Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorOrtiz Reyes, Adriana
dc.contributor.advisorRomero-Tabarez, Magally
dc.contributor.authorMejia Torres, Maria Camila
dc.date.accessioned2022-08-25T19:42:42Z
dc.date.available2022-08-25T19:42:42Z
dc.date.issued2020-02-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82114
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractColonias de Tetragonisca angustula en Cimitarra, Santander presentaron señales progresivas de deterioro que conllevó a su muerte. Dado que tras realizar la evaluación correspondiente para múltiples patógenos conocidos para otras especies de abejas no fue posible identificar el causante del daño, se decidió hacer un análisis extensivo sobre los microorganismos asociados a las colonias de T. angustula y establecer si existe relación entre el avance del deterioro y algún patógeno cultivable o una posible disbiosis en la colonia. Se aislaron bacterias de adultos, inmaduros y partes estructurales del nido utilizando métodos de siembra convencionales, se morfotiparon las colonias obtenidas y aquellas más abundantes y con aparente relación con el deterioro de las colonias fueron identificadas por técnicas moleculares. Se publica un listado detallado de las bacterias identificadas por cada fuente muestreada como aporte al conocimiento de la microbiota de esta especie de abeja sin aguijón. Se observó en todas las fuentes aumento en la abundancia bacteriana principalmente de Actino bacterias, Bacillus y Enterobacterias durante la etapa temprana del deterioro seguida por una reducción de esta en la etapa tardía, aunque los análisis estadísticos no permitieron establecer si alguna de las bacterias actúa como patógeno de la colonia o si estos cambios en la microbiota son los causantes del deterioro. Bacterias como L. saprophyticus o L. massiliensis son potencialmente patógenas, y sería interesante estudiar más a fondo su acción sobre T. angustula. Dado que los microorganismos que aumentaron tienen propiedades antifúngicas y que los hongos pueden establecer interacción con las bacterias, se recomienda evaluar las muestras para determinar la presencia de hongos que puedan estar modificando la microbiota de las abejas o causando cambios en el comportamiento de la colonia. (texto tomado de la fuente)
dc.description.abstractColonies of Tetragonisca angustula in Cimitarra, Santander showed progressive signs of deterioration that led to their death. Given that after carrying out the corresponding evaluation for multiple known pathogens for other species of bees it was not possible to identify the cause of the damage, it was decided to carry out an extensive analysis on the microorganisms associated with the colonies of T. angustula and to establish if there is a relationship between the advance of deterioration and some cultivable pathogen, or a possible dysbiosis in the colony. Bacteria were isolated from adults, immature and structural parts of the nest using conventional seeding methods, the colonies obtained were morphotyped and those more abundant and with an apparent relationship with the deterioration of the colonies were identified by molecular techniques. A detailed list of the bacteria identified by each sampled source is published as a contribution to the knowledge of the microbiota of this species of stingless bee. An increase in bacterial abundance was observed in all the sampled sources, mainly of Actinobacteria, Bacillus and Enterobacteria during the early stage of deterioration followed by a reduction of this in the late stage, although the statistical analysis did not allow to establish whether any of the bacteria acts as a pathogen of the colony or if these changes in the microbiota are causing the deterioration. Bacteria such as L. saprophyticus or L. massiliensis are potentially pathogenic, and it would be interesting to further study their action on T. angustula. Given that some microorganisms that increased have antifungal properties and that fungi can establish interaction with bacteria, it is recommended to evaluate the samples to determine the presence of fungi that may be modifying the microbiota of the bees or causing changes in the behaviour of the colony.
dc.format.extentxviii, 125 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc590 - Animales
dc.titleRelación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Entomología
dc.contributor.researchgroupSabio Sustancias Activas y Biotecnologia
dc.coverage.citySantander, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Entomología
dc.description.researchareaEcología de insectos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de ciencias naturales
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesMichener, C. D. (2007). Tribe Meliponini. In The bees of the world (pp. 803–829). The John Hopckins University Press.
dc.relation.referencesMiller, D. L., Smith, E. A., & Newton, I. L. G. (2020). A bacterial symbiont protects honey bees from fungal disease. BioRxiv, 812, 2020.01.21.914325. https://doi.org/10.1101/2020.01.21.914325
dc.relation.referencesMills, T. J. T. (2018). Diversity and bioactivity of microorganisms associated with Australian Stingless bee species (Issue August). The University of New South Wales.
dc.relation.referencesMiorin, P. L., Levy, N. C., Custodio, A. R., Bretz, W. A., & Marcucci, M. C. (2003). Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. Journal of Applied Microbiology, 95(5), 913–920. https://doi.org/10.1046/j.1365-2672.2003.02050.x
dc.relation.referencesMohr, K. I., & Tebbe, C. C. (2006). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 8(2), 258–272. https://doi.org/10.1111/j.1462-2920.2005.00893.x
dc.relation.referencesMoran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE, 7(4), 1–10. https://doi.org/10.1371/journal.pone.0036393
dc.relation.referencesMoran, N. A., & Sloan, D. B. (2015). The Hologenome Concept: Helpful or Hollow? PLoS Biology, 13(12), 1–10. https://doi.org/10.1371/journal.pbio.1002311
dc.relation.referencesMotta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115
dc.relation.referencesMoure, J. S. (1946). Contribuição para o conhecimento dos Meliponinae (Hym.,Apoidea). Rev. Entomol., 17(3), 437–443. http://moure.cria.org.br/catalogue?id=34161
dc.relation.referencesNafis, A., Elhidar, N., Oubaha, B., Samri, S. E., Niedermeyer, T., Ouhdouch, Y., Hassani, L., & Barakate, M. (2018). Screening for non-polyenic antifungal produced by actinobacteria from Moroccan habitats: Assessment of antimycin A19 production by Streptomyces albidoflavus AS25. International Journal of Molecular and Cellular Medicine, 7(2), 133–145. https://doi.org/10.22088/IJMCM.BUMS.7.2.133
dc.relation.referencesNaiem, E. S., Hrassnigg, N., & Crailsheim, K. (1999). Nurse bees support the physiological development of young bees (Apis mellifera L.). Journal of Comparative Physiology - B Biochemical, Systemic, and Environmental Physiology, 169(4–5), 271–279. https://doi.org/10.1007/s003600050221
dc.relation.referencesNakamura, L. K. (2000). Phylogeny of Bacillus sphaericus- like organisms. International Journal of Systematic and Evolutionary Microbiology, 50(2000), 1715–1722
dc.relation.referencesNaranjo, E. J., Dirzo, R., López, C., Jaime, A., Adrián, R. O., Gutiérrez-granados, G., Dirzo, R., Ballesté, A. M., Mandujano, C., Prieto, I., Manuel, H., Macías, H., & Mendoza, R. (2009). Impacto de los factores antropogénicos de afectación directa a las poblaciones silvestres de flora y fauna. Capital Natural de México, II(September 2019), 247–276.
dc.relation.referencesNates-Parra, G. (2001a). Guía para la cría y manejo de la abeja angelita. Convenio Andrés Bello. https://books.google.com.co/books?id=SLOMX2cfmcIC&printsec=frontcover&source =gbs_ge_summary_r&cad=0#v=onepage&q&f=false
dc.relation.referencesNates-Parra, G. (2001b). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3), 233–248. http://teca.fao.org/sites/default/files/comments/files/77-259-1-PB.pdf
dc.relation.referencesNates-Parra, G. (2005). Abejas corbiculadas de Colombia. Universidad Nacional de Colombia
dc.relation.referencesNates-Parra, G. (2009). Abejas silvestres y polinización. Manejo Integrado de Plagas y Agroecología ( Costa Rica ), N o . 7 5(Roubik 1995), 7–20.
dc.relation.referencesNates-Parra, G., & Lopera, A. V. (1989). Ciclo de desarrollo de Trigona (Tetragonisca) angustula, Latreille 1811 (Hymenoptera, Trigonini). Acta Biológica Colombiana, 1(5), 91–98.
dc.relation.referencesNates-Parra, G., Rodríguez-c, Á., & Vélez, E. D. (2006). Abejas sin aguijón (Hymenoptera: Apidae: Meliponini) en cementerios de la cordillera oriental de Colombia. Acta Biológica Colombiana, 11(1), 25–35.
dc.relation.referencesNates-Parra, G., & Rosso-Londoño, J. M. (2013). Diversidad de abejas sin aguijón (Hymenoptera : Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana, 18(3), 415–425
dc.relation.referencesNates-Parra, G., & Roubik, D. W. (1990). Sympatry among Subspecies of Melipona favosa in Colombia and a Taxonomic Revision. Journal of the Kansas Entomological Society, 63(1), 200–203.
dc.relation.referencesNgalimat, M. S., Rahman, R. N. Z. R. A., Yusof, M. T., Syahir, A., & Sabri, S. (2019). Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 2019(8), 1–20. https://doi.org/10.7717/peerj.7478
dc.relation.referencesNishiwaki, H., Nakashima, K., Ishida, C., Kawamura, T., & Matsuda, K. (2007). Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Applied and Environmental Microbiology, 73(10), 3404–3411. https://doi.org/10.1128/AEM.00021-07
dc.relation.referencesNogueira-Neto. (1954). Notas bionômicas sôbre Meliponineos III – Sôbre a enxameagem (Hym. Apoidea). Arquivos Do Museu Nacional, 42, 419–452.
dc.relation.referencesNogueira-Neto, P. (1997). Vida e Criação de Abelhas Indígenas Sem Ferrão. Parma LTDA.
dc.relation.referencesNunes-Silva, P., Imperatriz-Fonseca, V. L., & Gonçalves, L. S. (2009). Hygienic behavior of the stingless bee Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Genetics and Molecular Research, 8(2), 649–654. https://doi.org/10.4238/vol8-2kerr026
dc.relation.referencesNunes-Silva, P., Piot, N., Meeus, I., Blochtein, B., & Smagghe, G. (2016). Absence of Leishmaniinae and Nosematidae in stingless bees. Scientific Reports, 6, 2–6. https://doi.org/10.1038/srep32547
dc.relation.referencesO’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Farmer, J. J., Fanning, G. R., & Brenner, D. J. (1989). Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as Enteric Group 75. Journal of Clinical Microbiology, 27(9), 2046– 2049
dc.relation.referencesOlaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165. https://doi.org/10.5555/afhs.2007.7.3.159
dc.relation.referencesOlaya, Y., Gutierrez, C., & Hernandez, C. (2014). Comparación entre la Calidad Microbiológica de Miel de Tetragonisca Angustula y de Apis Mellifera. Rev.Fac.Nal.Agr.Medellín 67, 2(MAY 2014), 754–756
dc.relation.referencesOliveira, R. de C., Nunes, F. D. M. F., Campos, A. P. S., de Vasconcelos, S. M., Roubik, D. W., Goulart, L. R., & Kerr, W. E. (2004). Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae,Trigonini) based on rapd markers. Genetics and Molecular Biology, 27(2), 181–186. https://doi.org/10.1590/S1415-47572004000200009
dc.relation.referencesOlofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0
dc.relation.referencesOtterstatter, M. C., Whidden, T. L., & Owen, R. E. (2002). Contrasting frequencies of parasitism and host mortality among phorid and conopid parasitoids of bumble-bees. Ecological Entomology, 27(2), 229–237. https://doi.org/10.1046/j.1365- 2311.2002.00403.x
dc.relation.referencesPailan, S., Gupta, D., Apte, S., Krishnamurthi, S., & Saha, P. (2015). Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. International Biodeterioration and Biodegradation, 103, 191–195. https://doi.org/10.1016/j.ibiod.2015.05.006
dc.relation.referencesPalacios-López, O. A., González-Rangel, M. O., Rivera-Chavira, B. E., & Nevárez- Moorillón, G. V. (2011). El papel de los antimicrobianos en la estructura de las comunidades microbianas en la naturaleza. Tecnociencia Chihuahua, V(1), 1–8
dc.relation.referencesPark, Y. G., Mun, B. G., Kang, S. M., Hussain, A., Shahzad, R., Seo, C. W., Kim, A. Y., Lee, S. U., Oh, K. Y., Lee, D. Y., Lee, I. J., & Yun, B. W. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE, 12(3), 1–28. https://doi.org/10.1371/journal.pone.0173203
dc.relation.referencesPaul, J., Sarkar, A., & Varma, A. (1986). In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Current Science, December, 710–714.
dc.relation.referencesPereira, K. de S., Meeus, I., & Smagghe, G. (2019). Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40804-2
dc.relation.referencesPérez-pérez, E. M., Esthe Suarez, Peña-Vera, M. J., González, A. C., & Vit, P. (2013). Antioxidant activity and microorganisms in nest products of Tetragonisca Laboratorio de Biología Molecular , Facultad de Farmacia y Bioanálisis , Apiterapia y Bioactividad , Departamento Ciencia de los Alimentos , Facultad de Farmacia y Bioanálisis ,. In P. Vit & D. W. Roubik (Eds.), Stingless Bee Process Honey and Pollen in Cerumen Pots (pp. 1–8).
dc.relation.referencesPorrini, M. P., Porrini, L. P., Garrido, P. M., de Melo e Silva Neto, C., Porrini, D. P., Muller, F., Nuñez, L. A., Alvarez, L., Iriarte, P. F., & Eguaras, M. J. (2017). Nosema ceranae in South American Native Stingless Bees and Social Wasp. Microbial Ecology, 74(4), 761–764. https://doi.org/10.1007/s00248-017-0975-1
dc.relation.referencesPowell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of acquisition of the gut microbiota of Apis mellifera. Applied and Environmental Microbiology, 80(23), 7378–7387. https://doi.org/10.1128/AEM.01861-14
dc.relation.referencesPrado, S. S., Hung, K. Y., Daugherty, M. P., & Almeida, R. P. P. (2010). Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Applied and Environmental Microbiology, 76(4), 1261–1266. https://doi.org/10.1128/AEM.02034-09
dc.relation.referencesPraet, J., Parmentier, A., Schmid-hempel, R., Meeus, I., Smagghe, G., & Vandamme, P. (2018). Underestimated Bacterial Species Diversity Capable of Pathogen Inhibition. Environmental Microbiology, 20(1), 214–227. https://doi.org/10.1111/emi.13973
dc.relation.referencesPriest, F. G., Goodfellow, M., Shute, L. A., & Berkeley, C. W. (1987). Bacillus amyloliquefaciens sp. nov. rev. International Journal of Systematic Bacteriology, 37(1), 69–71
dc.relation.referencesVit, P., & Pedro, S. R. M. (2013). Pot-Honey: A legacy of stingless bee. https://doi.org/10.1007/978-1-4614-4960-7
dc.relation.referencesVojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072106
dc.relation.referencesVoulgari-Kokota, A., Ankenbrand, M. J., Grimmer, G., Steffan-Dewenter, I., & Keller, A. (2019). Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecology and Evolution, 9(18), 10788–10800. https://doi.org/10.1002/ece3.5599
dc.relation.referencesWang, L. T., Lee, F. L., Tai, C. J., & Kuo, H. P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. International Journal of Systematic and Evolutionary Microbiology, 58(3), 671–675. https://doi.org/10.1099/ijs.0.65191-0
dc.relation.referencesWarnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., ... Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(November), 560–565. https://doi.org/10.1038/nature06269
dc.relation.referencesWatanabe, Y., Shinzato, N., & Fukatsu, T. (2003). Isolation of actinomycetes from termites’ guts. Bioscience, Biotechnology and Biochemistry, 67(8), 1797–1801. https://doi.org/10.1271/bbb.67.1797
dc.relation.referencesWei, G., Lai, Y., Wang, G., Chen, H., Li, F., & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5994–5999. https://doi.org/10.1073/pnas.1703546114
dc.relation.referencesWerner, W. (1933). Botanische Beschreibung haufiger am Buttersaureabbau beteiligter sporenbildender Bakterienspezies. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 87, 446–475.
dc.relation.referencesWerren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Rev Microbiol, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969
dc.relation.referencesWerren, John H. (2012). Symbionts provide pesticide detoxification. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8364–8365. https://doi.org/10.1073/pnas.1206194109
dc.relation.referencesWille, A. (1983). Biology of the Stingless Bees. Annual Review of Entomology, 28(1), 41– 64. https://doi.org/10.1146/annurev.en.28.010183.000353
dc.relation.referencesWong, A. C. N., Wang, Q. P., Morimoto, J., Senior, A. M., Lihoreau, M., Neely, G. G., Simpson, S. J., & Ponton, F. (2017). Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Current Biology, 27(15), 2397-2404.e4. https://doi.org/10.1016/j.cub.2017.07.022
dc.relation.referencesXavier, V. M. V. M., Message, D., Picanço, M. C., Bacci, L., Silva, G. A., & Da Silva Benevenute, J. (2010). Impact of botanical insecticides on indigenous stingless bees. Sociobiology, 56(3), 713–723
dc.relation.referencesXi-Biao, J., Sun, R.-J., Jian-Qing, Z., Zheng-Jun, X., Zhu, L., Quiang, W., & Xiao-Ying, Y. (2012). Isolation and identification of B altitudinis ZJ 186 from Marine Soil Samples and its antifungal activity against Magnaporthe oryzae. Current Research in Bacteriology, 5(1), 13–23.
dc.relation.referencesXiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & Mcinroy, J. A. (2017). Biological Control of Meloidogyne incognita by Spore-forming Plant Growth- promoting Rhizobacteria on Cotton. 101(5), 774–784. https://doi.org/10.1094/PDIS- 09-16-1369-RE
dc.relation.referencesYaman, M., & Dem, E. (2016). Investigation of bacterial pathogens of Chrysomela ( Melasoma ) populi ( Coleoptera : Chrysomelidae ). 56(1), 77–83
dc.relation.referencesYang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a
dc.relation.referencesYoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1297–1303. https://doi.org/10.1099/ijs.0.02365-0
dc.relation.referencesYoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102(2), 91– 96. https://doi.org/10.1016/j.jip.2009.07.005
dc.relation.referencesYun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., Yoon, C., Nam, Y. Do, Kim, Y. J., Choi, J. H., Kim, J. Y., Shin, N. R., Kim, S. H., Lee, W. J., & Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80(17), 5254–5264. https://doi.org/10.1128/AEM.01226-14
dc.relation.referencesZheng, H., Nishida, A., Kwong, W. K., Koch, H., Engel, P., Steele, M. I., & Moran, N. A. (2016). Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio, 7(6), 1–9. https://doi.org/10.1128/mBio.01326-16
dc.relation.referencesZheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences, 114(18), 4775–4780. https://doi.org/10.1073/pnas.1701819114
dc.relation.referencesZheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab Animal, 47(November), 317–325. https://doi.org/10.1038/s41684-018-0173-x
dc.relation.referencesZouache, K., Raharimalala, F. N., Raquin, V., Tran-Van, V., Raveloson, L. H. R., Ravelonandro, P., & Mavingui, P. (2011). Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiology Ecology, 75(3), 377–389. https://doi.org/10.1111/j.1574-6941.2010.01012.x
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAbejas - Enfermedades y plagas
dc.subject.proposalAbejas sin aguijón
dc.subject.proposalBacterias cultivables
dc.subject.proposalDisbiosis
dc.subject.proposalMeliponinos
dc.subject.proposalPatógeno
dc.subject.proposalDeterioro
dc.subject.proposalStingless bees
dc.subject.proposalCulturable bacteria
dc.subject.proposalDysbiosis
dc.subject.proposalMeliponinae
dc.subject.proposalPathogen
dc.subject.proposalDeterioration
dc.title.translatedRelationship of the state of deterioration of colonies of meliponin bees Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) with their associated microorganisms
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Ciencias Naturales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito