Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorJiménez Mejía, José Fernando (Thesis advisor)
dc.contributor.authorRamírez Cardona, Álvaro
dc.date.accessioned2022-08-24T21:50:28Z
dc.date.available2022-08-24T21:50:28Z
dc.date.issued2022-08-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82085
dc.descriptionIlustraciones, mapas
dc.description.abstractEsta investigación caracterizó la estructura térmica y dinámica de la capa límite nocturna para el año 2017 en el Valle de Aburrá–Colombia, un área urbana tropical con topografía compleja. Se utilizaron registros provenientes de un radiómetro de microondas, un radar perfilador de vientos, un ceilómetro, estaciones meteorológicas y el modelo WRF-ARW acoplado al modelo de parametrización urbana SLUCM. Este último fue ejecutado con seis esquemas de parametrización distintos de la capa límite atmosférica, para 33 noches distribuidas en el periodo de estudio. Un análisis exploratorio fue ejecutado para identificar procesos espacio-temporales usando variables de estado como los vientos, el número de Richardson aproximado, la temperatura potencial virtual y la intensidad de retrodispersión. Mediante un análisis de sensibilidad de los registros se encontró que el espesor de la capa límite nocturna corresponde a un número de Richardson crítico de 0,5. Además se evaluó el modelo para las horas de la noche y se encontró un desempeño aceptable del esquema de parametrización MYNN. También se identificaron patrones de circulación asociados a un jet de bajo nivel, inversiones térmicas, vientos catabáticos y acoplamiento de los vientos alisios con los vientos orográficos. Se observó que los trimestres junio-julio-agosto y septiembre-octubre-noviembre son más estables dinámicamente, mientras que los trimestres de diciembre-enero-febrero y marzo-abril-mayo lo son más desde el punto de vista estático. Finalmente, se concluye que los espesores de la capa límite nocturna en el Valle de Aburrá son relativamente bajos, con condiciones de velocidades significantes al principio de la noche, pero al final de la noche con velocidades muy cercanas a cero y con una estabilidad atmosférica cada vez fortaleciéndose más por el enfriamiento radiativo. (texto tomado de la fuente)
dc.description.abstractThis research characterized the thermal structure and dynamics of the nocturnal boundary layer for the year 2017 in the Aburrá Valley-Colombia, a tropical urban area with complex topography. Records from a microwave radiometer, a wind profiler radar, a ceilometer, meteorological stations, and the WRF-ARW model coupled to the SLUCM urban parameterization model were used. This last one was run with six different atmospheric boundary layer parameterization schemes, for 33 nights distributed in the study period. An exploratory analysis was performed to detect spatio-temporal processes using state variables such as winds, bulk Richardson number, virtual potential temperature and backscatter. Through a sensitivity analysis of the records, it was found that the thickness of the nocturnal boundary layer corresponds to a critical Richardson number of 0,5. In addition, the model was evaluated during night hours and an acceptable performance of the MYNN parameterization scheme was found. Circulation patterns associated with a low-level jet, thermal inversions, katabatic winds and coupling of trade winds with orographic winds were also identified. It was observed that the quarters of june-july-august and september-october-november are more dynamically stable, and whereas those of the december-january-february and march-april-may are more statically stable. Finally, it is concluded that the thicknesses of the nocturnal boundary layer in the Aburrá Valley are relatively low, with significant velocities at the beginning of the night, but at the end of the night with velocities very close to zero and with atmospheric stability becoming increasingly stronger due to radiative cooling.
dc.format.extent89 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.titleLa atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.description.researchareaMeteorología urbana y de montañas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAcevedo, O. C., Mahrt, L., Puhales, F. S., Costa, F. D., Medeiros, L. E., & Degrazia, G. A. (2016). Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 142(695), 693–702. https://doi.org/10.1002/qj.2693
dc.relation.referencesAcevedo, O. C., Moraes, O. L. L., Degrazia, G. A., & Medeiros, L. E. (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorology, 119(1), 41–55. https://doi.org/10.1007/s10546-005-9019-3
dc.relation.referencesAdler, B., Babia, K., Kalthoff, N., Lohou, F., Lothon, M., Dione, C., Pedruzo-Bagazgoitia, X., & Andersen, H. (2019). Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: An observation-based analysis of conditions and processes. Atmospheric Chemistry and Physics, 19(1), 663–681. https://doi.org/10.5194/acp-19-663-2019
dc.relation.referencesAliabadi, A., Staebler, R., de Grandpré, J., Zadra, A., & Vaillancourt, P. (2016). Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions : Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under St. February 2016. https://doi.org/10.1080/07055900.2015.1119100
dc.relation.referencesArduini, G., Arduini, G., Stable, W., Processes, B., & Valleys, A. (2017). Wintertime Stable Boundary-Layer Processes in Alpine Valleys To cite this version : HAL Id : tel-01643685 Processus de la Couche Limite Atmosphérique Stable Hivernale en Vallée Alpine.
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2017). Condiciones especiales del Valle de Aburrá. Factores que incrementan la contaminación en el valle. https://www.metropol.gov.co/ambientales/calidad-del-aire/generalidades/condiciones-especiales
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2020). Informe Anual de Calidad del Aire 2020 Contrato Ciencia y Tecnologıa 871 de 2020. 94. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2020.pdf
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2013). Simulación de Procesos Dispersivos en el Valle de Aburrá. 243, 1–74. http://www.metropol.gov.co/CalidadAire/isdocConvenio243/Simulación
dc.relation.referencesAristizabal, E., & Yokota, S. (2008). Evolución geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Las Ciecias de La Tierra, 24, 5–18. http://www.revistas.unal.edu.co/index.php/rbct/article/viewArticle/9268
dc.relation.referencesBaklanov, A., Grimmond, C., Mahura, A., & Athanassiadou, M. (2009). Meteorological and air quality models for urban areas.
dc.relation.referencesBaklanov, A., Joffre, S. M., Piringer, M., Deserti, M., Middleton, D. R., Tombrou, M., Karppinen, A., Emeis, S., Prior, V., Rotach, M., & Kuchin, A. (2006). Towards estimating the mixing height in urban areas Recent experimental and modelling results - COST 715 Action.
dc.relation.referencesBalsley, B. B., Frehlich, R. G., Jensen, M. L., & Meillier, Y. (2006). High-Resolution In Situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease. Journal of the Atmospheric Sciences, 63(4), 1291–1307. https://doi.org/10.1175/jas3671.1
dc.relation.referencesBalsley, B. B., Tjernström, M., & Svensson, G. (2008). TURBULENCE IN THE NOCTURNAL BOUNDARY LAYER : HIGHLY- STRUCTURED , STRONGLY VARIABLE , AND UBIQUITOUS. January.
dc.relation.referencesBanks, R. F., Tiana-Alsina, J., Rocadenbosch, F., & Baldasano, J. M. (2015). Performance Evaluation of the Boundary-Layer Height from Lidar and the Weather Research and Forecasting Model at an Urban Coastal Site in the North-East Iberian Peninsula. Boundary-Layer Meteorology, 157(2), 265–292. https://doi.org/10.1007/s10546-015-0056-2
dc.relation.referencesBanta, R. M. (2008). Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophysica, 56(1), 58–87. https://doi.org/10.2478/s11600-007-0049-8
dc.relation.referencesBanta, R. M., Berri, G., Blumen, W., Carruthers, D. J., Dalu, G. A., Durran, D. R., Egger, J., Garratt, J. R., Hanna, S. R., Hunt, J. C. R., Meroney, R. N., Miller, W., Neff, W. D., Nicolini, M., Paegle, J., Pielke, R. A., Smith, R. B., Strimaitis, D. G., Vukicevic, T., & Whiteman, C. D. (1990). Atmospheric Processes over Complex Terrain. In W. Blumen (Ed.), Atmospheric Processes over Complex Terrain. American Meteorological Society. https://doi.org/10.1007/978-1-935704-25-6
dc.relation.referencesBanta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004a). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1
dc.relation.referencesBanta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004b). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1
dc.relation.referencesBanta, R. M., Pichugina, Y. L., & Newsom, R. K. (2003). Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer. Journal of the Atmospheric Sciences, 60(20), 2549–2555. https://doi.org/10.1175/1520-0469(2003)060<2549:rbljpa>2.0.co;2
dc.relation.referencesBarlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10(P2), 216–240. https://doi.org/10.1016/j.uclim.2014.03.011
dc.relation.referencesBasu, S., Holtslag, A. A. M., Caporaso, L., Riccio, A., & Steeneveld, G. J. (2014). Observational Support for the Stability Dependence of the Bulk Richardson Number Across the Stable Boundary Layer. Boundary-Layer Meteorology, 150(3), 515–523. https://doi.org/10.1007/s10546-013-9878-y
dc.relation.referencesBattisti, A., Acevedo, O. C., Costa, F. D., Puhales, F. S., Anabor, V., & Degrazia, G. A. (2017). Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Boundary-Layer Meteorology, 162(3), 523–546. https://doi.org/10.1007/s10546-016-0209-y
dc.relation.referencesBedoya, J., & Martinez, E. (2008). Calidad del Aire en el Valle de Aburrá. Antioquia Colombia. Revista Dina, 158, 7–15. http://www.scielo.org.co/pdf/dyna/v76n158/a01v76n158.pdf
dc.relation.referencesBeu, C. M. L., Marques, M. T. A., Nakaema, W. M., Sakagami, Y., Santos, P. A. A., Moreira, A. C. de C. A., & Landulfo, E. (2016). Estimation of turbulence production by nocturnal low level jets in Sao Paulo (Brazil). Remote Sensing Technologies and Applications in Urban Environments, 10008, 1000804. https://doi.org/10.1117/12.2242013
dc.relation.referencesClements, C. B., Whiteman, C. D., & Horel, J. D. (2003). Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42(6), 752–768. https://doi.org/10.1175/1520-0450(2003)042<0752:csaeia>2.0.co;2
dc.relation.referencesConangla, L., & Cuxart, J. (2006). On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Boundary-Layer Meteorology, 118(2), 379–400. https://doi.org/10.1007/s10546-005-0608-y
dc.relation.referencesCorrea, M., Zuluaga, C., Palacio, C., Pérez, J., & Jiménez, J. (2008). Acoplamiento de la atmósfera libre con el campo de vientos locales en una región tropical de topografía compleja. Cao de estudio: Valle de Aburrá, Antioquia, Colombia. DYNA (Colombia), 76(158), 17–27. http://www.scopus.com/inward/record.url?eid=2-s2.0-75249103588&partnerID=40&md5=e60a6899153e19cf150c93bce39d8f02
dc.relation.referencesCourtney, R. (n.d.). Atmospheric Stability. http://faculty.kutztown.edu/courtney/blackboard/physical/17stability/stability.html
dc.relation.referencesCuxart, J. (2008). Nocturnal basin low-level jets: An integrated study. Acta Geophysica, 56(1), 100–113. https://doi.org/10.2478/s11600-007-0042-2
dc.relation.referencesCuxart, J., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Redondo, J. M., Cantalapiedra, I. R., & Conangla, L. (2000). Stable atmospheric boundary-layer experiment in spain (sables 98): a report. Sables 98, 337–370.
dc.relation.referencesDai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., & Zhou, M. (2014). Determining Boundary-Layer Height from Aircraft Measurements. Boundary-Layer Meteorology, 152(3), 277–302. https://doi.org/10.1007/s10546-014-9929-z
dc.relation.referencesDarby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part II: Transport and Diffusion of Tracer under Stable Conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/jam2367.1
dc.relation.referencesDoran, J. C., Fast, J. D., & Horel, J. (2002). the Vtmx 2000 Campaign. Bulletin of the American Meteorological Society, 83(4), 537–551. https://doi.org/10.1175/1520-0477(2002)083<0537:tvc>2.3.co;2
dc.relation.referencesDuarte, H. F., Leclerc, M. Y., Zhang, G., Durden, D., Kurzeja, R., Parker, M., & Werth, D. (2015). Impact of Nocturnal Low-Level Jets on Near-Surface Turbulence Kinetic Energy. Boundary-Layer Meteorology, 156(3), 349–370. https://doi.org/10.1007/s10546-015-0030-z
dc.relation.referencesDuine, G. J., Hedde, T., Roubin, P., Durand, P., Lothon, M., Lohou, F., Augustin, P., & Fourmentin, M. (2017). Characterization of valley flows within two confluent valleys under stable conditions: observations from the KASCADE field experiment. Quarterly Journal of the Royal Meteorological Society, 143(705), 1886–1902. https://doi.org/10.1002/qj.3049
dc.relation.referencesFernando, H. J. S., & Weil, J. C. (2010). Whither the stable boundary layer? Bulletin of the American Meteorological Society, 91(11). https://doi.org/10.1175/2010BAMS2770.1
dc.relation.referencesFlórez, L. (2016). Simulación de diferentes escenarios de cobertura urbana en el balance de energía superficial de una ciudad tropical de montaña. Caso de estudio: Medellín (Colombia). https://doi.org/10.13140/RG.2.2.19932.18562
dc.relation.referencesFochesatto, G. J. (2015). Methodology for determining multilayered temperature inversions. Atmospheric Measurement Techniques, 8(5), 2051–2060. https://doi.org/10.5194/amt-8-2051-2015
dc.relation.referencesGalperin, B., Sukoriansky, S., & Anderson, P. S. (2007). On the critical Richardson number in stably stratified turbulence. Atmospheric Science Letters, 8(3), 65–69. https://doi.org/10.1002/asl.153
dc.relation.referencesGarratt, J. (1992). The Atmospheric Boundary Layer.
dc.relation.referencesGrachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2013). The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Boundary-Layer Meteorology, 147(1), 51–82. https://doi.org/10.1007/s10546-012-9771-0
dc.relation.referencesGrachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., & Guest, P. S. (2005). Stable boundary-layer scaling regimes: The SHEBA data. Boundary-Layer Meteorology, 116(2), 201–235. https://doi.org/10.1007/s10546-004-2729-0
dc.relation.referencesGrachev, A. A., Leo, L. S., Sabatino, S. Di, Fernando, H. J. S., Pardyjak, E. R., & Fairall, C. W. (2016). Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum. Boundary-Layer Meteorology, 159(3), 469–494. https://doi.org/10.1007/s10546-015-0034-8
dc.relation.referencesGrubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F. J., Pan, L. L., & Chow, F. K. (2008). THE TERRAIN-INDUCED ROTOR EXPERIMENT. Bulletin of the American Meteorological Society, 89(10), 1513–1534. https://doi.org/10.1175/2008BAMS2487.1
dc.relation.referencesHaeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G. P., Lolli, S., O’Dowd, C. D., Sauvage, L., Xueref-Rémy, I., Wastine, B., & Feist, D. G. (2012). Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Boundary-Layer Meteorology, 143(1), 49–75. https://doi.org/10.1007/s10546-011-9643-z
dc.relation.referencesHariprasad, K. B. R. R., Srinivas, C. V., Singh, A. B., Vijaya Bhaskara Rao, S., Baskaran, R., & Venkatraman, B. (2014). Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, 145–146, 27–44.
dc.relation.referencesHenao, J. J., Rendón, A. M., & Salazar, J. F. (2020). Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Climate, 31(October 2019), 100542. https://doi.org/10.1016/j.uclim.2019.100542
dc.relation.referencesHerrera‐Mejía, L., & Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote‐sensing and radiosonde observations and the WRF model: the Aburrá Valley case‐study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641–2665. https://doi.org/10.1002/qj.3583
dc.relation.referencesHerrera Mejía, L. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá a partir de la información de sensores remotos y radiosondeos. In Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/51042/1/1128283242.2015.pdf
dc.relation.referencesHolzworth, G. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2
dc.relation.referencesHong, S.-Y., & Pan, H.-L. (1996). Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124(10), 2322–2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
dc.relation.referencesHu, X. M., Klein, P. M., Xue, M., Lundquist, J. K., Zhang, F., & Qi, Y. (2013). Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma city. Journal of Applied Meteorology and Climatology, 52(8), 1779–1802. https://doi.org/10.1175/JAMC-D-12-0256.1
dc.relation.referencesIsaza, A. (2018). Evaluación de la variabilidad temporal de la estructura termodinámica de la atmósfera y su influencia en las concentraciones de material particulado dentro del Valle de Aburrá.
dc.relation.referencesJaramillo, L., Poveda, G., & Mejía, J. F. (2017). Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. International Journal of Climatology, 37(May 2018), 380–397. https://doi.org/10.1002/joc.5009
dc.relation.referencesJeričević, A., & Grisogono, B. (2006). The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus, Series A: Dynamic Meteorology and Oceanography, 58(1), 19–27. https://doi.org/10.1111/j.1600-0870.2006.00153.x
dc.relation.referencesJiménez‐Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low‐Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934
dc.relation.referencesJiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana, montañosa y tropical.Caso de estudio: Valle de Aburrá (Colombia). http://hdl.handle.net/10495/5738
dc.relation.referencesJiménez, M. A., Cuxart, J., & Martínez-Villagrasa, D. (2019). Influence of a valley exit jet on the nocturnal atmospheric boundary layer at the foothills of the Pyrenees. Quarterly Journal of the Royal Meteorological Society, 145(718), 356–375. https://doi.org/10.1002/qj.3437
dc.relation.referencesKaimal, J., & Finnigan, J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. In Notes. OXFORD UNIVERSITY PRESS.
dc.relation.referencesKlein, P. M., Hu, X. M., Shapiro, A., & Xue, M. (2016). Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma. Boundary-Layer Meteorology, 158(3), 383–408. https://doi.org/10.1007/s10546-015-0097-6
dc.relation.referencesKusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Boundary-Layer Meteorology, 101(3), 329–358. https://doi.org/10.1023/A:1019207923078
dc.relation.referencesLareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., & Horst, T. W. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 51–63. https://doi.org/10.1175/BAMS-D-11-00255.1
dc.relation.referencesLazcano, M. F. (2006). Estudio de las alturas características de la capa límite atmosférica en situaciones estables a partir de sondeos con globo cautivo y de observaciones micrometeorológicas en torre. 5a Asamblea Hispano-Portuguesa de Geodesia y Geofísica, 14–17.
dc.relation.referencesLeon, G. E., Zea, J. A., & Eslava, J. A. (2000). Circulación general del tropico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana, 1, 31–38. http://ciencias.bogota.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero01/01_05.pdf
dc.relation.referencesMa, Y., Yang, Y., Hu, X. M., & Gan, R. (2015). Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF. Journal of Meteorological Research, 29(5), 747–763. https://doi.org/10.1007/s13351-015-4101-3
dc.relation.referencesMahrt, L. (1998). Stratified atmospheric boundary layers and breakdown of models. Theoretical and Computational Fluid Dynamics, 11(3–4), 263–279. https://doi.org/10.1007/s001620050093
dc.relation.referencesMahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary Layer Meteorology. http://www.springerlink.com/index/V22623618852Q404.pdf%5Cnpapers2://publication/uuid/DFF73E3E-4AED-4A33-91B3-AD495B9B6812
dc.relation.referencesMahrt, L. (2003). Stably Stratified Boundary Layers. In Encyclopedia of Atmospheric Sciences (pp. 298–305).
dc.relation.referencesMahrt, L. (2014). Stably Stratified Atmospheric Boundary Layers. Annual Review of Fluid Mechanics, 46(1), 23–45. https://doi.org/10.1146/annurev-fluid-010313-141354
dc.relation.referencesMahrt, L. (2017a). Directional Shear in the Nocturnal Atmospheric Surface Layer. Boundary-Layer Meteorology, 165(1), 1–7. https://doi.org/10.1007/s10546-017-0270-1
dc.relation.referencesMahrt, L. (2017b). Heat Flux in the Strong-Wind Nocturnal Boundary Layer. Boundary-Layer Meteorology, 163(2), 161–177. https://doi.org/10.1007/s10546-016-0219-9
dc.relation.referencesMahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., & Troen, I. (1979). An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteorology, 17(2), 247–264. https://doi.org/10.1007/BF00117983
dc.relation.referencesMahrt, L., Richardson, S., Stauffer, D., & Seaman, N. (2014). Nocturnal wind-directional shear in complex terrain. Quarterly Journal of the Royal Meteorological Society, 140(685), 2393–2400. https://doi.org/10.1002/qj.2369
dc.relation.referencesMahrt, L., Sun, J., Blumen, W., Delany, T., & Oncley, S. (1998). Nocturnal boundary-layer regimes l. mahrt. 255–278.
dc.relation.referencesMahrt, L., Sun, J., & Stauffer, D. (2015). Dependence of Turbulent Velocities on Wind Speed and Stratification. Boundary-Layer Meteorology, 155(1), 55–71. https://doi.org/10.1007/s10546-014-9992-5
dc.relation.referencesMathieu, N., Strachan, I. B., Leclerc, M. Y., Karipot, A., & Pattey, E. (2005). Role of low-level jets and boundary-layer properties on the NBL budget technique. Agricultural and Forest Meteorology, 135(1–4), 35–43. https://doi.org/10.1016/j.agrformet.2005.10.001
dc.relation.referencesMesa, O., Poveda, G., & Carvajal, L. F. (1997). Introducción al clima de Colombia. In Universidad Nacional de Colombia, sede Medellín.
dc.relation.referencesMontoya-Duque, E. (2018). Caracterización de la Concentración de Contaminantes del Aire a partir del Estudio de la Dinámica Atmosférica en el Valle de Aburrá.
dc.relation.referencesMunkel, C., & Roininen, R. (2010). Investigation of Boundary Layer structures with ceilometer. AMS Annual Meeting, 3–7. http://www.vaisala.com/Vaisala Documents/Scientific papers/Investigation_of_boundary_layer_structures_with_ceilometer_using_a_novel_robust_algorithm.pdf
dc.relation.referencesNCEP. (2022). NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. https://doi.org/https://doi.org/10.5065/D65Q4T4Z
dc.relation.referencesNieuwstadt, F. T. M. (1984). The Turbulent Structure of the Stable, Nocturnal Boundary Layer. In Journal of the Atmospheric Sciences (Vol. 41, Issue 14, pp. 2202–2216). https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2
dc.relation.referencesNisperuza Toledo, D. J. (2015). Propiedades Ópticas de los Aerosoles Atmosféricos en la Región Andina Colombiana Mediante Análisis de Mediciones Remotas: LIDAR, Fotométricas y Satelitales Daniel. http://www.bdigital.unal.edu.co/48465/
dc.relation.referencesOchoa, A., & Jiménez, J. F. (2008). Ciclo diurno de PM 10 en el Valle de Aburrá. Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/bitstream/handle/unal/7666/Ciclo_diurno_de_PM10_en_el_Valle_de_Aburrá.pdf?sequence=1&isAllowed=y
dc.relation.referencesParker, M. J., & Raman, S. (1993). A case study of the nocturnal boundary layer over a complex terrain. Boundary-Layer Meteorology, 66(3), 303–324. https://doi.org/10.1007/BF00705480
dc.relation.referencesPlocoste, T. (2015). ÉTUDE DE LA DISPERSION NOCTURNE DE POLLUANTS ATMOSPHÉRIQUES ISSUS D’UNE DÉCHARGE D’ORDURES MÉNAGÈRES MISE EN ÉVIDENCE D’UN ÎLOT DE CHALEUR URBAIN (Issue April 2013). https://doi.org/10.13140/2.1.4639.7765
dc.relation.referencesPoulos, B. Y. G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R. O. B., Cuxart, J., Terradellas, E., Balsley, B. E. N., & Jensen, M. (2002). CASES-99 : A Comprehensive Nocturnal Boundary Layer. December 2001.
dc.relation.referencesPoveda, G., & Bedoya, M. (2015). Mountain Tropical Rainfall: Evidence of Phase-Locking between the Diurnal, Annual and Interannual Cycles in the Andes of Colombia. December, 1.
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1
dc.relation.referencesRama Krishna, T. V. B. P. S., Sharan, M., Gopalakrishnan, S. G., & Aditi. (2003). Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. Journal of Applied Meteorology, 42(7), 952–969. https://doi.org/10.1175/1520-0450(2003)042<0952:MSOTNB>2.0.CO;2
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., & Wirth, V. (2015). Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. Journal of Applied Meteorology and Climatology, 54(2), 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1
dc.relation.referencesRichardson, H., Basu, S., & Holtslag, A. A. M. (2013). Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number. Boundary-Layer Meteorology, 148(1), 93–109. https://doi.org/10.1007/s10546-013-9812-3
dc.relation.referencesRoldán, N., Hoyos, C. D., & Herrera, L. (2017). Direct and Indirect Effects of Precipitation on Particulate Matter Concentration in the Aburrá Valley. AGU Fall Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2017AGUFM.A44D..07R/
dc.relation.referencesSaeed, U., Rocadenbosch, F., & Crewell, S. (2016). Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 6895–6906. https://doi.org/10.1109/TGRS.2016.2586298
dc.relation.referencesSales, M. J. (2016). Modelización de la capa límite planetaria bajo condiciones de forzamiento atmosférico mesoescalar. 126.
dc.relation.referencesSchepanski, K., Knippertz, P., Fiedler, S., Timouk, F., & Demarty, J. (2015). The sensitivity of nocturnal low-level jets and near-surface winds over the Sahel to model resolution, initial conditions and boundary-layer set-up. Quarterly Journal of the Royal Meteorological Society, 141(689), 1442–1456. https://doi.org/10.1002/qj.2453
dc.relation.referencesSeaman, N. L., Gaudet, B. J., Stauffer, D. R., Mahrt, L., Richardson, S. J., Zielonka, J. R., & Wyngaard, J. C. (2012). Numerical Prediction of Submesoscale Flow in the Nocturnal Stable Boundary Layer over Complex Terrain. 956–977. https://doi.org/10.1175/MWR-D-11-00061.1
dc.relation.referencesSeibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7), 1001–1027. https://doi.org/10.1016/S1352-2310(99)00349-0
dc.relation.referencesSerafin, S., Adler, B., Cuxart, J., De Wekker, S., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D., Rotach, M., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Precesses in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3), 102. https://doi.org/10.3390/atmos9030102
dc.relation.referencesSerna, L. M., Arias, P. A., & Vieira, S. C. (2018). Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño Modoki. 42(165), 410-421Serna, L. M., Arias, P. A., Vieira, S. C.
dc.relation.referencesShin, H. H., & Hong, S. Y. (2011). Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology, 139(2), 261–281. https://doi.org/10.1007/s10546-010-9583-z
dc.relation.referencesSkamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D. E., Duda, G. K., Huang, X., Wang, W., & Powers, G. N. (2008). A Description of the Advanced Research WRF Version 3. https://doi.org/10.5065/D68S4MVH
dc.relation.referencesSteeneveld, G.-J. (2011). Stable Boundary Layer Issues. Proceedings of Workshop Diurnal Cycles and the Stable Boundary Layer, January 2012, 25–36. https://doi.org/10.1007/978-94-009-3027-8_12
dc.relation.referencesStrang, E. J., & Fernando, H. J. S. (2001). Entrainment and mixing in stratified shear flows. Journal of Fluid Mechanics, 428, 349–386. https://doi.org/10.1017/S0022112000002706
dc.relation.referencesStull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Book, 13, 666. https://doi.org/10.1007/978-94-009-3027-8
dc.relation.referencesSun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L., Miller, D., & Skelly, B. (2004). Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorology, 110(2), 255–279. https://doi.org/10.1023/A:1026097926169
dc.relation.referencesSvensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., Bazile, E., Beljaars, A., de BruiJBN, E. I. F., Cheng, A., Conangla, L., Cuxart, J., Ek, M., Falk, M. J., Freedman, F., Kitagawa, H., Larson, V. E., Lock, A., Mailhot, J., … Zampieri, M. (2011). Evaluation of the diurnal cycle in the Atmospheric Boundary Layer over land as Represented by a Variety of Single-Column models: The second GABLS EXperiment. Boundary-Layer
dc.relation.referencesThomas, C., Stauffer, D., Zeeman, M., Richardson, S., Seaman, N., & Mahrt, L. (2012). Non-stationary Generation of Weak Turbulence for Very Stable and Weak-Wind Conditions. Boundary-Layer Meteorology, 147(2), 179–199. https://doi.org/10.1007/s10546-012-9782-x
dc.relation.referencesTjernström, M., Balsley, B. B., Svensson, G., & Nappo, C. J. (2009). The effects of critical layers on residual layer turbulence. Journal of the Atmospheric Sciences, 66(2), 468–480. https://doi.org/10.1175/2008JAS2729.1
dc.relation.referencesTombrou, M., Founda, D., & Boucouvala, D. (1998). Nocturnal boundary layer height prediction from surface routine meteorological data. Meteorology and Atmospheric Physics, 68(3–4), 177–186. https://doi.org/10.1007/BF01030209
dc.relation.referencesVelásquez García, M. P. (2019). Caracterización meteorológica de la atmósfera en presencia de nubes bajas sobre zona plana del Valle en el Aburra. https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/InvestigacionSIATA/Tesis-Caracterizacion-Atmósfera.pdf
dc.relation.referencesVelasteguí, A. X. H., Limáico Nieto, C. T., Cahueñas, N. P. P., & Parra, M. I. F. (2018). Evaluación de la Estabilidad Atmosférica Bajo Condiciones Físicas y Meteorólogicas del Altiplano Ecuatoriano. Revista Brasileira de Meteorologia, 33(2), 336–343. https://doi.org/10.1590/0102-7786332015
dc.relation.referencesViana, S. (2011a). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdf
dc.relation.referencesSalmond, J. A., & McKendry, I. G. (2005). A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Progress in Physical Geography, 29(2), 171–188. https://doi.org/10.1191/0309133305pp442ra
dc.relation.referencesViana, S. (2011). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdf
dc.relation.referencesWallace, J. M., & Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey. Elsevier Science.
dc.relation.referencesWang, W., Mao, F., Gong, W., Pan, Z., & Du, L. (2016). Evaluating the governing factors of variability in nocturnal boundary layer height based on elastic lidar in Wuhan. International Journal of Environmental Research and Public Health, 13(11), 1–12. https://doi.org/10.3390/ijerph13111071
dc.relation.referencesWhiteman, C. D., Lehner, M., Hoch, S. W., Adler, B., Kalthoff, N., & Haiden, T. (2018). Katabatically Driven Cold Air Intrusions into a Basin Atmosphere. Journal of Applied Meteorology and Climatology, 57(2), 435–455. https://doi.org/10.1175/JAMC-D-17-0131.1
dc.relation.referencesWyngaard, J. C. (1990). Scalar fluxes in the planetary boundary layer - Theory, modeling, and measurement. Boundary-Layer Meteorology, 50(1–4), 49–75. https://doi.org/10.1007/BF00120518
dc.relation.referencesXing-Sheng, L., Gaynor, J. E., & Kaimal, J. C. (1983). A study of multiple stable layers in the nocturnal lower atmosphere. Boundary-Layer Meteorology, 26(2), 157–168. https://doi.org/10.1007/BF00121540
dc.relation.referencesYagüe, C., Viana, S., Maqueda, G., Lazcano, M., Morales, G., & Rees, J. M. (2007). A Study on the Nocturnal Atmospheric Boundary Layer : SABLES2006. Física de La Tierra, 19, 37–53. http://revistas.ucm.es/index.php/FITE/article/view/FITE0707110037A/11535
dc.relation.referencesYepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1
dc.relation.referencesYoshino, M. M. (1984). Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal, 8(3), 235–250. https://doi.org/10.1007/BF00446473
dc.relation.referencesYuval, Levi, Y., Dayan, U., Levy, I., & Broday, D. M. (2020). On the association between characteristics of the atmospheric boundary layer and air pollution concentrations. Atmospheric Research, 231(September 2019), 104675. https://doi.org/10.1016/j.atmosres.2019.104675
dc.relation.referencesZapata Henao, M. (2015). Análisis del impacto de la interacción suelo-atmósfera en las condiciones meteorológicas del Valle de Aburra utilizando el modelo WRF. http://www.bdigital.unal.edu.co/54503/
dc.relation.referencesZardi, D., & Whiteman, C. D. (2013). Mountain Weather Research and Forecasting. https://doi.org/10.1007/978-94-007-4098-3
dc.relation.referencesZhang, H., Zhang, X., Li, Q., Cai, X., Fan, S., Song, Y., Hu, F., Che, H., Quan, J., Kang, L., & Zhu, T. (2020). Research Progress on Estimation of the Atmospheric Boundary Layer Height. Journal of Meteorological Research, 34(3), 482–498. https://doi.org/10.1007/s13351-020-9910-3
dc.relation.referencesZhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., & Chen, J. (2014). On the computation of planetary boundary-layer height using the bulk Richardson number method. Geoscientific Model Development, 7(6), 2599–2611. https://doi.org/10.5194/gmd-7-2599-2014
dc.relation.referencesZilitinkevich, S., & Baklanov, A. (2002). Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorology, 105(3), 389–409. https://doi.org/10.1023/A:1020376832738
dc.relation.referencesZilitinkevich, S., Esau, I., & Baklanov, A. (2007). Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quarterly Journal of the Royal Meteorological Society, 133(622), 265–271. https://doi.org/10.1002/qj.27
dc.relation.referencesZou, J., Sun, J., Liu, G., Yuan, R., & Zhang, H. (2018). Vertical Variation of the Effects of Atmospheric Stability on Turbulence Statistics Within the Roughness Sublayer Over Real Urban Canopy. Journal of Geophysical Research: Atmospheres, 123(4), 2017–2036. https://doi.org/10.1002/2017JD027041
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCalidad del aire
dc.subject.lembMeteorología dinámica
dc.subject.lembEstado atmosférico - Efectos de la actividad solar
dc.subject.proposalMeteorología urbana y de montañas
dc.subject.proposalPatrones de circulación
dc.subject.proposalCapa límite nocturna
dc.subject.proposalEstabilidad atmosférica
dc.subject.proposalTerreno complejo
dc.subject.proposalArea urbana tropical
dc.subject.proposalNúmero de Richardson aproximado
dc.subject.proposalUrban and mountain meteorology
dc.subject.proposalUrban and mountain meteorology
dc.subject.proposalCirculation patterns
dc.subject.proposalNocturnal boundary layer
dc.subject.proposalAtmospheric stability
dc.subject.proposalComplex terrain
dc.subject.proposalTropical urban area
dc.subject.proposalBulk Richardson number
dc.title.translatedThe nocturnal atmosphere in a tropical urban area of complex terrain. Case study: Aburrá Valley (Colombia)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito