tucumán, 87(2), 13–21.
dc.relation.referencesPérez, D., Mora, R., López-Carrascal, C., De Revisión, A., & Article, R. (2019). Conservation of the Cassava Diversity in The Traditional Cultivation Systems of the Amazon. Acta Biol. Colomb, 24(2), 202–212. https://doi.org/10.15446/abc.v24n2.75428
dc.relation.referencesPopova, E. (2018). Special issue on agricultural genebanks. Biopreservation and Biobanking, 16(5), 325–326. https://doi.org/10.1089/bio.2018.29044.ejp
dc.relation.referencesR Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
dc.relation.referencesRitchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7). https://doi.org/10.1093/nar/gkv007
dc.relation.referencesRivera, C. M., & Ren, B. (2013). XMapping human epigenomes. In Cell (Vol. 155, Issue 1, pp. 39–55). Elsevier. https://doi.org/10.1016/j.cell.2013.09.011
dc.relation.referencesRobinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
dc.relation.referencesRoca, W.M., Nolt, B., Mafla, G., Roa, J., & Reyes, R. (1991). Eliminacion de virus y propagacion de clones en la yuca (Manihot esculenta Crantz). In William M Roca & L. Mroginski (Eds.), Cultivo de tejidos en la agricultura (p. 970). Centro Internacional de Agricultura Tropical.
dc.relation.referencesSaladrigas, M. V. (2006). Vocabulario inglés-español de bioquímica y biología molecular (8.a y 9.a entregas). Panace@: Revista de Medicina, Lenguaje y Traducción, 7(24), 199–221.
dc.relation.referencesSanJuan-Badillo, A., Galvez, A., Plasencia, J., & Quirasco, M. (2014). Assessment of DNA extraction methods from various maize (Zea mays L.) tissues for environmental GMO monitoring in Mexico. part I: Detection by end-point PCR. Agrociencia, 48(1), 17–33.
dc.relation.referencesSastry, K. S., & Zitter, T. A. (2014). Management of Virus and Viroid Diseases of Crops in the Tropics. In Plant Virus and Viroid Diseases in the Tropics (pp. 149–480). https://doi.org/10.1007/978-94-007-7820-7_2
dc.relation.referencesSchellenbaum, P., Mohler, V., Wenzel, G., & Walter, B. (2008). Variation in DNA methylation patterns of grapevine somaclones ( Vitis vinifera L .). 10, 1–10. https://doi.org/10.1186/1471-2229-8-78
dc.relation.referencesSeyednasrollah, F., Laiho, A., & Elo, L. L. (2013). Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in Bioinformatics, 16(1), 59–70. https://doi.org/10.1093/bib/bbt086
dc.relation.referencesSingh, B., & Kaur, A. (2016). In Vitro Production of PLRV and PSTVd-Free Plants of Potato using Electrotherapy. Journal of Crop Science and Biotechnology, 19(4), 285–294. https://doi.org/10.1007/s12892-016-0028-1
dc.relation.referencesSmale, M., & Jamora, N. (2020). Valuing genebanks. Food Security, 12(5), 905–918. https://doi.org/10.1007/s12571-020-01034-x
dc.relation.referencesSmyth, G. K., Ritchie, M., Thorne, N., Wettenhall, J., Shi, W., & Hu, Y. (2021). Linear Models for Microarray and RNA-Seq Data - limma User’s Guide (Issue July, pp. 1–145). https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf
dc.relation.referencesSollars, E. S. A., & Buggs, R. J. A. (2018). Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4874-8
dc.relation.referencesSoneson, C., & Delorenzi, M. (2013). A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14(91). https://doi.org/10.1186/1471-2105-14-91
dc.relation.referencesSoto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., Léon, J., Bernal, A. J., Ballvora, A., & López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 1–16. https://doi.org/10.1186/s12864-015-1397-4
dc.relation.referencesStuart, T., Eichten, S. R., Cahn, J., Karpievitch, Y. V., Borevitz, J. O., & Lister, R. (2016). Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. ELife, 5(DECEMBER2016), 1–27. https://doi.org/10.7554/eLife.20777
dc.relation.referencesStupnikov, A., McInerney, C. E., Savage, K. I., McIntosh, S. A., Emmert-Streib, F., Kennedy, R., Salto-Tellez, M., Prise, K. M., & McArt, D. G. (2021). Robustness of differential gene expression analysis of RNA-seq. Computational and Structural Biotechnology Journal, 19, 3470–3481. https://doi.org/10.1016/j.csbj.2021.05.040
dc.relation.referencesSu, S., Law, C. W., Ah-Cann, C., Asselin-Labat, M. L., Blewitt, M. E., & Ritchie, M. E. (2017). Glimma: Interactive graphics for gene expression analysis. Bioinformatics, 33(13), 2050–2052. https://doi.org/10.1093/bioinformatics/btx094
dc.relation.referencesSu, Z., Han, L., & Zhao, Z. (2011). Conservation and divergence of DNA methylation in eukaryotes: New insights from single base-resolution DNA methylomes. Epigenetics, 6(2), 134–140. https://doi.org/10.4161/epi.6.2.13875
dc.relation.referencesSuárez, L., & Mederos, V. R. (2011). APUNTES SOBRE EL CULTIVO DE LA YUCA ( Manihot esculenta Crantz ). TENDENCIAS ACTUALES. Cultivos Tropicales, 32(3), 27–35. www.inca.edu.cu/otras_web/revista/EDICIONES.htm
dc.relation.referencesSun, S. L., Zhong, J. Q., Li, S. H., & Wang, X. J. (2013). Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Botanical Studies, 54(36), 1–7. https://doi.org/10.1186/1999-3110-54-36
dc.relation.referencesTirnaz, S., & Batley, J. (2019). DNA Methylation: Toward Crop Disease Resistance Improvement. In Trends in Plant Science (Vol. 24, Issue 12, pp. 1137–1150). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2019.08.007
dc.relation.referencesTong, Y. (2021). The comparison of limma and DESeq2 in gene analysis. E3S Web of Conferences, 271, 03058. https://doi.org/10.1051/e3sconf/202127103058
dc.relation.referencesVenturini, M. T., Araújo, T. da S., Abreu, E. F. M., de Andrade, E. C., Santos, V. da S., da Silva, M. R., & de Oliveira, E. J. (2016). Crop losses in Brazilian cassava varieties induced by the Cassava common mosaic virus. Scientia Agricola, 73(6), 520–524. https://doi.org/10.1590/0103-9016-2015-0374
dc.relation.referencesVidalis, A., Živković, D., Wardenaar, R., Roquis, D., Tellier, A., & Johannes, F. (2016). Methylome evolution in plants. Genome Biology, 17(1), 1–14. https://doi.org/10.1186/s13059-016-1127-5
dc.relation.referencesVivas Mendez, H. A. (2018). Evaluación de la electroterapia para la limpieza de fitopatógenos en materiales in vitro de yuca y manejo agronómico de la colección bonsái en el banco de germoplasma del CIAT (p. 67). Informe sin publicar.
dc.relation.referencesWang, H., Beyene, G., Zhai, J., Feng, S., Fahlgren, N., Taylor, N. J., Bart, R., Carrington, J. C., Jacobsen, S. E., & Ausin, I. (2015). CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the National Academy of Sciences of the United States of America, 112(44). https://doi.org/10.1073/pnas.1519067112
dc.relation.referencesWang, Q. C., Panis, B., Engelmann, F., Lambardi, M., & Valkonen, J. P. T. (2009). Cryotherapy of shoot tips: A technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. In Annals of Applied Biology (Vol. 154, Issue 3, pp. 351–363). https://doi.org/10.1111/j.1744-7348.2008.00308.x
dc.relation.referencesWeiland, C. M., Cantos, M., Troncoso, A., & Perez-Camacho, F. (2004). REGENERATION OF VIRUS-FREE PLANTS BY IN VITRO CHEMOTHERAPY OF GFLV (GRAPEVINE FANLEAF VIRUS) INFECTED EXPLANTS OF VITIS VINIFERA L. CV “ZALEMA.” Acta Horticulturae, 652, 463–466. https://doi.org/10.17660/ActaHortic.2004.652.61
dc.relation.referencesWenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., & Kilian, A. (2004). Diversity Arrays Technology ( DArT ) for whole-genome profiling of barley. 101(26), 9915–9920.
dc.relation.referencesWidman, N., Feng, S., Jacobsen, S. E., & Pellegrini, M. (2014). Epigenetic differences between shoots and roots in Arabidopsis reveals tissue-specific regulation. Epigenetics, 9(2), 236–242. https://doi.org/10.4161/epi.26869
dc.relation.referencesYan, H., Bombarely, A., Xu, B., Frazier, T. P., Wang, C., Chen, P., Chen, J., Hasing, T., Cui, C., Zhang, X., Zhao, B., & Huang, L. (2018). SiRNAs regulate DNA methylation and interfere with gene and lncRNA expression in the heterozygous polyploid switchgrass. Biotechnology for Biofuels, 11(1), 208. https://doi.org/10.1186/s13068-018-1202-0
dc.relation.referencesYong, W.-S., Hsu, F.-M., & Chen, P.-Y. (2016). Profiling genome-wide DNA methylation. Epigenetics & Chromatin 2016 9:1, 9(1), 1–16. https://doi.org/10.1186/S13072-016-0075-3
dc.relation.referencesZanini, A. A., Cuellar, W. J., Celli, M. G., Luque, A. V., Medina, R. D., Conci, V. C., & Di Feo, L. del V. (2018). Distinct strains of the re-emergent Cassava common mosaic virus (genus: Potexvirus) infecting cassava in Argentina. Plant Pathology, 67(8), 1814–1820. https://doi.org/10.1111/ppa.12869
dc.relation.referencesZanini, A., Rodríguez Pardina, P., Luque, A., & Di Feo, L. (2014). Identificación y caracterización de Cassava common mosaic virus en cultivos de mandioca en Argentina. Ciencia y Tecnología de Los Cultivos Industriales, 6(4), 31–38.
dc.relation.referencesZanini, Andrea A., Di Feo, L., Luna, D. F., Paccioretti, P., Collavino, A., & Rodriguez, M. S. (2020). Cassava common mosaic virus infection causes alterations in chloroplast ultrastructure, function, and carbohydrate metabolism of cassava plants. Plant Pathology, 70(1), 195–205. https://doi.org/10.1111/ppa.13272
dc.relation.referencesZeng, H., He, B., & Yi, C. (2019). Compilation of Modern Technologies To Map Genome-Wide Cytosine Modifications in DNA. ChemBioChem, 20(15), 1898–1905. https://doi.org/10.1002/CBIC.201900035
dc.relation.referencesZhang, Z., Wang, Q. C., Spetz, C., & Blystad, D. R. (2019). In vitrotherapies for virus elimination of potato-valuable germplasm in Norway. Scientia Horticulturae, 249(January), 7–14. https://doi.org/10.1016/j.scienta.2019.01.027
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.subject.agrovocMandioca
dc.subject.agrovocEstabilidad genética
dc.subject.agrovocGenetic stability
dc.subject.agrovocMetilación
dc.subject.proposalManihot esculenta
dc.subject.proposalMS-DArT-Seq
dc.subject.proposalDNA methylation
dc.subject.proposalElectroterapia
dc.subject.proposalMetilación de ADN
dc.subject.proposalElectrotherapy
dc.title.translatedGenetic stability of Manihot esculenta genotypes after going under electrotherapy
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameAlianza Bioversity International - Centro Internacional de Agricultura Tropical
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito