Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRomero Isaza, Carmen María
dc.contributor.authorCruz Alvarado, Yadhi Patricia
dc.date.accessioned2022-08-25T19:35:59Z
dc.date.available2022-08-25T19:35:59Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82113
dc.descriptionilustraciones, graficas
dc.description.abstractEn la presente investigación se presenta propiedades entálpicas, volumétricas y superficiales de mezclas de 3-amino-1-propanol, (RS)-1-amino-2-propanol ó (RS)-2-amino-1-propanol, 3-amino-1,2-propanodiol y 1,3-diamino-2-propano, con agua y en función de la temperatura. Los solutos seleccionados, sustituidos en diferentes posiciones con grupos hidroxilo y amino, permitieron evaluar el efecto de la contribución de los grupos polares en las interacciones moleculares en solución acuosa. Las entalpías de dilución se determinaron empleando microcalorimetría de flujo a 298,15 K, mientras que a partir de la teoría de McMillan-Mayer se calcularon los coeficientes de interacción entre pares de moléculas, por lo que se aplicó un esquema de contribución de grupo. A su vez, las propiedades volumétricas se encontraron a partir de medidas de densidad y velocidad del sonido de soluciones diluidas en función de la composición y la temperatura en el rango de 293,15 a 308,15 K; con las cuales se analizó el proceso de hidratación y se calcularon los números de hidratación. La tensión superficial de las mezclas se evaluó por el método de volumen de gota pendiente en función de la temperatura (293,15 a 308,15 K) y en todo el rango de composición, obteniendo parámetros de hidrofobicidad, coeficientes de actividad y propiedades de superficie. Los resultados fueron analizados en términos de las interacciones moleculares soluto-agua y soluto-soluto, además del proceso de hidratación. Se encontró que la contribución de los grupos polares no es aditiva, además de una notable diferencia entre la contribución de cada uno de los grupos a las propiedades termodinámicas evaluadas. (Texto tomado de la fuente)
dc.description.abstractThis research presents enthalpic, volumetric and surface properties of mixtures of 3-amino-1-propanol, (RS) -1-amino-2-propanol or (RS) -2-amino-1-propanol, 3-amino -1,2-propanediol and 1,3-diamino-2-propane, with water and as a function of temperature. The selected solutes, substituted in different positions with hydroxyl and amino groups, allowed to evaluate the effect of the contribution of the polar groups in the molecular interactions in aqueous solution. The dilution enthalpies, were determined using flow microcalorimetry at 298.15 K and from McMillan's theory the interaction coefficients between pairs of molecules were calculated and a group contribution scheme was applied. In addition, the volumetric properties were found from measurements of density and speed of sound, in dilute solutions as a function with composition and temperature in the range of 293.15 to 308.15 K; with which the hydration process was analyzed and the hydration numbers were calculated. The surface tension of the mixtures was evaluated by the volume pendant drop method, as a function of temperature (293.15 to 308.15 K) and throughout the composition range; obtaining hydrophobicity parameters, activity coefficients and surface properties. The results were analyzed in terms of solute-water and solute-solute molecular interactions, in addition to the hydration process. In turn, it was found that the contribution of the polar groups is not additive, in addition to a notable difference between the contribution of each of the groups to the evaluated thermodynamic properties.
dc.format.extentxxv, 179 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleContribución de grupos polares a las propiedades termodinámicas de soluciones acuosas de aminoalcoholes
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupTermodinámica Clásica
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaEstudio Fisicoquímico de Interacciones en Solución
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesP. Ball, “Water is an active matrix of life for cell and molecular biology,” Proc. Natl. Acad. Sci., vol. 114, no. 51, p. 201703781, 2017.
dc.relation.referencesM. F. Chaplin, “A proposal for the structuring of water,” Biophys. Chem., vol. 83, no. 3, pp. 211–221, 2000.
dc.relation.referencesF. Franks, A Matrix of life, 2nd ed. Cambridge: Royal Society of Chemistry, 2000.
dc.relation.referencesF. Franks, Water in Crystalline Hydrates Aqueous Solutions of Simple Nonelectrolytes, Vol 2. New York: Plenum Press, 1973.
dc.relation.referencesB. Bagchi, Water in Biological and Chemical Processes From Structure and Dynamics to Function. Cambridge, United Kingdom: Cambridge University Press, 2013.
dc.relation.referencesJ. L. Finney, “Water? What’s so special about it?,” Philos. Trans. R. Soc. B Biol. Sci., vol. 359, no. 1448, pp. 1145–1165, 2004.
dc.relation.referencesD. Eisenberg and W. Kauzmann, The Structure and Properties of Water. New York: Oxford University Press, 2006.
dc.relation.referencesF. Franks, Water: A Comprehensive Treatise” The Physics and Physical Chemistry of Water, Vol 1. New York: Plenum Press, 1972.
dc.relation.referencesA. Ben-Naim, Molecular Theory of Water and Aqueous Solutions. Singapore: World Scientific Publishing Co., 2009.
dc.relation.referencesA. Ben-Naim, Solvation Thermodynamics. New York: Springer Science+ Business Media, 1987.
dc.relation.referencesN. A. Chumaevskii and M. N. Rodnikova, “Some peculiarities of liquid water structure,” J. Mol. Liq., vol. 106, no. 2–3, pp. 167–177, 2003.
dc.relation.referencesJ. M. Prausnitz, R. N. Linchtenthaler, and G. D. A. A, “Termodinámica Molecular De Los Equilibrios De Fases.” p. 728, 2000.
dc.relation.referencesW. G. McMillan and J. E. Mayer, “The statistical thermodynamics of multicomponent systems,” J. Chem. Phys., vol. 13, no. 7, pp. 276–305, 1945.
dc.relation.referencesJ. J. Savage and R. H. Wood, “Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25oC: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions,” J. Solution Chem., vol. 5, no. 10, pp. 733–750, 1976.
dc.relation.referencesR. H. Wood, B. Y. Okamoto, and P. T. Thompson, “Freezing Points of Aqueous Alcohols. Free Energy of Interaction of the CHOH, CH2, CONH and C=C Functional Groups in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday I, vol. 74, pp. 1990–2007, 1978.
dc.relation.referencesR. H. Wood and L. H. Hiltzik, “Enthalpies of dilution of aqueous solutions of formamide, acetamide, propionamide, and N,N-dimethylformamide,” J. Solution Chem., vol. 9, no. 1, pp. 45–57, 1980.
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpies of dilution of aqueous systems containing hexamethylenetetramine and other nonelectrolytes,” J. Solution Chem., vol. 11, no. 10, pp. 729–747, 1982.
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpies of dilution of aqueous solutions of cyclohexanol, inositol, and mannitol,” J. Phys. Chem., vol. 86, no. 20, pp. 4040–4045, 1982.
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpy of dilution of aqueous systems containing S-trioxane and some amides. Analysis of the interaction of saccharides with amides in aqueous media,” J. Solution Chem., vol. 11, no. 7, pp. 481–493, 1982.
dc.relation.referencesS. Andini, G. Castronuovo, V. Elia, and L. Fasano, “Hydrophobic Interactions in the Aqueous Solutions of Alkan-1,2-diols,” J. Chem. Soc. Faraday Trans., vol. 86, no. 21, pp. 3567–3571, 1990.
dc.relation.referencesC. Cascella, G. Castronuovo, V. Elia, R. Sartorio, and S. Wurzburger, “Hydrophobic Interactions of Alkanols,” J. Chem. Soc. Faraday Trans., vol. 86, no. 1, pp. 85–88, 1990.
dc.relation.referencesA. V. Plyasunov and E. L. Shock, “Group contribution values of the infinite dilution thermodynamic functions of hydration for aliphatic noncyclic hydrocarbons, alcohols, and ketones at 298.15 K and 0.1 MPa,” J. Chem. Eng. Data, vol. 46, no. 5, pp. 1016–1019, 2001.
dc.relation.referencesM. Bloemendal and G. Somsen, “Solute-Solute Interactions in Non-aqueous Solvents. Enthalpic Interaction Coefficients of Substituted Acetamides Dissolved in N,N-Dimethylformamide,” J. Solution Chem., vol. 12, no. 2, pp. 83–99, 1983.
dc.relation.referencesM. Bloemendal and G. Somsen, “Enthalpic interaction coefficients of amides dissolved in N,N-dimethylformamide,” J. Solution Chem., vol. 13, no. 4, pp. 281–295, 1984.
dc.relation.referencesP. J. Cheek and T. H. Lilley, “The enthalpies of interaction of some amides with urea in water at 25°C,” J. Chem. Soc. Faraday Trans. I, vol. 84, no. 6, pp. 1927–1940, 1988.
dc.relation.referencesG. Barone and G. Castronuovo, “Excess enthalpies of ternary aqueous solutions of amides and ureas at 298.15 K,” J. Chem. Soc. Faraday Trans., vol. 84, no. 6, pp. 1919–1925, 1988.
dc.relation.referencesT. H. Lilley and R. H. Wood, “Freezing Temperatures of Aqueous Solutions Containing Formamide, Acetamide, Propionamide and N,N-Dimethylformamide. Free Energy of interaction between the CONH and CH2 Groups in the Dilute Aqueous Solutions,” J. Chem. Soc. Faraday I, vol. 76, pp. 901–905, 1980.
dc.relation.referencesW. Marczak, A. Heintz, and J. K. Lehmann, “Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. II. The dilute solutions of methanol and 2-methyl-2-propanol,” J. Chem. Thermodyn., vol. 36, no. 7, pp. 575–582, 2004.
dc.relation.referencesD. J. Hofmann, J. H. Butler, and P. P. Tans, “A new look at atmospheric carbon dioxide,” Atmos. Environ., vol. 43, no. 12, pp. 2084–2086, 2009.
dc.relation.referencesM. L. Kijevčanin, V. D. Spasojević, S. P. Šerbanović, and B. D. Djordjević, “Densities, viscosities, and refractive indices of aqueous alkanolamine solutions as potential carbon dioxide removal reagents,” J. Chem. Eng. Data, vol. 58, no. 1, pp. 84–92, 2013.
dc.relation.referencesH. Hoiland, “Partial Molar volumes, Expansibilities, and Compressibilities for Aqueous Alcohol Solution Between 5 oC and 40 oC.” pp. 857–866, 1980.
dc.relation.referencesC. M. Romero, M. S. Páez, and D. Pérez, “A comparative study of the volumetric properties of dilute aqueous solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol at various temperatures,” J. Chem. Thermodyn., vol. 40, no. 12, pp. 1645–1653, 2008.
dc.relation.referencesC. M. Romero, M. S. Páez, J. C. Arteaga, M. A. Romero, and F. Negrete, “Effect of temperature on the volumetric properties of dilute aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol, and 2,5-hexanediol,” J. Chem. Thermodyn., vol. 39, no. 8, pp. 1101–1109, 2007.
dc.relation.referencesM. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, “Enthalpies of Dilution of Mono-, Di- and Poly-Alcohols in Dilute Aqueous Solutions At 298.15 K,” J. Therm. Anal., vol. 69, pp. 841–848, 2002.
dc.relation.referencesF. Franks, M. Pedley, and D. Reid, “Solute Interactions in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday Trans., vol. 72, pp. 359–367, 1976.
dc.relation.referencesC. M. Romero, M. S. Páez, and I. Lamprecht, “Enthalpies of dilution of aqueous solutions of n-butanol, butanediols, 1,2,4-butanetriol, and 1,2,3,4-butanetetrol at 298.15 K,” Thermochim. Acta, vol. 437, no. 1–2, pp. 26–29, 2005.
dc.relation.referencesM. V. Kaulgud and K. J. Patil, “Volumetric and isentropic compressibility behavior of aqueous amine solutions. I,” J. Phys. Chem., vol. 78, no. 7, pp. 714–717, 1974.
dc.relation.referencesM. V. Kaulgud and K. J. Patil, “Volumetric and isentropic compressibility behavior of aqueous amine solutions. II,” J. Phys. Chem., vol. 80, no. 2, pp. 138–143, 1976.
dc.relation.referencesB. Hawrylak, K. Gracie, R. Palepu, K. Grade, and R. Palepu, “Thermodynamic properties of binary mixtures of butanediols with water,” J. Solution Chem., vol. 27, no. 1, pp. 17–31, 1998.
dc.relation.referencesS. K. Mehta, G. Ram, V. Kumar, and K. K. Bhasin, “Structural and interactional studies of homologous series of α,ω-alkanediols in N,N-dimethylformamide,” J. Chem. Thermodyn., vol. 39, no. 5, pp. 781–790, 2007.
dc.relation.referencesM. Pagé, J.-Y. Huot, and C. Jolicoeur, “A comprehensive thermodynamic investigation of water–ethanolamine mixtures at 10, 25, and 40 °C,” Can. J. Chem., vol. 71, no. 7, pp. 1064–1072, 1993.
dc.relation.referencesH. Touhara, S. Okazaki, F. Okino, H. Tanaka, K. Ikari, and K. Nakanishi, “Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives,” J. Chem. Thermodyn., vol. 14, no. 2, pp. 145–156, 1982.
dc.relation.referencesY. Maham, T. T. Teng, L. G. Hepler, and A. E. Mather, “Volumetric properties of aqueous solutions of monoethanolamine, mono- and dimethylethanolamines at temperatures from 5 to 80 °C I,” Thermochim. Acta, vol. 386, no. 2, pp. 111–118, 2002.
dc.relation.referencesX. Wang, K. Kang, W. Wang, and Y. Tian, “Volumetric properties of binary mixtures of 3-(methylamino)propylamine with water, N -methyldiethanolamine, N, N -dimethylethanolamine, and N, N -diethylethanolamine from (283.15 to 363.15) K,” J. Chem. Eng. Data, vol. 58, no. 12, pp. 3430–3439, 2013.
dc.relation.referencesF. I. Chowdhury, S. Akhtar, M. A. Saleh, M. U. Khandaker, Y. M. Amin, and A. K. Arof, “Volumetric and viscometric properties of aqueous solutions of some monoalkanolamines,” J. Mol. Liq., vol. 223, pp. 299–314, 2016.
dc.relation.referencesY. Maham, T. T. Teng, L. G. Hepler, and A. E. Mather, “Densities, excess molar volumes, and partial molar volumes for binary mixtures of water with monoethanolamine, diethanolamine, and triethanolamine from 25 to 80°C,” J. Solution Chem., vol. 23, no. 2, pp. 195–205, 1994.
dc.relation.referencesF.-Q. Zhang, H.-P. Li, M. Dai, and J.-P. Zhao, “Volumetric properties of binary mixtures of water with ethanolamine alkyl derivatives,” Thermochim. Acta, vol. 254, pp. 347–357, 1995.
dc.relation.referencesY. Maham, T. T. Teng, A. E. Mather, and L. G. Hepler, “Volumetric properties of (water + diethanolamine ) systems,” Can. J. Chem., vol. 73, pp. 1514–1519, 1995.
dc.relation.referencesZ. Idris and D. A. Eimer, “Density Measurements of Unloaded and CO2-Loaded 3-Amino-1-propanol Solutions at Temperatures (293.15 to 353.15) K,” J. Chem. Eng. Data, vol. 61, no. 1, pp. 173–181, 2016.
dc.relation.referencesA. Henni, A. V Rayer, S. Kadiwala, and K. Narayanaswamy, “Volumetric Properties, Viscosities, and Refractive Indices for Aqueous 1-Amino-2-Propanol (Monoisopropanolamine (MIPA)) Solutions from (298.15 to 343.15) K,” J. Chem. Eng. Data, vol. 55, no. 12, pp. 5562–5568, 2010.
dc.relation.referencesS. E. Burke, B. Hawrylak, and R. Palepu, “Thermodynamic transfer functions at infinite dilution and clathrate formation of ethanolamines in water,” Thermochim. Acta, vol. 345, no. 2, pp. 101–107, 2000.
dc.relation.referencesA. E. Mather, C. Chan, Y. Maham, and C. Mathonat, “Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperatures from 298.15 to 353.15 K,” Fluid Phase Equilib., vol. 198, no. 2, pp. 239–250, 2002.
dc.relation.referencesS. Chen, L. Zhang, Y. Zhang, S. Chen, and J. Chen, “Density and viscosity of monoethylethanolamine + H2O and monoethylethanolamine + diethylethanolamine solutions for CO2capture,” Thermochim. Acta, vol. 642, pp. 52–58, 2016.
dc.relation.referencesS. Cabani and V. Mollica, “Volume Changes in the Proton Ionization of Amines in Water. 2. Amino Alcohols, Amino Ethers, and Diamines,” J. Ph, vol. 81, no. 10, pp. 987–993, 1977.
dc.relation.referencesY. Maham, A. E. Mather, and L. G. Hepler, “Excess molar enthalpies of (Water + Alkanolamine) systems and some thermodynamic calculations,” J. Chem. Eng. Data, vol. 42, no. 5, pp. 988–992, 1997.
dc.relation.referencesC. Mathonat, Y. Maham, A. E. Mather, and L. G. Hepler, “Excess Molar Enthalpies of (Water + Monoalkanolamine) Mixtures at 298.15 K and 308.15 K,” J. Chem. Eng. Data, vol. 42, no. 5, pp. 993–995, 1997.
dc.relation.referencesY. Maham, A. E. Mather, and C. Mathonat, “Excess properties of (alkyldiethanolamine+ H2O) mixtures at temperatures from (298.15 to 338.15) K,” J. Chem. Thermodyn., vol. 32, no. 2, pp. 229–236, 2000.
dc.relation.referencesM. Mundhwa and A. Henni, “Molar excess enthalpy (HmE) for various {alkanolamine (1) + water (2)} systems at T = (298.15, 313.15, and 323.15) K,” J. Chem. Thermodyn., vol. 39, no. 11, pp. 1439–1451, 2007.
dc.relation.referencesG. Castronuovo, V. Elia, M. R. Tranchino, and F. Velleca, “The role of preferential interactions between similar domains in determining the behavior of aqueous solutions of aminoalkanols. A microcalorimetric study,” Thermochim. Acta, vol. 313, no. 2, pp. 125–130, 1998.
dc.relation.referencesH. Liang, X. Hu, G. Fang, S. Shao, A. Guo, and Z. Guo, “Pairwise Interaction Enthalpies of Enantiomers of b-Amino Alcohols in DMSO+H2O Mixtures at 298.15K,” Chirality, vol. 24, pp. 374–385, 2012.
dc.relation.referencesE. B. Rinker, D. W. Oelschlager, A. T. Colussi, K. R. Henry, and O. C. Sandall, “Viscosity, Density, and Surface Tension of Binary Mixtures of Water and N-Methyldiethanolamine and Water and Diethanolamine and Tertiary Mixtures of These Amines with Water over the Temperature Range 20‒100°C,” J. Chem. Eng. Data, vol. 39, no. 2, pp. 392–395, 1994.
dc.relation.referencesG. Vázquez, E. Alvarez, R. Rendo, E. Romero, and J. M. Navaza, “Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25°C to 50°C,” J. Chem. Eng. Data, vol. 41, no. 4, pp. 806–808, 1996.
dc.relation.referencesG. Vázquez, E. Alvarez, J. M. Navaza, R. Rendo, and E. Romero, “Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 °C to 50 °C,” J. Chem. Eng. Data, vol. 42, no. 1, pp. 57–59, 1997.
dc.relation.referencesE. Alvarez, R. Rendo, B. Sanjurjo, M. Sanchéz-Vilas, and J. M. Navaza, “Surface Tension of Binary Mixtures of Water + N -Methyldiethanolamine and Ternary Mixtures of This Amine and Water with Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol from 25 to 50 °C,” J. Chem. Eng. Data, vol. 43, no. 1, pp. 1027–1029, 1998.
dc.relation.referencesJ. Aguila-Hernández, A. Trejo, and J. Gracia-Fadrique, “Surface tension of aqueous solutions of alkanolamines: Single amines, blended amines and systems with nonionic surfactants,” Fluid Phase Equilib., vol. 185, no. 1–2, pp. 165–175, 2001.
dc.relation.referencesA. Muhammad, M. I. A. Mutalib, C. D. Wilfred, T. Murugesan, and A. Shafeeq, “Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K,” J. Chem. Eng. Data, vol. 53, no. 9, pp. 2226–2229, 2008.
dc.relation.referencesA. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, “Density, Speed of Sound, Viscosity and Surface Tension of 3-Dimethylamino-1-propylamine + Water, 3-Amino-1-propanol + 3-Dimethylamino-1-propanol, and (3-Amino-1-propanol + 3-Dimethylamino-1-propanol) + Water from T = (293.15 to 323.15) K,” J. Chem. Eng. Data, vol. 62, pp. 2272–2279, 2017.
dc.relation.referencesC. M. Romero and M. S. Paéz, “Surface tension of aqueous solutions of alcohol and polyols at 298.15 K,” Phys. Chem. Liq., vol. 44, no. 1, pp. 61–65, 2006.
dc.relation.referencesG. Vazquez, E. Alvarez, and J. M. Navaza, “Surface Tension of Alcohol + Water from 20 to 50 °C,” J. Chem. Eng. Data, vol. 40, no. 3, pp. 611–614, 1995.
dc.relation.referencesK. A. Connors and J. L. Wright, “Dependence of Surface Tension on Composition of Binary Aqueous-Organic Solutions,” Anal. Chem., vol. 61, no. 3, pp. 194–198, 1989.
dc.relation.referencesN. Shardt and J. A. W. Elliott, “Model for the Surface Tension of Dilute and Concentrated Binary Aqueous Mixtures as a Function of Composition and Temperature,” Langmuir, vol. 33, no. 41, pp. 11077–11085, 2017.
dc.relation.referencesJ. Gracia-Fradique, P. Brocos, A. Piñero, and A. Amigo, “Activity coefficients at infinite dilution from surface tension data,” Langmuir, vol. 18, no. 9, pp. 3604–3608, 2002.
dc.relation.referencesJ. Gracia-Fadrique, J. Viades-Trejo, and A. Amigo, “Activity coefficients at infinite dilution for surfactants,” Fluid Phase Equilib., vol. 250, no. 1–2, pp. 158–164, 2006.
dc.relation.referencesJ. Gracia-Fadrique, P. Brocos, Á. Piñeiro, and A. Amigo, “A proposal for the estimation of binary mixture activity coefficients from surface tension measurements throughout the entire concentration range,” Fluid Phase Equilib., vol. 260, no. 2, pp. 343–353, 2007.
dc.relation.referencesJ. Viades-Trejo and J. Gracia-Fadrique, “A new surface equation of state. Hydrophobic-hydrophilic contributions to the activity coefficient,” Fluid Phase Equilib., vol. 264, no. 1–2, pp. 12–17, 2008.
dc.relation.referencesP. Atkins and J. De Paula, Physical Chemistry, Ninth Edit. New York: Oxford University Press, 2010
dc.relation.referencesS. Goldman, “The effect of three-body dispersion forces in liquids on solubilities and related functions,” J. Chem. Phys., vol. 69, no. 8, pp. 3775–3781, 1978.
dc.relation.referencesA. Kreglewski, K. N. Marsh, and K. R. Hall, “A simple relation for the excess functions of nonrandom mixtures,” Fluid Phase Equilib., vol. 21, no. 1–2, pp. 25–37, 1985.
dc.relation.referencesC.-A. Hwang, J. C. Holste, K. R. Hall, and G. A. Mansoori, “A simple relation to predict or to correlate the excess functions of multicomponent mixtures,” Fluid Phase Equilib., vol. 62, no. 3, pp. 173–189, Jan. 1991.
dc.relation.referencesY. Lu, X. Wang, G. Su, and J. Lu, “Calorimetric and volumetric studies of the interactions of formamide with alkan-1-ol in water at 298.15 K,” Thermochim. Acta, vol. 406, no. 1–2, pp. 233–239, 2003.
dc.relation.referencesY. Lu, Y. Han, M. Liu, Q. Cheng, X. Lou, and J. Lu, “Enthalpic and volumetric studies of the interactions of propionamide in aqueous carboxylic acid solutions at 298.15 K,” Thermochim. Acta, vol. 416, no. 1–2, pp. 65–70, 2004.
dc.relation.referencesJ. E. Desnoyers, G. Perron, L. Von Av, and J. Morel, “Enthalpies of the Urea-tert-ButanoI-Water System at 25oC,” vol. 5, no. 9, pp. 631–632, 1976.
dc.relation.referencesC. M. Romero, M. S. Páez, and I. Lamprecht, “Enthalpies of dilution of aqueous solutions of n-butanol, butanediols, 1,2,4-butanetriol, and 1,2,3,4-butanetetrol at 298.15 K,” Thermochim. Acta, vol. 437, no. 1–2, pp. 26–29, 2005.
dc.relation.referencesL. Giraldo, J. C. Moreno, and A. Gómez, “Desarrollos Instrumentales en Microcalorimetría de conducción de Calor,” Rev. Colomb. Química, vol. 24, no. I, pp. 57–68, 1995.
dc.relation.referencesI. Wadsö, “Trends in isothermal microcalorimetry,” Chem. Soc. Rev., vol. 26, no. 3, p. 79, 1997.
dc.relation.referencesI. Wadsö, “Isothermal microcalorimetry near ambient temperature: An overview and discussion,” Thermochim. Acta, vol. 294, no. 1, pp. 1–11, 1997.
dc.relation.referencesI. Wadsö, “Needs for standards in isothermal microcalorimetry,” Thermochim. Acta, vol. 347, no. 1–2, pp. 73–77, 2000.
dc.relation.referencesL. D. Hansen, “Toward a standard nomenclature for calorimetry,” Thermochim. Acta, vol. 371, no. 1–2, pp. 19–22, 2001.
dc.relation.referencesL. D. Hansen and R. M. Hart, “The art of calorimetry,” Thermochim. Acta, vol. 417, no. 2, pp. 257–273, 2004.
dc.relation.referencesB. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note. U.S. Government Printing Office, Washington, p. 20, 1994.
dc.relation.referencesC. M. Romero, Y. P. Cruz, and S. Perez-Casas, “Enthalpies of dilution of amino alcohols in aqueous solutions at 298.15 K,” Thermochim. Acta, vol. 684, no. February 2019, p. 178490, 2020.
dc.relation.referencesG. Borghesani, R. Pedriali, F. Pulidori, and I. Scaroni, “Solute-solute-solvent interactions in dilute aqueous solutions. Microcalorimetric study of isomeric butanediols,” J. Solution Chem., vol. 15, no. 5, pp. 397–408, 1986.
dc.relation.referencesW. Dimmling and E. Lange, “Verdunnungs- und Losungswarmen yon n-Propylalkohol und iso-Propylalkohol in Wasser bei 25 °C,” Zeitschrift fur Elekrochemie, vol. 55, no. 4, pp. 322–327, 1951.
dc.relation.referencesH. Liang, X. Hu, G. Fang, S. Shao, A. Guo, and Z. Guo, “Pairwise interaction enthalpies of enantiomers of β-amino alcohols in DMSO + H2O mixtures at 298.15 K,” Chirality, vol. 24, no. 5, pp. 374–385, 2012.
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpies of Dilution of Aqueous Solutions of Cyclohexanol, Inositol, and Mannitol,” J. Phys. Chem., vol. 86, pp. 4040–4045, 1982.
dc.relation.referencesG. Borghesani, R. Pedriali, and F. Pulidori, “Solute-solute-solvent interactions in dilute aqueous solutions of aliphatic diols. Excess enthalpies and gibbs free energies,” J. Solution Chem., vol. 18, no. 3, pp. 289–300, 1989.
dc.relation.referencesM. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, “Enthalpies of dilution of mono-, di- and poly-alcohols in dilute aqueous solutions at 298.15 K,” J. Therm. Anal. Calorim., vol. 69, no. 3, pp. 841–848, 2002.
dc.relation.referencesG. Perron and J. E. Desnoyers, “Heat capacities and volumes of interaction between mixtures of alcohols in water at 298. 5 K,” J. Chem. Thermodyn., vol. 13, pp. 1105–1121, 1981.
dc.relation.referencesF. Franks and M. Pedley, “Solute Interactions in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday Trans. I, vol. 79, pp. 2249–2260, 1983.
dc.relation.referencesW. Dimmling and E. Lange, “Heats of dilution and solution of n-propyl alcohol and isopropyl alcohol in water at 25|C,” Z. Elektrochem, vol. 55, p. 322, 1951.
dc.relation.referencesR. B. Cassel and R. H. Wood, “Heat of mixing aqueous nonelectrolytes at constant molality. Sucrose, urea, and glycine,” J. Phys. Chem., vol. 78, no. 24, pp. 2465–2469, 1974.
dc.relation.referencesL. G. Soldi, Y. Marcus, M. J. Blandamer, and P. M. Cullis, “Titration calorimetric determination of the pairwise interaction parameters of glycerol, D-threitol, mannitol, and D-glucitol in dilute aqueous solutions,” J. Solution Chem., vol. 24, no. 3, pp. 201–209, 1995.
dc.relation.referencesE. Lange and K. Möhring, “Integrale Verdünnungswärmen einiger Nichtelektrolyte in Wasser und Octamethyltetrasiloxan bei kleinen Konzentrationen,” Z. Elektrochem, vol. 57, no. 8, pp. 660–662, 1953.
dc.relation.referencesJ. Sedlbauer and P. Jakubu, “Application of group additivity approach to polar and polyfunctional aqueous solutes,” Ind. Eng. Chem. Res., vol. 47, no. 15, pp. 5048–5062, 2008.
dc.relation.referencesS. Cabani, P. Gianni, V. Mollica, and L. Lepori, “Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution,” J. Solution Chem., vol. 10, no. 8, pp. 563–595, 1981.
dc.relation.referencesS. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, “Volume changes in the proton ionization of amines in water. 2. Amino alcohols, amino ethers, and diamines,” J. Phys. Chem., vol. 81, no. 10, pp. 987–993, 1977.
dc.relation.referencesH. Wood, Robert and L. H. Hiltzik, “Enthalpies of dilution of aqueous solutions of formamide, acetamide, propionamide, and N,N-dimethylformamide,” J. Solution Chem., vol. 9, no. 1, pp. 45–57, 1980.
dc.relation.referencesC. M. Romero, I. Lamprecht, and M. E. Gonzalez, “Enthalpy of dilution of aliphatic amides in aqueous solutions at temperatures between 293.15K and 308.15K,” Thermochim. Acta, vol. 488, pp. 49–53, 2009.
dc.relation.referencesI. M. Klotz, Chemical Thermodynamics - Basic Theory and Methods. New York: W. A. Benjamin Inc., 1964
dc.relation.referencesK. S. Pitzer, Thermodynamics, 3rd ed. Singapore: MacGraw Hill International Editions, 1995.
dc.relation.referencesJ. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, “The Gibbs-Duhem Equation,” Molecular Thermodynamics of Fluid-Phase Equilibria. 1998.
dc.relation.referencesS. Cabani, G. Conti, and E. Matteoli, “Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers,” J. Solution Chem., vol. 5, no. 11, pp. 751–763, 1976.
dc.relation.referencesH. Høiland, “Partial molal volumes, expansibilities, and compressibilities for aqueous alcohol solutions between 5°C and 40°C,” J. Solution Chem., vol. 9, no. 11, pp. 857–866, 1980.
dc.relation.referencesJ. W. P. Malcolm, Ultrasonic Techniques for Fluids Characterization, Department. Leeds, United Kingdom: Academic Press, 1997.
dc.relation.referencesA. Burakowski and J. Gliński, “Hydration numbers of non-electrolytes - Application of the acoustic method of Pasynski,” Chem. Phys., vol. 332, no. 2–3, pp. 336–340, 2007.
dc.relation.referencesJ. Gliński and A. Burakowski, “New interpretation of the concentration dependence of the compressibility of aqueous solutions of nonelectrolytes,” Int. J. Thermophys., vol. 32, no. 4, pp. 786–794, 2011.
dc.relation.referencesJ. Gliński and A. Burakowski, “Hydration numbers of nonelectrolytes from acoustic methods,” Chem. Rev., vol. 112, no. 4, pp. 2059–2081, 2012.
dc.relation.referencesA. Burakowski and J. Gliński, “Additivity of adiabatic compressibility with the size and geometry of the solute molecule,” J. Mol. Liq., vol. 137, no. 1–3, pp. 25–30, 2008.
dc.relation.referencesY. Kano, M. Hasumoto, Y. Kayukawa, and K. Watanabe, “Rapid measurements of thermodynamic properties for alternative refrigerants with vibrating-tube densimeter,” Int. J. Thermophys., vol. 26, no. 1, pp. 63–81, 2005.
dc.relation.referencesS. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, “Volume Changes in the Proton Ionization of Amines in Water. 2. Amino Alcohols, Amino Ethers, and Diamines,” J. Phys. Chem., vol. 81, no. 10, pp. 987–993, 1977.
dc.relation.referencesA. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, “Volumetric Properties and Viscosities for Aqueous AMP Solutions from 25 °C to 70 °C,” J. Chem. Eng. Data, vol. 48, no. 3, pp. 551–556, 2003.
dc.relation.referencesA. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, “Volumetric properties and viscosities for aqueous diisopropanolamine solutions from 25 oC to 70 oC,” J. Chem. Eng. Data, vol. 48, no. 4, pp. 1062–1067, 2003.
dc.relation.referencesA. Muhammad, M. I. A. Mutalib, T. Murugesan, and A. Shafeeq, “Density and Excess Properties of Aqueous N-Methyldiethanolamine Solutions from (298.15 to 338.15) K,” J. Chem. Eng. Data, vol. 53, no. 9, pp. 2217–2221, 2008.
dc.relation.referencesE. Álvarez, F. Cerdeira, D. Gómez-Diaz, and J. M. Navaza, “Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-propanol or 3-Amino-1-propanol with 2-Amino-2-methyl-1-propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15) K,” J. Chem. Eng. Data, vol. 55, pp. 2567–2575, 2010.
dc.relation.referencesF. Kermanpour and H. Z. Niakan, “Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory,” J. Chem. Thermodyn., vol. 54, pp. 10–19, 2012.
dc.relation.referencesD. Gómez-Díaz, M. D. La Rubia, A. B. López, J. M. Navaza, R. Pacheco, and S. Sánchez, “Density, speed of sound, refractive index, and viscosity of 1-amino-2-propanol {or Bis(2-hydroxypropyl)amine} + triethanolamine + water from T = (288.15 to 333.15) K,” J. Chem. Eng. Data, vol. 57, no. 4, pp. 1104–1111, 2012.
dc.relation.referencesV. D. Spasojevic, B. D. Djordjevic, S. P. Šerbanovic, I. R. Radovic, and M. Lj Kijevčanin, “Densities, refractive indices, viscosities, and spectroscopic study of 1-amino-2-propanol + 1-butanol and + 2-butanol solutions at (288.15 to 333.15) K,” J. Chem. Eng. Data, vol. 59, no. 6, pp. 1817–1829, 2014.
dc.relation.referencesY. P. Cruz, M. A. Esteso, and C. M. Romero, “Effect of temperature on the partial molar volumes and the partial molar compressibilities of amino alcohols in aqueous solution,” J. Chem. Thermodyn., vol. 160, p. 106521, 2021.
dc.relation.referencesE. Bulemela and P. R. Tremaine, “Standard Partial Molar Volumes of Some Aqueous Alkanolamines and Alkoxyamines at Temperatures up to 325 °C: Functional Group Additivity in Polar Organic Solutes under Hydrothermal Conditions,” J. Phys. Chem. B, vol. 112, no. 18, pp. 5626–5645, 2008.
dc.relation.referencesC. M. Romero and Y. P. Cruz, “Volumen Molar Parcial de Algunas Alcanolaminas en agua a 298,15 K,” Rev. Colomb. Química, vol. 40, no. 3, pp. 381–390, 2011.
dc.relation.referencesS. Mokraoui, A. Valtz, C. Coquelet, and D. Richon, “Volumetric properties of the isopropanolamine-water mixture at atmospheric pressure from 283.15 to 353.15 K,” Thermochim. Acta, vol. 440, no. 2, pp. 122–128, 2006.
dc.relation.referencesS. Cabani, G. Conti, and L. Lepori, “Volumetric properties of aqueous solutions of organic compounds. III. Aliphatic secondary alcohols, cyclic alcohols, primary, secondary, and tertiary amines,” J. Phys. Chem., vol. 78, no. 10, pp. 1030–1034, 1974.
dc.relation.referencesL. Lepori and P. Gianni, “Partial Molar Volumes of Ionic and Nonionic Organic Solutes in Water : A Simple Additivity Scheme Based on the Intrinsic Volume Approach,” J. Solution Chem., vol. 29, no. 5, pp. 405–447, 2000.
dc.relation.referencesJ. Gliński and A. Burakowski, “Is the hydration number of a non-electrolyte additive with length and constituents of the solute molecule?,” Eur. Phys. J. Spec. Top., vol. 154, no. 1, pp. 275–279, 2008.
dc.relation.referencesC. M. Romero and M. S. Páez, “Volumetric properties of aqueous binary mixtures of 1-butanol, butanediols, 1,2,4-butanetriol and butanetetrol at 298.15 K,” J. Solution Chem., vol. 36, no. 2, pp. 237–245, 2007.
dc.relation.referencesP. Hynčica, L. Hnědkovský, and I. Cibulka, “Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and 2-propanol(aq) at T= (298 to 573) K and at pressures up to 30 MPa,” J. Chem. Thermodyn., vol. 36, no. 12, pp. 1095–1103, 2004.
dc.relation.referencesJ. T. Edward, P. G. Farrell, and F. G. Shahidi, “Partial Molar Volumes of Organic Compounds in Water Part 1. Ethers, Ketones, Esters and Alcohols,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 73, pp. 705–714, 1977.
dc.relation.referencesF. G. Shahidi, P. G. Farrell, and J. T. Edward, “Partial Molar Volumes of Organic Compounds in Water Part 2. Amines and Amides,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 73, pp. 715–721, 1977.
dc.relation.referencesS. Cabani, E. Matteoli, and M. R. Tinè, “Compressibility Changes in the Reaction of Proton Addition to some Organic Aliphatic Nitrogen Compounds in Aqueous Solution,” Z. Phys. Chem. Neue Folge, vol. 137, pp. 23–30, 1983.
dc.relation.referencesA. Da̧browski, “Adsorption - From theory to practice,” Adv. Colloid Interface Sci., vol. 93, no. 1–3, pp. 135–224, 2001.
dc.relation.referencesH. J. Butt, K. Graf, and M. Kappl, The Physics and Chemistry of Interfaces, vol. 53, no. 9. Weinheim: WILEY-VCH Verlag GmbH & Co., 2003.
dc.relation.referencesG. G. Láng, “Basic interfacial thermodynamics and related mathematical background,” ChemTexts, vol. 1, no. 4, pp. 1–17, 2015.
dc.relation.referencesH. Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces. Oxford: Blackwell Publishing, 2006.
dc.relation.referencesM. A. Alanis-García and J. Gracia-Fadrique, “Ecuación de estado superficial de Volmer líquidos simples y tensoactivos,” Educ. Química, vol. 29, no. 2, p. 36, 2018.
dc.relation.referencesA. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. New York: John Wiley & Sons, 1997.
dc.relation.referencesH. Y. Erbil, Surface Chemistry Of Solid and Liquid Interfaces, vol. 9, no. 4. Oxford: Blackwell Publishing Ltd, 2006.
dc.relation.referencesF. D. Sandoval-Ibarra, J. L. López-Cervantes, and J. Gracia-Fadrique, “Ecuación de Langmuir en líquidos simples y tensoactivos,” Educ. Quim., vol. 26, no. 4, pp. 307–313, 2015.
dc.relation.referencesB. Hawrylak, S. Andrecyk, C.-E. Gabriel, K. Gracie, and R. Palepu, “Viscosity, Surface Tension, and Refractive Index Measurements of Mixtures of Isomeric Butanediols with Water,” J. Solut. Chem., vol. 27, no. 9, pp. 827–841, 1998.
dc.relation.referencesY. Maham and A. E. Mather, “Surface thermodynamics of aqueous solutions of alkylethanolamines,” Fluid Phase Equilib., vol. 182, no. 1–2, pp. 325–336, 2001.
dc.relation.referencesC. M. Romero, M. S. Páez, J. A. Miranda, D. J. Hernández, and L. E. Oviedo, “Effect of temperature on the surface tension of diluted aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol and 2,5-hexanediol,” Fluid Phase Equilib., vol. 258, no. 1, pp. 67–72, 2007.
dc.relation.referencesA. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, “Surface tension and refractive index of benzylamine and 1,2-diaminopropane aqueous solutions from T = (283.15 to 323.15) K,” J. Chem. Eng. Data, vol. 57, no. 9, pp. 2437–2441, 2012.
dc.relation.referencesH. Everett, D, “The Thermodynamics of Adsorption. Part II. Thermodynamics of Monolayers on Solids,” Trans. Faraday Soc., vol. 46, pp. 453–957, 1950.
dc.relation.referencesD. Khossravi and K. A. Connors, “Solvent effects on chemical processes. 3. Surface tension of binary aqueous organic solvents,” J. Solution Chem., vol. 22, no. 4, pp. 321–330, 1993.
dc.relation.referencesM. C. Wilkinson, “Extended use of, and Comments on, the Drop-Weight (drop-volume) Technique for the Determination of Surface and Interfacial Tensions,” J. Colloid Interface Sci., vol. 40, no. 1, pp. 14–26, 1972.
dc.relation.referencesLAUDA, “Drop Volume Tensiometer TVT1.” Dr Wobser Gmbh and Co., Konigshofen, Germany, 1993.
dc.relation.referencesC. Wohlfarth and B. Wohlfarth, Surface tension of pure liquids and binary liquid mixtures. In Landolt-Börnstein Nomerical Data and Functional Relationships in Science and Technology, vol. 16, no. IV. Osnabrück, Germany: Springer, 1997.
dc.relation.referencesE. Álvarez, Á. Cancela, R. Maceiras, J. M. Navaza, and R. Táboas, “Surface tension of aqueous binary mixtures of 1-amino-2-propanol and 3-amino-1-propanol, and aqueous ternary mixtures of these amines with diethanolamine, triethanolamine, and 2-amino-2-methyl-1-propanol from (298.15 to 323.15) K,” J. Chem. Eng. Data, vol. 48, no. 1, pp. 32–35, 2003.
dc.relation.referencesJ. Aguila-Hernández, R. Gómez-Quintana, F. Murrieta-Guevara, A. Romero-Martínez, and A. Trejo, “Liquid density of aqueous blended alkanolamines and N-methylpyrrolidone as a function of concentration and temperature,” J. Chem. Eng. Data, vol. 46, no. 4, pp. 861–867, 2001.
dc.relation.referencesE. Alvarez, D. Gómez-Díaz, M. Dolores La Rubia, and J. M. Navaza, “Surface tension of binary mixtures of N-methyldiethanolamine and triethanolamine with ethanol,” J. Chem. Eng. Data, vol. 53, no. 3, pp. 874–876, 2008.
dc.relation.referencesC. Bermúdez-Salguero, A. Amigo, and J. Gracia-Fadrique, “Activity coefficients from Gibbs adsorption equation,” Fluid Phase Equilib., vol. 330, pp. 17–23, 2012.
dc.relation.referencesJ. J. Jasper, “The Surface Tension of Pure Liquid Compounds,” J. Phys. Chem. Ref. Data, vol. 1, no. 4, pp. 841–1010, 1972.
dc.relation.referencesD. C. Harris, Quantitative Chemical Analysis, 8th ed. New York: W. H. Freeman and Company, 2010.
dc.relation.referencesNational Institute of Standards and Technology, “NIST.” [Online]. Available: https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=H&all=all. [Accessed: 10-Mar-2014].
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSOLUCIONES (QUIMICA)
dc.subject.lembSolution (chemistry)
dc.subject.proposalAminoalcoholes
dc.subject.proposalEntalpía de dilución
dc.subject.proposalVolumen molar parcial
dc.subject.proposalCompresibilidad molar parcial
dc.subject.proposalTensión superficial
dc.subject.proposalInteracciones moleculares
dc.subject.proposalContribución de grupos polares
dc.subject.proposalAmino alcohols
dc.subject.proposalDilution enthalpy
dc.subject.proposalPartial molar volume
dc.subject.proposalPartial molar compressibility
dc.subject.proposalSurface tension
dc.subject.proposalMolecular interactions
dc.subject.proposalContribution of polar groups
dc.title.translatedContribution of polar groups to the thermodynamic properties of aqueous solutions of amino alcohols
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEstudio fisicoquímico de interacciones en solución. Fase III
oaire.fundernameDIEB
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito