Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorÁlvarez Mira, Diana Marcela
dc.contributor.advisorGómez Ramírez, Arlen Patricia
dc.contributor.authorUpegui Porras, Nicolás
dc.date.accessioned2022-08-26T14:04:47Z
dc.date.available2022-08-26T14:04:47Z
dc.date.issued2022-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82134
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractEl virus de la enfermedad de Newcastle (NDV) es uno de los problemas respiratorios más graves que causa importantes pérdidas económicas a los productores avícolas. La aplicación de vacunas vivas a través del alimento se ha postulado como un método eficaz para el control de la enfermedad, siendo ideal para reducir la presentación de signos clínicos y mortalidad en aves de traspatio; sin embargo, en Colombia el uso de esta estrategia es pobremente entendido. El presente estudio determinó la viabilidad de dos virus de baja virulencia del NDV (cepas VH y La Sota) mezclados con arroz y maíz bajo diferentes tipos de preparación y evaluó indicadores de respuesta inmune humoral e innata en aves luego de vacunarlas por vía oral. El título viral fue determinado por el método de Reed & Muench. Luego se realizó RT-qPCR para cuantificar la carga viral. Se obtuvieron resultados más consistentes mezclando la cepa VH con maíz cocido, por lo que la cepa LaSota y todos los otros vehículos fueron descartados del estudio. Posteriormente, 160 pollos machos (Babcock) fueron divididos aleatoriamente en cuatro grupos: un control negativo, y tres grupos vacunados (vía ocular, agua de bebida y vía maíz). Las aves fueron inmunizadas al día 28 de edad con la cepa VH por las vías señaladas y se tomaron sueros al día 1, 15 y 25 de edad y a los 7, 14 y 21 días post-vacunación para su evaluación por IH. Se tomaron parámetros productivos como peso y conversión acumulada. Se cuantificó la excreción viral y la expresión relativa de IL-6 e IFN-γ los días 2 y 4 post-vacunación en macerados de bazo por RT-qPCR. Finalmente, se calcularon índices de peso de órganos linfoides y se tomaron muestras de tejido digestivo, linfoide y respiratorio para evaluación histopatológica. Los resultados indicaron que la cepa VH mostró más estabilidad y el maíz cocido fue el candidato como vehículo. En cuanto a los títulos de anticuerpos hubo diferencias estadísticas significativas entre las vías de administración al día 7, pero no a los 14 y 21 días post-vacunación. No hubo diferencias en los índices linfoides, pero se observaron diferencias en el grado de lesión histopatológica en cornetes y laringe entre los grupos vacunados y el grupo control los días 2 y 4 post-vacunación. Se evidenció excreción viral en los grupos vacunados comparado con el control, siendo más alta en los grupos ocular y agua al día 2 post-vacunación y en el grupo maíz al día 4 post-vacunación. La expresión de IL-6 se evidenció temprano, pero la expresión de IFN-γ se evidenció solo hasta el día 4 post-vacunación. Este estudio mostró que la vía oral a través del alimento activa la respuesta inmune y que el maíz cocido y la cepa VH podrían ser una estrategia para un programa de control del NDV en aves de traspatio en Colombia. (Texto tomado de la fuente).
dc.description.abstractNewcastle disease virus (NDV) is one of the most serious respiratory problems causing significant economic losses to poultry producers. The application of live vaccines through food has been postulated as an effective method to control the disease, being ideal to reduce the presence of clinical signs and mortality in backyard birds; however, in Colombia the use of this strategy is poorly understood. The present study determined the viability of two low pathogenic NDV viruses (VH and La Sota strains) mixed with rice and corn under different types of preparation and evaluated both of humoral and innate immune responses in birds after oral vaccination. The viral titer was determined by the Reed & Muench procedure. Then RT-qPCR was performed to quantify viral load. Consistently results were obtained mixing VH strain with cooked corn, so that LaSota strain and the other vehicles were discarded. Subsequently, 160 male chickens (Babcock) were randomly divided into four groups: a negative control, and three vaccinated groups (ocular route, drinking water and corn). The birds were immunized at day 28 of age with the VH strain by the indicated routes and sera were taken at days 1, 15 and 25 of age and at 7, 14 and 21-days postvaccination for evaluation by HI. Productive parameters such as weight and accumulated conversion were taken. Viral shedding and relative expression of IL-6 and IFN-γ were quantified on days 2 and 4 post-vaccination in spleen by RT-qPCR. Finally, lymphoid organ weight indices were calculated and digestive, lymphoid and respiratory tissue samples were taken for histopathological evaluation. The results indicated that the VH strain showed more stability and cooked corn was the candidate as a vehicle. Regarding antibody titers, there were statistically significant differences between administration routes on day 7, but there were no differences at 14 and 21 days post-vaccination. There were no differences in lymphoid indices, but differences in larynx and turbinates histopathological lesion scores were seen on days 2 and 4 post-vaccination. Cloacal viral shedding was evident in vaccinated groups compared to the control being higher in eye and water groups on day 2 and in corn group on day 4 post-vaccination. IL-6 expression was evidenced early, but IFNγ expression was evidenced only up to day 4 post-vaccination. This study showed that the oral route through food activates the immune response and that cooked corn and the VH strain could be a strategy to a NDV control program in backyard poultry in Colombia.
dc.description.sponsorshipFederación Nacional de Avicultores
dc.description.sponsorshipFondo Nacional Avícola
dc.format.extentxix, 109 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.titleViabilidad de cepas vacunales del virus de la enfermedad de Newcastle en arroz o maíz y respuesta inmune inducida en aves vacunadas vía alimento
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.description.notesIncluye anexos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animal
dc.description.researchareaMicrobiologia e Inmunologia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ciencias Para La Salud Animal
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecnia
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdi, R. D., Amsalu, K., Merera, O., Asfaw, Y., Gelaye, E., Yami, M., y Sori, T. (2016). Serological response and protection level evaluation in chickens exposed to grains coated with I2 Newcastle disease virus for effective oral vaccination of village chickens. BMC Veterinary Research, 12(1), 1–11. https://doi.org/10.1186/s12917-016-0785-6
dc.relation.referencesAdhikari, B. ; Oli, P. ; Torley, P.J. y Ward, R. (2014). Parboiled Rice: Understanding from a Materials Science Approach. Journal of Food Engineering, 124, 173–183. https://doi.org/http://dx.doi.org/10.1016/j.jfoodeng.2013.09.010
dc.relation.referencesDimitrov, K.M., Ramey, A.M., Qiu, X., Bahl, J y Afonso, C.L. (2016). Temporal, geographic, and host distribution of Avian paramyxovirus 1. Infection, Genetics and Evolution, 39, 22-34. https://doi.org/10.1016/j.meegid.2016.01.008
dc.relation.referencesAl-Garib, S. O., Gielkens, A. L. J., Gruys, E., Hartog, L., y Koch, G. (2003). Immunoglobulin Class Distribution of Systemic and Mucosal Antibody Responses to Newcastle Disease in Chickens. Avian Diseases, 47(1), 32–40. https://doi.org/10.1637/0005-2086(2003)047[0032:icdosa]2.0.co;2
dc.relation.referencesAlain, H. y Florian, M. (2010). Estudio comparativo del estado de la viabilidad de la pequeña avicultura en cuatro micro regiones de Colombia. 1–112. https://repository.javeriana.edu.co/bitstream/handle/10554/850/eam68.pdf?sequence=1&isAllowed=y
dc.relation.referencesAlders, R. G. (2014). Making Newcastle disease vaccines available at village level. The Veterinary Record, 174(20), 502–503. https://doi.org/10.1136/vr.g3209
dc.relation.referencesAldous, E. W., y Alexander, D. J. (2001). Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathology, 30(2), 117–128. https://doi.org/10.1080/03079450120044515
dc.relation.referencesAlexander, D. J. (2000). Newcastle disease and other avian paramyxoviruses. Revue Scientifique et Technique (International Office of Epizootics), 19(2), 443–462. https://doi.org/10.20506/rst.19.2.1231
dc.relation.referencesAlexander, D. J., y Allan, W. H. (1974). Newcastle disease virus pathotypes. Avian Pathology, 3(4), 269–278. https://doi.org/10.1080/03079457409353840
dc.relation.referencesAlexander, Dennis J., Aldous, E. W., y Fuller, C. M. (2012). The long view: a selective review of 40 years of Newcastle disease research. Avian Pathology, 41(4), 329–335. https://doi.org/10.1080/03079457.2012.697991
dc.relation.referencesBell, J. G., Kane, M., y Lejan, C. (1990). An investigation of the disease status of village poultry in Mauritania. Preventive Veterinary Medicine, 8(4), 291–294. https://doi.org/10.1016/0167-5877(90)90086-W
dc.relation.referencesBell, J. G., y Mouloudi, S. (1988). A reservoir of virulent Newcastle disease virus in village chicken flocks. Preventive Veterinary Medicine, 6(1), 37–42. https://doi.org/10.1016/0167-5877(88)90024-4
dc.relation.referencesBensink, Z., y Spradbrow, P. (1999). Newcastle disease virus strain I2 - A prospective thermostable vaccine for use in developing countries. Veterinary Microbiology, 68(1–2), 131–139. https://doi.org/10.1016/S0378-1135(99)00069-3
dc.relation.referencesBerhane, Y., Hisanaga, T., Xu, W., Campos, N. A. M., Kehler, H., Pasick, J., y Calderón, C. P. (2017). Characterization of Colombian serotype 1 avian paramyxoviruses,. 2008–2010. Virus genes, 53(4), 584-592. https://doi.org/10.1007/s11262-017-1461-z
dc.relation.referencesBossart, K. N., Fusco, D. L., y Broder, C. C. (2013). Paramyxovirus entry. Advances in Experimental Medicine and Biology, 790, 95–127. https://doi.org/10.1007/978-1-4614-7651-1_6
dc.relation.referencesBoumart, Z., Hamdi, J., Daouam, S., Elarkam, A., Tadlaoui, K. O., y El Harrak, M. (2016). Thermal Stability Study of Five Newcastle Disease Attenuated Vaccine Strains. Avian Diseases, 60(4), 779–783. https://doi.org/10.1637/11426-042116-Reg.1
dc.relation.referencesBrown, V. R., y Bevins, S. N. (2017). A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. Veterinary Research, 48(1), 1–15. https://doi.org/10.1186/s13567-017-0475-9
dc.relation.referencesBu, Y. wen, Yang, H. ming, Jin, J. hui, Zhao, J., Xue, J., y Zhang, G. zhong. (2019). Recombinant Newcastle disease virus (NDV) La Sota expressing the haemagglutinin–neuraminidase protein of genotype VII NDV shows improved protection efficacy against NDV challenge. Avian Pathology, 48(2), 91–97. https://doi.org/10.1080/03079457.2018.1548754
dc.relation.referencesCalain, P., y Roux, L. (1993). The Rule of Six, a Basic Feature for Efficient Replication of Sendai Virus Defective Interfering RNA. Journal of Virology 67(8), 4822–4830. https://doi.org/10.1128/jvi.67.8.4822-4830.1993
dc.relation.referencesCalderón, J., y Mora Delgado, J. (2010). La avicultura familiar en el norte del Tolima (Colombia). Revista Colombiana de Ciencia Animal, 3(1), 64–67.
dc.relation.referencesCardenas-Garcia, S., Diel, D. G., Susta, L., Lucio-Decanini, E., Yu, Q., Brown, C. C., Miller, P. J., y Afonso, C. L. (2015). Development of an improved vaccine evaluation protocol to compare the efficacy of Newcastle disease vaccines. Biologicals, 43(2), 136–145. https://doi.org/10.1016/j.biologicals.2014.11.003
dc.relation.referencesChakraborty, D., Guha, C., Biswas, U., Chatterjee, A., Jana, P. S., Biswas, S., Sharma, L., Pradhan, N., Bhagat, S., y Naha, B. C. (2014). Studies on thermo stability of Newcastle disease virus (local isolate) for preparation of vaccine. Journal of Veterinary Science and Technology, 5(2). https://doi.org/10.4172/2157-7579.1000161
dc.relation.referencesChimeno Zoth, S., Gómez, E., Carrillo, E., y Berinstein, A. (2008). Locally produced mucosal IgG in chickens immunized with conventional vaccines for Newcastle disease virus. Brazilian Journal of Medical and Biological Research, 41(4), 318–323. https://doi.org/10.1590/S0100-879X2008000400010
dc.relation.referencesChoi, K. S., Kye, S. J., Kim, J. Y., To, T. L., Nguyen, D. T., Lee, Y. J., Choi, J. G., Kang, H. M., Kim, K. Il, Song, B. M., y Lee, H. S. (2014). Molecular epidemiology of Newcastle disease viruses in Vietnam. Tropical Animal Health and Production, 46(1), 271–277. https://doi.org/10.1007/s11250-013-0475-3
dc.relation.referencesCornax, I., Miller, P. J., y Afonso, C. L. (2012). Characterization of Live LaSota Vaccine Strain–Induced Protection in Chickens upon Early Challenge with a Virulent Newcastle Disease Virus of Heterologous Genotype. Avian Diseases Digest, 7(3), 7–8. https://doi.org/10.1637/10222-1004312-digest.1
dc.relation.referencesCzeglédi, A., Ujvári, D., Somogyi, E., Wehmann, E., Werner, O., y Lomniczi, B. (2006). Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Research, 120(1–2), 36–48. https://doi.org/10.1016/j.virusres.2005.11.009
dc.relation.referencesSchmittgen, K. J. L. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
dc.relation.referencesDegefa, T., Dadi, L., Yami, A., Gmariam, K., y Nassir, M. (2004). Technical and economic evaluation of different methods of newcastle disease vaccine administration. Journal of Veterinary Medicine Series A: Physiology Pathology Clinical Medicine, 51(7–8), 365–369. https://doi.org/10.1111/j.1439-0442.2004.00658.x
dc.relation.referencesDiel, D. G., Luciana, H. A., Liu, H., Wang, Z., Miller, P. J., y Afonso, C. L. (2012). Genetic diversity of avian paramyxovirus type 1 : Proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infection, Genetics and Evolution, 12(8), 1770–1779. https://doi.org/10.1016/j.meegid.2012.07.012
dc.relation.referencesDiel, D. G., Miller, P. J., Wolf, P. C., Mickley, R. M., Musante, A. R., Emanueli, D. C., Shively, K. J., Pedersen, K., y Afonso, C. L. (2012). Characterization of Newcastle Disease Viruses Isolated from Cormorant and Gull Species in the United States in 2010. Avian Diseases, 56(1), 128–133. https://doi.org/10.1637/9886-081111-reg.1
dc.relation.referencesDimitrov, K. M., Afonso, C. L., Yu, Q., y Miller, P. J. (2017). Newcastle disease vaccines—A solved problem or a continuous challenge? Veterinary Microbiology, 206, 126–136. https://doi.org/10.1016/j.vetmic.2016.12.019
dc.relation.referencesDimitrov, K.M., Albonik, C., Afonso, C.L., Albina, E., Bahl, J., Berg, M., Briand, F.X., Brown, I.H., Choi, K.S., Chvala, I., Diel, D.G., Durr, P.A., Ferreira, H.L., Fusaro, A., Gil, P., Goujgoulova, G.V., Grund, C., Hicks, J.T., Wong, F.Y.K. (2019). Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infection, Genetics and Evolution, 74, 103917, 2-15. https://doi.org/10.1016/j.meegid.2019.103917
dc.relation.referencesDimitrov, K. M., Ferreira, H. L., Pantin-Jackwood, M. J., Taylor, T. L., Goraichuk, I. V., Crossley, B. M., Killian, M. L., Bergeson, N. H., Torchetti, M. K., Afonso, C. L., y Suarez, D. L. (2019a). Pathogenicity and transmission of virulent Newcastle disease virus from the 2018–2019 California outbreak and related viruses in young and adult chickens. Virology, 531, 203–218. https://doi.org/10.1016/j.virol.2019.03.010
dc.relation.referencesDortmans, J C F M, Rottier, P. J. M., Koch, G., Rottier, P. J. M., Koch, G., y Peeters, B. P. H. (2010). The Viral Replication Complex Is Associated with the Virulence of Newcastle Disease Virus. Journal of Virology, 84(19), 10113-20. https://doi.org/10.1128/JVI.00097-10
dc.relation.referencesDortmans, J C.F.M., Peeters, B. P. H., y Koch, G. (2012). Newcastle disease virus outbreaks: Vaccine mismatch or inadequate application? Veterinary Microbiology, 160(1–2), 17–22. https://doi.org/10.1016/j.vetmic.2012.05.003
dc.relation.referencesErrington, W., y Emmerson, P. T. (1997). Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein. The journal of General Virology, 78(9), 2335–2339. https://doi.org 10.1099/0022-1317-78-9-2335
dc.relation.referencesFearns, R., y Collins, P. L. (1999). Model for Polymerase Access to the Overlapped L Gene of Respiratory Syncytial Virus. Journal of Virology, 73(1), 388–397.
dc.relation.referencesFENAVI. (2019). Situación sanitaria para la enfermedad de Newcastle notificable el Colombia y actualización sobre la Infuenza aviar en el mundo (Vol. 13). https://fenavi.org/publicaciones-programa-tecnico/boletin-sanitario-no-13-octubre-2018/
dc.relation.referencesFentie, T., Dadi, K., Kassa, T., Sahle, M., y Cattoli, G. (2014). Effect of vaccination on transmission characteristics of highly virulent Newcastle disease virus in experimentally infected chickens. Avian Pathology, 43(5), 420–426. https://doi.org/10.1080/03079457.2014.951832
dc.relation.referencesGilad E. Gallili, D. B.-N. (1998). Newcastle Disease Vaccines. Biotechnology Advances 16(2), 343-66. https://10.1016/s0734-9750(97)00081-5.
dc.relation.referencesGoldhaft, T. M. (1980). Historical note on the origin of the LaSota strain of Newcastle disease virus. Avian Diseases, 24(2), 297–301. https://doi.org/10.2307/1589696
dc.relation.referencesGravel, K. A., y Morrison, T. G. (2003). Interacting Domains of the HN and F Proteins of Newcastle Disease Virus. Journal of Virology 77(20), 11040–11049. https://doi.org/10.1128/JVI.77.20.11049.2003
dc.relation.referencesHorikami, S. M., Smallwood, S., & Moyer, S. U. E. A. (1996). The Sendai Virus V Protein Interacts with the NP Protein to Regulate Viral Genome RNA Replication. Virology 222(2), 383–390. https://doi.org/10.1006/viro.1996.0435.
dc.relation.referencesICA. (2009). Guía para la prevención, control y erradicación de la enfermedad de Newcastle. Primera edición. Instituto Colombiano Agropecuario (ICA). https://es.slideshare.net/kaeslo/manual-enfermedad-newcastle
dc.relation.referencesICA. (2020). Censo Pecuario Nacional. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018.aspx
dc.relation.referencesIgwe, A. O., Ihedioha, J. I., Eze, D. C., y Okoye, J. O. A. (2019). Pullets had higher bursal and thymic weight indices and more antibody response to La Sota vaccination than broiler chickens (Gallus gallus domesticus). Veterinary Medicine and Science, 1–8. https://doi.org/10.1002/vms3.226
dc.relation.referencesIgwe, A. O., Nnsewo, U. E., Eze, D. C., Abba, Y., y Okoye, J. O. A. (2019). Increased doses of La Sota vaccine increased Newcastle disease antibody response significantly in broiler chickens (Gallus gallus domesticus). Journal of Applied Animal Research, 47(1), 423–428. https://doi.org/10.1080/09712119.2019.1645675
dc.relation.referencesJaimes Olaya, J. A., Gómez Ramírez, A. P., Álvarez Espejo, D. C. M., Soler Tovar, D., Romero Prada, J. R., y Villamil Jiménez, L. C. (2010). Las enfermedades infecciosas y su importancia en el sector avícola. Revista de Medicina Veterinaria, 20, 49–61. https://doi.org/10.19052/mv.582
dc.relation.referencesJang, J., Hong, S. H., y Kim, I. H. (2011). Validation of a real-time RT-PCR method to quantify newcastle disease virus (NDV) titer and comparison with other quantifiable methods. Journal of Microbiology and Biotechnology, 21(1), 100–108. https://doi.org/10.4014/jmb.1006.06006
dc.relation.referencesJardetzky, T. S., y Lamb, R. A. (2014). Activation of paramyxovirus membrane fusion and virus entry. Current Opinion in Virology, 5(1), 24–33. https://doi.org/10.1016/j.coviro.2014.01.005
dc.relation.referencesJayawardane, G., De Alwis, M., Bandara, D. (1990). Oral vaccination of chickens against Newcastle disease with V4 vaccine delivered on processed rice grains. Australian Veterinary Journal, 67(10), 2-10. https://doi:10.1111/j.1751-0813.1990.tb07405.x
dc.relation.referencesKapczynski, D. R., Afonso, C. L., y Miller, P. J. (2013). Immune responses of poultry to Newcastle disease virus. Developmental and Comparative Immunology, 41(3), 447–453. https://doi.org/10.1016/j.dci.2013.04.012
dc.relation.referencesKinde, H., Utterback, W., Takeshita, K., y McFarland, M. (2004). Survival of Exotic Newcastle Disease Virus in Commercial Poultry Environment Following Removal of Infected Chickens. Avian Diseases, 48(3), 669–674. https://doi.org/10.1637/7161-020104r
dc.relation.referencesKing, D. J. (2001). Note- Selection of Thermostable Newcastle Disease Virus Progeny from Reference and Vaccine Strains. Avian Diseases, 45(2), 512–516. https://doi.org/10.2307/1592997
dc.relation.referencesKolakofsky, Dan, Ruigrok, R. W. H., y Cre, T. (2011). Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Current Opinion in Microbiology, 14(4), 504–510. https://doi.org/10.1016/j.mib.2011.07.
dc.relation.referencesKolakofsky, Daniel, Roux, L., Garcin, D., y Ruigrok, R. W. H. (2005). Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: A hypothesis. Journal of General Virology, 86(7), 1869–1877. https://doi.org/10.1099/vir.0.80986-0
dc.relation.referencesLambrecht, B., Gonze, M., Meulemans, G., y Van Den Berg, T. P. (2004). Assessment of the cell-mediated immune response in chickens by detection of chicken interferon-γ in response to mitogen and recall Newcastle disease viral antigen stimulation. Avian Pathology, 33(3), 343–350. https://doi.org/10.1080/0307945042000220318
dc.relation.referencesLancaster, J. E. (1976). A History of Newcastle Disease with Comments on its Economic Effects. World’s Poultry Science Journal, 32(2), 167–175. https://doi.org/DOI: 10.1079/WPS19760001
dc.relation.referencesLi, S. yun, You, G. jin, Du, J. teng, Xia, J., Wen, Y. ping, Huang, X. bo, Zhao, Q., Han, X. feng, Yan, Q. gui, Wu, R., Cao, S. jie, y Huang, Y. (2020). A class Ⅰ lentogenic newcastle disease virus strain confers effective protection against the prevalent strains. Biologicals, 63(November), 74–80. https://doi.org/10.1016/j.biologicals.2019.11.001
dc.relation.referencesLiu, W., Tian, M., Wang, Y., Zhao, Y., Zou, N., Zhao, F., Cao, S., Wen, X., Liu , P., Huang, Y. (2012). The different expression of immune related cytokine genes in response to velogenic and lentogenic Newcastle disease viruses infection in chicken peripheral blood. Molecular Biology Reports, 39(1), 3611–3618. https://doi.org/ 10.1007/s11033-011-1135-1
dc.relation.referencesLivak, K.J., Schmitttgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. https://doi.org/ 10.1007/s11033-011-1135-1
dc.relation.referencesM Khatun, S Islam, M Ershaduzzaman, HMS Islam, S Yasmin y A Hossen, M. H. (2018). Economic Impact of Newcastle Disease on Village Chickens – A Case of Bangladesh. 1, 358–367. https://doi.org/10.31014/aior.1992.01.03.33
dc.relation.referencesMartinez, J. C. S., Chou, W. K., Berghman, L. R., y Carey, J. B. (2018). Evaluation of the effect of live LaSota Newcastle disease virus vaccine as primary immunization on immune development in broilers. Poultry Science, 97(2), 455–462. https://doi.org/10.3382/ps/pex339
dc.relation.referencesMebrahtu, K., Teshale, S., Esatu, W., Habte, T., y Gelaye, E. (2018). Evaluation of spray and oral delivery of Newcastle disease I2 vaccine in chicken reared by smallholder farmers in central Ethiopia. BMC Veterinary Research, 14(1), 1–7. https://doi.org/10.1186/s12917-018-1355-x
dc.relation.referencesMengesha, M., Tamir, B., y Dessie, T. (2011). Village chicken constraints and traditional management practices in Jamma District, South Wollo, Ethiopia. Livestock Research for Rural Development, 23(2).
dc.relation.referencesMillar, N. S., Chambers, P., y Emmerson, P. T. (1988). Nucleotide sequence of the fusion and haemagglutinin-neuraminidase glycoprotein genes of Newcastle disease virus, strain Ulster: molecular basis for variations in pathogenicity between strains. The Journal of General Virology, 69 ( Pt 3), 613–620. https://doi.org/10.1099/0022-1317-69-3-613.
dc.relation.referencesMiller, P. J., Afonso, C. L., El Attrache, J., Dorsey, K. M., Courtney, S. C., Guo, Z., y Kapczynski, D. R. (2013). Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Developmental and Comparative Immunology, 41(4), 505–513. https://doi.org/10.1016/j.dci.2013.06.007
dc.relation.referencesMossos, N., Peña, E., y Correa, R. (2004). Guía metodológica para la definición y atención de focos de la enfermedad de Newcastle. Grupo Tran. https://www.solla.com/sites/default/files/productos/secciones/adjuntos/Newcastlefocos.pdf
dc.relation.referencesMostafijur, M., Deb, R., y Nooruzzaman, M. (2017). Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chickens. Tierärztl Prax, 45, 151-158.
dc.relation.referencesMusa, U., Abdu, P.A, Mera, U.M., Emmenna, P.E. y Ahmed, M. S. (2010). Vaccination with newcastle disease vaccines strain i2 and lasota in commercial and local chickens in plateau state Nigeria. Nigerian Veterinary Journal, 31, 46–55.
dc.relation.referencesNaggar H.M., Madkour M.S., Hussein H.A (2017). Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses, Veterinary World, 10(2): 187-193. https://doi.org/10.14202/vetworld.2017.187-193
dc.relation.referencesNagai, Y., Hamaguchi, M., y Toyoda, T. (1989). Molecular biology of Newcastle disease virus. Progress in Veterinary Microbiology and Immunology, 5, 16–64.
dc.relation.referencesNasrin, M., Khan, M. Z. I., Siddiqi, M. N. H., y Masum, M. A. (2013). Mobilization of immunoglobulin (Ig)-containing plasma cells in Harderian gland, cecal tonsil and trachea of broilers vaccinated with Newcastle Disease Vaccine. Tissue and Cell, 45(3), 191–197. https://doi.org/10.1016/j.tice.2012.12.001
dc.relation.referencesNochi, T., Takagi, H., Yuki, Y., Yang, L., Masumura, T., Mejima, M., Nakanishi, U., Matsumura, A., Uozumi, A., Hiroi, T., Morita, S., Tanaka, K., Takaiwa, F. y Kiyono, H. (2007). Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proccedings of the National Academy of Sciences of the United States of America, 104(26), 10986-10991. https://doi:10.1073/pnas.0703766104
dc.relation.referencesNoton, S. L., y Fearns, R. (2015). Initiation and regulation of paramyxovirus transcription and replication. Virology, 1–10. https://doi.org/10.1016/j.virol.2015.01.014
dc.relation.referencesNssien, M. A. (2002). Thermostability of reconstituted Newcastle disease virus strains at 36C° temperature. African Journal of Biomedical Research, 5(1-2), 87–89.
dc.relation.referencesOIE. (2018). Enfermedad de Newcastle. In Organizacion Mundial de Sanidad Animal (OIE) (Ed.), l Manual de las Pruebas de Diagnóstico y de las Vacunas para los Animales Terrestres (Octava). https://www.oie.int/es/sanidad-animal-en-el-mundo/enfermedades-de-los-animales/enfermedad-de-newcastle/#E
dc.relation.referencesOkechukwu, H., Chukwuedo, A., Eze, D., Igwe, A., Ihedioha, J., & Okoye, J. (2020). Triple La Sota re-vaccinations can protect laying chickens for 3 months against drop in egg production caused by velogenic viscerotropic Newcastle disease virus infection. Veterinary Medicine and Science, 6(3), 470-476. https://doi.org/10.1002/vms3.24
dc.relation.referencesOlabode, A. O., Ndako, J. A., Echeonwu, G. O., Nwankiti, O. O., y Chukwuedo, A. A. (2010). Use of cracked maize as a carrier for NDV4vaccine in experimental vaccination of chickens. Virology Journal, 7, 1–5. https://doi.org/10.1186/1743-422X-7-67
dc.relation.referencesOrsi, M. A., Zaroni, M. M. H., Doretto Júnior, L., Camillo, S. C. A., Ribeiro, S. A. M., Rosado Spilki, F., Buzinaro, M. da G., y Arns, C. W. (2009). Long-term stability studies on protection against Newcastle disease by commercial live vaccine used in Brazil. Biologicals, 37(4), 252–258. https://doi.org/10.1016/j.biologicals.2009.04.001
dc.relation.referencesOwolodun, B. Y., y Ajiboye, E. A. (1975). Newcastle disease vaccines: a study of duration of immunity and properties of LaSota vaccine given in drinking water. British Veterinary Journal, 131(5), 580–585. https://doi.org/10.1016/S0007-1935(17)35191-6
dc.relation.referencesPandarangga, P., Brown, C. C., Miller, P. J., Haddas, R., Rehmani, S. F., Afonso, C. L., y Susta, L. (2016). Pathogenesis of New Strains of Newcastle Disease Virus From Israel and Pakistan. Veterinary Pathology, 53(4), 792–796. https://doi.org/10.1177/0300985815622972
dc.relation.referencesPark, M., García-sastre, A., Cros, J. F., Basler, C. F., y Palese, P. (2003). Newcastle Disease Virus V Protein Is a Determinant of Host Range Restriction. 77(17), 9522–9532. https://doi.org/10.1128/JVI.77.17.9522
dc.relation.referencesPeeters, B. P. H., Gruijthuijsen, Y. K., Leeuw, O. S. De, y Gielkens, A. L. J. (2000). Genome replication of Newcastle disease virus : involvement of the rule-of-six. 1829–1845.
dc.relation.referencesPerozo, F., Marcano, R., y Afonso, C. L. (2012). Biological and Phylogenetic Characterization of a Genotype VII Newcastle Disease Virus from Venezuela : Efficacy of Field Vaccination. Journal of Clinical Microbiology 1204–1208. https://doi.org/10.1128/JCM.06506-11
dc.relation.referencesRamakrishnan M.A. (2016). Determination of 50% endpoint titer using a simple formula World Journal of Virology. 5(2), 85–86. https://doi.org/10.1037/h0063767
dc.relation.referencesRao, M. S., Raj, G. D., y Manohar, B. M. (2002). An in vitro and in vivo evaluation of the virulence of Newcastle disease virus and vaccines for the chicken reproductive tract. Avian Pathology, 31(5), 507–513. https://doi.org/10.1080/0307945021000005888
dc.relation.referencesRauw, F., Nguyen, T. G., Ngabirano, E., Marché, S., y Lambrecht, B. (2017). Specific antibody-mediated immunity in the reproductive tract of laying chickens immunized against Newcastle disease with conventional attenuated and inactivated vaccines. 9457. https://doi.org/10.1080/03079457.2017.1304528
dc.relation.referencesReed L.J., Muench. H. (1938). Asimple method of estimating fifty per cent end points. American Journal of Epidemiology, 27(3), 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408
dc.relation.referencesRehmani, S. F., y Spradbrow, P. B. (1995). The contribution of lectins to the interaction between oral Newcastle disease vaccine and grains. Veterinary Microbiology, 46(1–3), 55–62. https://doi.org/10.1016/0378-1135(95)00071-H
dc.relation.referencesReynolds, D. L., y Maraqa, A. D. (2000). Protective Immunity against Newcastle Disease: The Role of Cell-Mediated Immunity. Avian Diseases, 44(1), 145. https://doi.org/10.2307/1592518
dc.relation.referencesRima, B., Balkema-Buschmann, A., Dundon, W. G., Duprex, P., Easton, A., Fouchier, R., Kurath, G., Lamb, R., Lee, B., Rota, P., Wang, L., y Ictv Report Consortium. (2019). ICTV Virus Taxonomy Profile: Paramyxoviridae. The Journal of General Virology, 100(12), 1593–1594. https://doi.org/10.1099/jgv.0.001328
dc.relation.referencesRohollahzadeh, H., Nili, H., Asasi, K., Mokhayeri, S., y Najjari, A. H. A. (2018). Respiratory and GIT tract immune responses of broiler chickens following experimental infection with Newcastle disease’s virus. Comparative Clinical Pathology, 27(5), 1241–1255. https://doi.org/10.1007/s00580-018-2728-z
dc.relation.referencesRoohani, K., Tan, S. W., Yeap, S. K., Ideris, A., Bejo, M. H., y Omar, A. R. (2015). Characterisation of genotype VII Newcastle disease virus (NDV) isolated from NDV vaccinated chickens, and the efficacy of LaSota and recombinant genotype VII vaccines against challenge with velogenic NDV. Journal of Veterinary Science, 16(4), 447–457. https://doi.org/10.4142/jvs.2015.16.4.447
dc.relation.referencesRoy, P., y Venugopalan, A. T. (2005). Unexpected Newcastle disease virus in day old commercial chicks and breeder hen. Comparative Immunology, Microbiology and Infectious Diseases, 28(4), 277–285. https://doi.org/10.1016/j.cimid.2005.07.001
dc.relation.referencesRuan, B., Liu, Q., Chen, Y., Niu, X., Wang, X., Zhang, C., Guo, M., Zhang, X., Cao, Y., y Wu, Y. (2020). Generation and evaluation of a vaccine candidate of attenuated and heat-resistant genotype VIII Newcastle disease virus. Poultry Science. https://doi.org/10.1016/j.psj.2020.01.034
dc.relation.referencesSamuel, J. L., Bensink, Z., y Spradbrow, P. B. (1993). Oral vacination of chickens with the V4 strain of Newcastle disease virus. Cooked and raw white rice as a vehicle. Tropical Animal Health and Production, 25, 2–10.
dc.relation.referencesScheid, A., y Choppin, P. W. (1973). Isolation and purification of the envelope proteins of Newcastle disease virus. Journal of Virology, 11(2), 263–271. https://www.ncbi.nlm.nih.gov/pubmed/4734650
dc.relation.referencesSeal, B. S., King, D. J., y Bennett, J. D. (1995). Characterization of Newcastle Disease Virus Isolates by Reverse Transcription PCR Coupled to Direct Nucleotide Sequencing and Development of Sequence Database for Pathotype Prediction and Molecular Epidemiological Analysis. Journal of Clinical Microbiology 33(10), 2624–2630. http://dx.doi.org/10.1128/jcm.33.10.2624-2630.1995.
dc.relation.referencesSedeik, M. E., Elbestawy, A. R., El-Shall, N. A., Abd El-Hack, M. E., Saadeldin, I. M., y Swelum, A. A. (2019). Comparative efficacy of commercial inactivated Newcastle disease virus vaccines against Newcastle disease virus genotype VII in broiler chickens. Poultry Science, 98(5), 2000–2007. https://doi.org/10.3382/ps/pey559
dc.relation.referencesShilpa, P., Kirubaharan, J., Chandran, N., Gnanapriya, N. (2014). Assessment of cellular and mucosal immune responses in chicks to Newcastle disease oral pellet vaccine (D58 strain) using. VirusDisease, 25(4), 467-473. https://doi.org/10.1007/s13337-014-0230-z
dc.relation.referencesShrestha, S., Dhawan, M., Donadeu, M., & Dungu, B. (2017). Efficacy of vaccination with La Sota strain vaccine to control Newcastle disease in village chickens in Nepal. Tropical Animal Health and Production, 49(2)
dc.relation.referencesSousa, F., Luzardo, A., Blanco, J., Otero, Martín, M. y Sández, I (2013). FUse of1H NMR STD, WaterLOGSY, and Langmuir monolayer techniques for characterization of drug–zein protein complexes. European Journal of Pharmaceutics and Biopharmaceutics 85, 790–79. http://dx.doi.org/10.1016/j.ejpb.2013.07.008
dc.relation.referencesSnoeck, C. J., Adeyanju, A. T., Owoade, A. A., Couacy-Hymann, E., Alkali, B. R., Ottosson, U., y Muller, C. P. (2013). Genetic diversity of newcastle disease virus in wild birds and pigeons in West Africa. Applied and Environmental Microbiology, 79(24), 7867–7874. https://doi.org/10.1128/AEM.02716-13
dc.relation.referencesSuarez, D. L. (2017). Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections: Introduction. Diseases of Poultry: Thirteenth Edition, 19(2), 89. https://doi.org/10.1002/9781119421481.ch3
dc.relation.referencesSusta, L., Hamal, K. R., Miller, P. J., Brown, C. C., Pedersen, J. C., Gongora, V., y Afonso, C. L. (2014). Separate Evolution of Virulent Newcastle Disease Viruses from Mexico. https://doi.org/10.1128/JCM.00066-14
dc.relation.referencesSwayne E., D. (2013). Diseases of Poultry 13th Edition (V. N. John R. Glisson, Larry R. McDougald, Lisa K. Nolan, David L. Suarez (ed.); 13th ed.).
dc.relation.referencesTakada, A., y Kida, H. (1996). Protective immune response of chickens against Newcastle disease, induced by the intranasal vaccination with inactivated virus. Veterinary Microbiology, 50(1–2), 17–25. https://doi.org/10.1016/0378-1135(96)00004-1
dc.relation.referencesTantaswasdi, U., Danvivatanaporn, J., Siriwan, P., Chaisingh, A., Spradbrow, P. (1992). Evaluation of an oral Newcastle disease vaccine in Thailand. Preventive Veterinary Medicine, 12,(1) 87-94. https://doi.org/10.1016/0167-5877(92)90071-M
dc.relation.referencesTatár-kis, T., Fischer, A.J., Cazaban, C., Walkó-Kovács, E., Homonnay, Z.G., Velkers, F., Palya, V., Stegeman, .J.A. (2021). A Herpesvirus of Turkey-Based vector Vaccine ReducesTransmissionof Newcastle Disease Virus in Commercial Broiler Chickens with Maternally Derived Antibodies. Vaccines, 8, 614. https://doi.org/ 10.3390/vaccines8040614
dc.relation.referencesToyoda, T., Sakaguchi, T., Imai, K., Inocencio, N. M., Gotoh, B., Hamaguchi, M., y Nagai, Y. (1987). Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of newcastle disease virus. Virology, 158(1), 242–247. https://doi.org/10.1016/0042-6822(87)90261-3
dc.relation.referencesVan Boven, M., Bouma, A., Fabri, T. H. F., Katsma, E., Hartog, L., y Koch, G. (2008). Herd immunity to Newcastle disease virus in poultry by vaccination. Avian Pathology, 37(1), 1–5. https://doi.org/10.1080/03079450701772391
dc.relation.referencesVrdoljak, A., Halas, M., y Süli, T. (2017). Vaccination of broilers against Newcastle disease in the presence of maternally derived antibodies. Tierarztliche Praxis Ausgabe G: Grosstiere - Nutztiere, 45(3), 151–158. https://doi.org/10.15653/TPG-160661
dc.relation.referencesWambura, P. N. (2009a). Oral vaccination of chickens against Newcastle disease with I-2 vaccine coated on oiled rice. Tropical Animal Health and Production, 41(2), 205–208. https://doi.org/10.1007/s11250-008-9176-8
dc.relation.referencesWambura, P. N. (2009b). Vaccination of chickens using raw rice coated with novel trehalose nano-organogels containing Newcastle disease (strain I-2) vaccine. Tropical Animal Health and Production, 41(5), 797–802. https://doi.org/10.1007/s11250-008-9254-y
dc.relation.referencesWambura, P. N., y Wilson, C. (2009). Protective antibody response following oral vaccination of feral pigeons (Columba livia) with Newcastle disease vaccine (strain I-2) coated on oiled rice. Veterinary Research Communications, 33(8), 921–926. https://doi.org/10.1007/s11259-009-9309-1
dc.relation.referencesWambura, P.N., y Kataga, S. (2011). Putative protective antibody response following oral vaccination of multi-age free ranging helmeted guinea fowls (Numida meleagris) with Newcastle disease virus strain I-2 coated on oiled rice. Tropical Animal Health and Production, 43(1), 99–102. https://doi.org/10.1007/s11250-010-9659-2
dc.relation.referencesWambura, Philemon Nyangi, Meers, J., y Spradbrow, P. (2007). Survival of avirulent thermostable Newcastle disease virus (strain I-2) in raw, baked, oiled, and cooked white rice at ambient temperatures. Jour
dc.relation.referencesWegdan, H., Mahasin, E., y Khalafalla, A. I. (2015). The Effect of Route of Administration and Dose on the Immunogenicity and Protective Efficacy of Newcastle Disease Thermostable Vaccine I 2 Strain. International Journal of Preventive Medicine Research 1(5), 276–281.
dc.relation.referencesWen, G., Hu, X., Zhao, K., Wang, H., Zhang, Z., y Zhang, T. (2016). Molecular basis for the thermostability of Newcastle disease virus. Nature Publishing Group, February, 1–9. https://doi.org/10.1038/srep22492
dc.relation.referencesWise, M. G., Wise, M. G., Suarez, D. L., Suarez, D. L., Seal, B. S., Seal, B. S., Pedersen, J. C., Pedersen, J. C., Senne, D. a, Senne, D. a, King, D. J., King, D. J., Kapczynski, D. R., Kapczynski, D. R., Spackman, E., y Spackman, E. (2004). Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. Journal of Clinical Microbiology, 42(1), 329–338. https://doi.org/10.1128/JCM.42.1.329
dc.relation.referencesYingjie Sun, Hang Zheng, Shengqing Yu, Yunlei Ding, Wei Wu, Xuming Mao, Ying Liao, Chunchun Meng Zaib Ur Rehman, Lei Tan, Cuiping Song, Xusheng Qiu, Fengyun Wu, Chan Dinga. (2019). Newcastle Disease Virus V Protein Degrades Mitochondrial Antiviral Signaling Protein To Inhibit Host Type I Interferon Production via E3 Ubiquitin Ligase RNF5. Journal of Virology, 93(18), 1–19. https://doi.org/. https://doi.org/10 .1128/JVI.00322-19.
dc.relation.referencesYohannes Tekle Asfaw. (2014). Evaluation of oral vaccination of village chickens against newcastle disease with I-2 vaccine coated parboiled cracked maize in Enderta District, Tigray, Ethiopia. African Journal of Biotechnology, 13, 4183–4187. https://doi.org/10.5897/AJB2014.14102
dc.relation.referencesZhang, T., Ren, M., Liu, C., Xu, L., Wang, F., Han, Z., Shao, Y., y Ma, D. (2019). Comparative analysis of early immune responses induced by two strains of Newcastle disease virus in chickens. MicrobiologyOpen, 8(4), 1–10. https://doi.org/10.1002/mbo3.701
dc.relation.referencesThekisoe, M., Mbati, P., Bisschop,S (2004). Different approaches to the vaccination of free ranging village chickens against Newcastle disease in Qwa-Qwa, South Africa. Veterinary Microbiology, 101 23-30. https:// doi:10.1016/j.vetmic.2004.03.011
dc.relation.referencesTadesse, K., Woldie, B., Asfaw, Y., Tarekegn, T., Jorga, E., Leykun, E. (2014). Evaluation of oral vaccination of villagen chickens againts Newcastle disease with I-2 vaccine coated parboiled cracked maize in Ederta District, Tigray, Ethiopia. African Journal of Biotechnology, 13(43), 4183-4187
dc.relation.referencesMuir, W.I., Bryden, W.L., Husband, A.J. (2000). Immunity, vaccination and avian intestinal tract. Developmental and Comparative Immunology, 24(2-3), 325–342. https://doi.org/ 10.1016/s0145-305x(99)00081-6.
dc.relation.referencesMayer, LL. y Shlien, R. (1987). Evidence for function of Ia molecules on gut epithelial cells in man. Journal of Experimental Medicine, 166(5), 1471–1483. https://doi.org/ 10.1084/jem.166.5.1471
dc.relation.referencesBefus, A. D., Johnston, N., Leslie, G.A., Bienenstock, J. (1980). Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer's patches. The Journal of Immunology, 125(6), 2626–2632. https:// https://www.jimmunol.org/content/125/6/2626.long
dc.relation.referencesHernández, N., Reyes, M., González, F., Núñez, L. y Cooper, B. (2015). Importancia de las proteínas de almacenamiento en cereales (Prolaminas). Revista especializada en ciencias de la salud. 18(1), 3-7. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=60701
dc.relation.referencesCornejo, Y. I., Martínez, O., Del Toro, C.L., Wong, F.J., Borboa, J. y Cinco, F.J (2018). The structural characteristics of starches and their functional properties. Journal of Food, 16(1), 1003-1017. https://doi.org/10.1080/19476337.2018.1518343
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembNewcastle disease
dc.subject.lembEnfermedad de Newcastle
dc.subject.lembAves de corral - enfermedades
dc.subject.lembPoultry - diseases
dc.subject.lembPoultry virus diseases
dc.subject.lembVirosis en las aves de corral
dc.subject.proposalRT-qPCR
dc.subject.proposalInhibición de la hemaglutinación
dc.subject.proposalMaíz
dc.subject.proposalVirus de la enfermedad de Newcastle
dc.subject.proposalVacuna viva
dc.subject.proposalAdministración oral en alimento
dc.subject.proposalCorn
dc.subject.proposalHemagglutination inhibition
dc.subject.proposalNewcastle disease virus
dc.subject.proposalLive attenuated vaccine
dc.subject.proposalqRT-PCR
dc.subject.proposalOral administration in food
dc.title.translatedViability of Newcastle disease virus vaccine strains in rice or corn and immune response induced in poultry vaccinated via feed
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito