Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorMorales Osorio, Juan Gonzalo
dc.contributor.advisorPatiño Hoyos, Luis Fernando
dc.contributor.authorArboleda-Giraldo, Daniela
dc.date.accessioned2022-08-29T15:11:18Z
dc.date.available2022-08-29T15:11:18Z
dc.date.issued2021-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82165
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractLa gota o el tizón causado por Phytophthora infestans (Mont.) De Bary, es una enfermedad de gran importancia en la producción de papa y el tomate de mesa, por ser devastadora y de gran impacto económico. Además de estas dos especies, se reportado su presencia en otros cultivos de la familia Solanáceas como Solanum betaceum (Tomate de árbol o Tamarillo) y Solanum quitoense (Lulo). Las características agroecológicas de las zonas en donde se cultiva tomate de árbol son altamente favorables durante casi todo el año, al desarrollo de P. infestans, identificándose fuertes epidemias en las últimas décadas, lo que ha ocasionado cuantiosas pérdidas a los agricultores. El fruto de tomate de árbol se caracteriza por su alto valor nutricional y agroindustrial, por ende, posee un potencial de exportación hacia varios países. El manejo de la enfermedad en ausencia de variedades resistentes es una labor difícil y se centra en el uso de fungicidas convencionales como su método de control primordial. Consecuentemente se genera un impacto negativo en la salud y el medio ambiente, además de un aumento de fenotipos resistentes de este oomycete a fungicidas, siendo necesario encontrar alternativas para el manejo y control de la enfermedad. En este trabajo se estudió el efecto del ácido β-aminobutírico (β-aminobutanoico) (BABA), como inductor de defensa en S. betaceum contra P. infestans sensu lato. Los resultados mostraron que aplicaciones de BABA a una dosis de 10 mM: i) exhibió una reducción significativa del crecimiento del oomycete in vitro, ii) el inductor demostró su capacidad de sistemicidad, al reducir la enfermedad en un punto distante desde donde se aplicó directamente, iii) cuando BABA se aplicó previa y simultáneamente con la inoculación mediante esporangios del patógeno la respuesta de defensa inducida fue mayor, iv) la duración de la defensa inducida se expresó al menos hasta 15 días después de la aspersión de BABA, y v) la aplicación por aspersión de BABA en condiciones de campo redujo significativamente la lesión por la enfermedad. Se discute el uso potencial de BABA para el manejo de la gota o tizón en cultivos de tomate de árbol. (Texto tomado de la fuente)
dc.description.abstractThe late blight caused by Phytophthora infestans (Mont.) De Bary, is the most devastating disease in potato and tomato crops worldwide. Besides these, late blight has been reported in other Andean crops of the Solanaceae family such as Solanum betaceum (Tree tomato or Tamarillo) and Solanum quitoense (Lulo). The agroecological characteristics of the areas where tree tomatoes are grown are favorable to the development of P. infestans, with strong epidemics being identified in recent decades, which caused serious losses to farmers. The tree tomato fruit is characterized by its high nutritional and agro-industrial value; therefore, it has a potential for export to several countries. Their management in the absence of resistant varieties is a difficult task and focuses mainly on the use of conventional fungicides of chemical synthesis. Consequently, a negative impact on health and the environment is generated, in addition to an increase in the probability of the emergence of resistant strains of this oomycete to fungicides. In the present research, the effect of β-aminobutyric- acid (3-aminobutanoic acid) (BABA) as a defense inducer in S. betaceum against P. infestans sensu lato was investigated. The results showed that applications of BABA at a dose of 10 mM: i) exhibited a significant reduction in the oomycete in vitro growth, ii) the inducer demonstrated its capacity for systematicity by reducing disease at a point distant from where it was directly applied, iii) when BABA was applied prior to and simultaneously with P. infestans sporangia, the induced defense response was greater than when it was applied after pathogen inoculation, iv) the induced defense was expressed at least up to 15 days after BABA spraying, v) spray application of BABA under field conditions significantly reduced late blight disease. The potential use of BABA for late blight disease management in tree tomato crops is discussed.
dc.description.sponsorshipMinciencias | Ministerio de Ciencia Tecnología e Innovación
dc.format.extentxiii, 114 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleInducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupFitotecnia Tropical
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.funderEl propósito será impulsar la promoción del conocimiento, la productividad y la contribución al desarrollo y la competitividad del país
dc.description.methodsMetodología cuantitativa
dc.description.researchareaSanidad Vegetal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Agronómicas
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAcuña, I., Bravo, R., & Remehue, I. (2015). Tizón tardío de la papa : Estrategias de manejo integrado con alertas temprana. 137
dc.relation.referencesAGRIOS, G. N. (2005). How Plants Defend Themselves Against Pathogens. Plant Pathology, 207–248. https://doi.org/10.1016/b978-0-08-047378-9.50012-9
dc.relation.referencesAlexandersson, E., Jacobson, D., Vivier, M. A., Weckwerth, W., & Andreasson, E. (2014). Field-omics-understanding large-scale molecular data from field crops. Frontiers in Plant Science, 5(JUN), 1–6. https://doi.org/10.3389/fpls.2014.00286
dc.relation.referencesAlexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101673
dc.relation.referencesAltamiranda, E. A. G., Andreu, A. B., Daleo, G. R., & Olivieri, F. P. (2008). Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology, 37(4), 421–427. https://doi.org/10.1071/AP08033
dc.relation.referencesAmzalek, E., & Cohen, Y. (2007a). Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology, 97(2), 179–186. https://doi.org/10.1094/PHYTO-97-2-0179
dc.relation.referencesAn, Y., Kang, S., Kim, K. D., Hwang, B. K. K., & Jeun, Y. (2010). Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Protection, 29(12), 1406–1412. https://doi.org/10.1016/j.cropro.2010.07.023
dc.relation.referencesAndreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62(2), 162–170. https://doi.org/10.1002/ps.1142
dc.relation.referencesArici, Ş. E., & Dehne, H. W. (2007). Induced resistance against Phytophthora infestans by chemical inducers BION and BABA in tomato plants. Acta Horticulturae, 729, 503–507. https://doi.org/10.17660/ActaHortic.2007.729.86
dc.relation.referencesAsim, R., Khan, A., Ghazanfar, M. U., & Raza, W. (2019). Eco-friendly management of Phytophthora infestans causing late blight of potato. May, 144–147.
dc.relation.referencesAsohofrucol. (2018). Balance Hortifruticola 2018. In Asohofrucol. http://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUTICULTURA_2018.pdf
dc.relation.referencesÁvila, E. (2015). Manual de Tomate de árbol. Cámara de Comercio de Bogotá, 1, 50. https://doi.org/10.1158/2159-8290.CD-16-1154
dc.relation.referencesAvrova, A. O., Boevink, P. C., Young, V., Grenville-Briggs, L. J., Van West, P., Birch, P. R. J., & Whisson, S. C. (2008). A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 10(11), 2271–2284. https://doi.org/10.1111/j.1462-5822.2008.01206.x
dc.relation.referencesBaccelli, I., & Mauch-Mani, B. (2016). Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Molecular Biology, 91(6), 703–711. https://doi.org/10.1007/s11103-015-0406-y
dc.relation.referencesBae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S. B., Seo, H., Bae, D. W., Bae, I., Kim, J. J., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005
dc.relation.referencesBaider, A., & Cohen, Y. (2003). Synergistic interaction between BABA and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399–409. https://doi.org/10.1007/BF02979812
dc.relation.referencesBain, R. A., & Walters, D. R. (2016). The contribution of host resistance elicitors to the control of potato foliar blight in Scotland. The Dundee Conference: Crop Protection in Northern Britain 2016, 23-24 February 2016, Dundee, UK, 205–210.
dc.relation.referencesBalmer, A., Glauser, G., Mauch-Mani, B., & Baccelli, I. (2019). Accumulation patterns of endogenous β-aminobutyric acid during plant development and defence in Arabidopsis thaliana. In Plant Biology (Vol. 21, Issue 2). https://doi.org/10.1111/plb.12940
dc.relation.referencesBarilli, E., Rubiales, D., Amalfitano, C., Evidente, A., & Prats, E. (2015). BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 242(5), 1095–1106. https://doi.org/10.1007/s00425-015-2339-8
dc.relation.referencesBarilli, E., Sillero, J. C., & Rubiales, D. (2010). Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotic inducers. Journal of Phytopathology, 158(1), 30–34. https://doi.org/10.1111/j.1439-0434.2009.01571.x
dc.relation.referencesBaysal, Ö., Gürsoy, Y. Z., Örnek, H., & Duru, A. (2005). Induction of oxidants in tomato leaves treated with DL-β-Amino butyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. European Journal of Plant Pathology, 112(4), 361–369. https://doi.org/10.1007/s10658-005-6234-1
dc.relation.referencesBeckers, G. J., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4), 425–431. https://doi.org/10.1016/j.pbi.2007.06.002
dc.relation.referencesBengtsson, T., Holefors, A., Witzell, J., Andreasson, E., & Liljeroth, E. (2014). Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathology, 63(1), 193–202. https://doi.org/10.1111/ppa.12069
dc.relation.referencesBirch, P. R. J., & Whisson, S. C. (2001). Pathogen profile Phytophthora infestans enters the genomics era. MOLECULAR PLANT PATHOLOGY, 2(5), 257–263.
dc.relation.referencesBoller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
dc.relation.referencesBostock, R. M., Thaler, J., Fidantsef, A., & Duffey, S. (1999). Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology, 25(7), 1597–1609. http://www.springerlink.com/index/UT5534K176615T37.pdf
dc.relation.referencesBoubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants Academic Press. (pp. 79-99).
dc.relation.referencesBruce, T. J. A., Smart, L. E., Birch, A. N. E., Blok, V. C., MacKenzie, K., Guerrieri, E., Cascone, P., Luna, E., & Ton, J. (2016). Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 97, 128–134. https://doi.org/10.1016/j.cropro.2016.10.003
dc.relation.referencesBurgos, H., Chávez, C., Amaya, J., & Julca, J. (2006). Tomate de árbol (Cyphomandra betacea Send.). 8. www.regionlalibertad.gob.pe
dc.relation.referencesBurra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., & Alexandersson, E. (2014). Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/s12870-014-0254-y
dc.relation.referencesBuswell, W., Schwarzenbacher, R. E., Luna, E., Sellwood, M., Chen, B., Flors, V., Pétriacq, P., & Ton, J. (2018). Chemical priming of immunity without costs to plant growth. New Phytologist, 218(3), 1205–1216. https://doi.org/10.1111/nph.1506
dc.relation.referencesCárdenas, M., Grajales, A., Sierra, R., Rojas, A., González-Almario, A., Vargas, A., Marín, M., Fermín, G., Lagos, L. E., Grünwald, N. J., Bernal, A., Salazar, C., & Restrepo, S. (2011). Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genetics, 12. https://doi.org/10.1186/1471-2156-12-23
dc.relation.referencesCarreño, N., Vargas, A., Bernal, A. J., & Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agronomía Colombiana, 25(2), 320–329. http://www.scielo.org.co/pdf/rfce/v18n2/v18n2a04.pdf
dc.relation.referencesCastaño Monsalve, J. I., Guillermo Ramírez Gil, J. I., Fernando Patiño Hoyos, L. I., & Gonzalo Morales Osorio, J. I. (2015). Alternativa para el manejo de Phytophthora infestans (Mont.) de Bary en Solanum betaceum Cav. mediante inductores de resistencia. Rev. Protección Veg, 30(3), 204–212. http://blast.ncbi.nlm.nih.gov/
dc.relation.referencesCaulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., Modrie, P., Legrève, A., Mahillon, J., & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9(143). https://doi.org/10.3389/fmicb.2018.00143
dc.relation.referencesCerkauskas, R. F., Ferguson, G., & Macnair, C. (2015). Management of Phytophthora blight (Phytophthora capsici) on vegetables in Ontario: Some greenhouse and field aspects. Canadian Journal of Plant Pathology, 37(3), 285–304. https://doi.org/10.1080/07060661.2015.1078411
dc.relation.referencesChañag-Miramag, H. A., Viveros-Rojas, J., Álvarez-Ordoñez, S., Criollo-Escobar, H., & Lagos-Mora, L. E. (2017). Evaluación de genotipos de tomate de árbol [Cyphomandra betacea (Cav.) Sendt.] frente al ataque de Phytophthora infestans (Mont.) de Bary sensu lato. Revista Colombiana de Ciencias Hortícolas, 11(1), 11–20. https://doi.org/10.17584/rcch.2017v11i1.4725
dc.relation.referencesChowdappa, P., Mohan Kumar, S. P., Jyothi Lakshmi, M., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65(1), 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009
dc.relation.referencesCohen, Y. (1994). Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84(1), 55–59. https://doi.org/10.1094/Phyto-84-55
dc.relation.referencesCohen, Y., & Gisi, U. (1994). Systemic translocation of 14C-dl-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiological and Molecular Plant Pathology, 45(6), 441–456. https://doi.org/10.1016/S0885-5765(05)80041-4
dc.relation.referencesCohen, Y., Niderman, T., Mosinger, E., & Fluhr, R. (1994). beta-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiology, 104(1), 59–66. https://doi.org/10.1104/pp.104.1.59
dc.relation.referencesCohen, Y. R. (2000). Method for protecting plants from fungal infection. https://patentimages.storage.googleapis.com/f2/58/60/bd52d493cc4915/US6075051.pd
dc.relation.referencesCohen, Y. R. (2002). β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens. Plant Disease, 86(5), 448–457. https://doi.org/10.1094/pdis.2002.86.5.448
dc.relation.referencesCohen, Y, Reuveni, M., & Baider, A. (2002). Local and Systemic Activity of Baba ( Dl-3-Aminobutyric (pp. 207–224).
dc.relation.referencesCohen, Yigal., Rubin, A. E., & Vaknin, M. (2011). Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. European Journal of Plant Pathology, 130(1), 13–27. https://doi.org/10.1007/s10658-010-9724-8
dc.relation.referencesCohen, Yigal, Baider, A., Gotlieb, D., & Rubin, E. (2007). Control of Bremia lactucae in Field-Grown Lettuce by DL-3-Amino-n-Butanoic Acid (BABA). 3rd QLIF Congress: Improving Sustainability in Organic and Low Input Food Production Systems, University of Hohenheim, Germany, 1–5. http://orgprints.org/view/projects/int_conf_qlif2007.html%0AControl
dc.relation.referencesCohen, Yigal, Reuveni, M., & Baider, A. (1999). Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. European Journal of Plant Pathology, 105(4), 351–361. https://doi.org/10.1023/A:1008734019040
dc.relation.referencesCohen, Yigal, Rubin, A. E., & Kilfin, G. (2010). Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 126(4), 553–573. https://doi.org/10.1007/s10658-009-9564-6
dc.relation.referencesCohen, Yigal, Vaknin, M., & Mauch-Mani, B. (2016). BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica, 44(4), 513–538. https://doi.org/10.1007/s12600-016-0546-x
dc.relation.referencesConrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004
dc.relation.referencesde Vries, S., von Dahlen, J. K., Schnake, A., Ginschel, S., Schulz, B., & Rose, L. E. (2018). Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 94(4), 1–15. https://doi.org/10.1093/femsec/fiy037
dc.relation.referencesDe Vrieze, M., Germanier, F., Vuille, N., & Weisskopf, L. (2018). Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9(2573), 1–13. https://doi.org/10.3389/fmicb.2018.02573
dc.relation.referencesDepartamento Administrativo Nacional de Estadística DANE. (2018). Boletín mensual insumos y factores asociados a la producción agropecuaria (Issue 75). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_sep_2018.pdf
dc.relation.referencesDevelopment Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, (https://www.r-project.org/)
dc.relation.referencesDi Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144–149. https://doi.org/10.1016/j.biocontrol.2017.08.010
dc.relation.referencesElsherbiny, E. A., Amin, B. H., Aleem, B., Kingsley, K. L., & Bennett, J. W. (2020). Trichoderma Volatile Organic Compounds as a Biofumigation Tool against Late Blight Pathogen Phytophthora infestans in Postharvest Potato Tubers. Journal of Agricultural and Food Chemistry, 68(31), 8163–8171. https://doi.org/10.1021/acs.jafc.0c03150
dc.relation.referencesElsherbiny, E. A., Dawood, D. H., & Safwat, N. A. (2021). Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pesticide Biochemistry and Physiology, 171, 104721.
dc.relation.referencesElsisi, A. A., & Shams, A. S. (2019). Controlling of Artichoke powdery mildew and improving Vegetative growth and yield productivity by using Dl-β-aminobutyric acid (BABA) with some natural essential oils. Middle East Journal of Applied Sciences, 09(02), 443–455.
dc.relation.referencesEschen-Lippold, L., Altmann, S., & Rosahl, S. (2010). DL-β-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Molecular Plant-Microbe Interactions, 23(5), 585–592. https://doi.org/10.1094/MPMI-23-5-0585
dc.relation.referencesFarahani, A. S., Mohsen Taghavi, S., Afsharifar, A., & Niazi, A. (2016). Effect of β-aminobutyric acid on resistance of tomato against Pectobacterium carotovorum subsp. Carotovorum. Journal of Plant Diseases and Protection, 123(4), 155–161. https://doi.org/10.1007/s41348-016-0028-x
dc.relation.referencesFatima, K., Noureddine, K., Henni, J. E., & Mabrouk, K. (2015). Antagonistic effect of Trichoderma harzianum against Phytophthora infestans in the North-west of Algeria. 6(4), 44–53.
dc.relation.referencesFeicán-Mejia, C. G., Encalada-Alvarado, C. R., & Becerril-Román, A. E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum Cav.). Agroproductividad, 9, 78–86. Https://www.researchgate.net/profile/Carlos_Feican/publication/312938646_DESCRIPCION_AGRONOMICA_DEL_CULTIVO_DE_TOMATE_DE_ARBOL_Solanum_betaceum_Cav/links/588a4f3d45851522127ff7b3/DESCRIPCION-AGRONOMICA-DEL-CULTIVO-DE-TOMATE-DE-ARBOL-Solanum-betaceum-Cav.p
dc.relation.referencesFischer, M. J. C., Farine, S., Chong, J., Guerlain, P., & Bertsch, C. (2009). The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protection, 28(8), 710–712. https://doi.org/10.1016/j.cropro.2009.03.014
dc.relation.referencesForbes, Gregory A, Morales, J. G., Restrepo, S., Pérez, W., Gamboa, S., Ruiz, R., Cedeño, L., Fermin, G., Andreu, A. B., Acuña, I., & Oliva, R. (2013). Phytophthora infestans and Phytophthora andina on Solanaceous hosts in South America. In Phytophthora: a global perspective (pp. 48–58). https://doi.org/10.1079/9781780640938.0048
dc.relation.referencesGajendran, K., Gonzales, M., Farmer, A., Archuleta, E., Win, J., Waugh, M., & Kamoun, S. (2006). Phytophthora functional genomics database (PFGD): functional genomics of Phytophthora-plant interactions. Nucleic Acids Research, 34(90001), D465–D470. https://doi.org/10.1093/nar/gkj119
dc.relation.referencesGarcía-Núñez, H. G., Martínez-Campos, Á. R., Hermosa-Prieto, M. R., Monte-Vázquez, E., Aguilar-Ortigoza, C. J., & González-Esquivel, C. E. (2017). Caracterización morfológica y molecular de cepas nativas de Trichoderma y su potencial de biocontrol sobre Phytophthora infestans. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 35(1), 58–79. https://doi.org/10.18781/r.mex.fit.1605-4
dc.relation.referencesGhazanfar, M. U., Raza, W., Wakil, W., Hussain, I., & Qamar, M. I. (2020). Management of late blight and sucking insect pests of potato with application of salicylic acid and β-aminobutyric acid under greenhouse conditions. Sarhad Journal of Agriculture, 36(2), 646–654. https://doi.org/10.17582/JOURNAL.SJA/2020/36.2.646.654
dc.relation.referencesGómez-Alpizar, L., Hu, C.-H., Oliva, R., Forbes, G., & Ristaino, J. B. (2008). Phylogenetic relationships of Phytophthora andina , a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans . Mycologia, 100(4), 590–602. https://doi.org/10.3852/07-074r1
dc.relation.referencesGoss, E. M., Cardenas, M. E., Myers, K., Forbes, G. A., Fry, W. E., Restrepo, S., & Grünwald, N. J. (2011). The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the irish potato famine pathogen, P. infestans. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0024543
dc.relation.referencesGudero, G., Hussien, T., Dejene, M., & Biazin, B. (2018). Integrated Management of Tomato Late Blight [Phytophthora infestans (Mont.) de Bary] Through Host Plant Resistance and Reduced Frequency of Fungicide in Arbaminch Areas, Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 8(9). https://www.researchgate.net/publication/336209921%0AIntegrated
dc.relation.referencesHaesaert, G., Vossen, J. H., Custers, R., De Loose, M., Haverkort, A., Heremans, B., Hutten, R., Kessel, G., Landschoot, S., Van Droogenbroeck, B., Visser, R. G. F., & Gheysen, G. (2015). Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Protection, 77, 163–175. https://doi.org/10.1016/j.cropro.2015.07.018
dc.relation.referencesHamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18(8), 819–829. https://doi.org/10.1094/MPMI-18-0819
dc.relation.referencesHan, G. Z. (2019). Origin and evolution of the plant immune system. New Phytologist, 222(1), 70–83. https://doi.org/10.1111/nph.15596
dc.relation.referencesHao, W., Gray, M. A., Förster, H., & Adaskaveg, J. E. (2019). Evaluation of new oomycota fungicides for management of Phytophthora root rot of citrus in California. Plant Disease, 103(4), 619–628. https://doi.org/10.1094/PDIS-07-18-1152-RE
dc.relation.referencesHassan, M. A. E., & Buchenauer, H. (2007). Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. Journal of Plant Diseases and Protection, 114(4), 151–158. https://doi.org/10.1007/BF03356211
dc.relation.referencesHassan, M., & Abo-Elyousr, K. (2013). Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). European Journal of Plant Pathology, 136(1), 145–157. https://doi.org/10.1007/s10658-012-0149-4
dc.relation.referencesHaverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52(3), 249–264. https://doi.org/10.1007/s11540-009-9136-3
dc.relation.referencesHernandez, M. L., Falloon, R. E., Butler, R. C., Conner, A. J., & Bulman, S. R. (2015). Resistance to Spongospora subterranea induced in potato by the elicitor β-aminobutyric acid. Australasian Plant Pathology, 44(4), 445–453. https://doi.org/10.1007/s13313-015-0363-6
dc.relation.referencesHinestrosa Maldonado, A., & Peláez Restrepo, D. (2006). Manual fitosanitario para la protección de cultivos de fruta pequeña de clima frío moderado. In Gobernación de Antioquia, Corporación PBA. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesHong, J. K., Hwang, B. K., & Kim, C. H. (1999). Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-β-amino-n-butyric acid. Journal of Phytopathology, 147(4), 193–198. https://doi.org/10.1046/j.1439-0434.1999.147004193.x
dc.relation.referencesIvanov, A. A., Ukladov, E. O., & Golubeva, T. S. (2021). Phytophthora infestans: An overview of methods and attempts to combat late blight. Journal of Fungi, 7(12), 1071.
dc.relation.referencesJakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric acid-induced resistance in plants Gabor. 107, 29–37.
dc.relation.referencesJung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89–91. https://doi.org/10.1126/science.1170025
dc.relation.referencesJustyna, P. G., & Ewa, K. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-z
dc.relation.referencesKamoun, S. (2003). Molecular Genetics of Pathogenic MINIREVIEWS Molecular Genetics of Pathogenic Oomycetes. Eukaryotic Cell, 2(2), 191–199.
dc.relation.referencesKilonzi, J. M., Mafurah, J. J., & Nyongesa, M. W. (2020). In vivo and in vitro antagonism of Streptomyces sp. RO3 against Penicillium digitatum and Geotrichum candidum. African Journal of Microbiology Research, 14(5), 148–157. https://doi.org/10.5897/AJMR2019.9195
dc.relation.referencesKim, Y. C., Kim, Y. H., Lee, Y. H., Lee, S. W., Chae, Y. S., Kang, H. K., Yun, B. W., & Hong, J. K. (2013). Β-Amino-N-Butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage. Plant Pathology Journal, 29(3), 305–316. https://doi.org/10.5423/PPJ.OA.12.2012.0191
dc.relation.referencesKoné, D., Csinos, A. S., Jackson, K. L., & Ji, P. (2009). Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Protection, 28(6), 533–538. https://doi.org/10.1016/j.cropro.2009.02.005
dc.relation.referencesKroon, L. P. N. M., Bakker, F. T., Van Den Bosch, G. B. M., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41(8), 766–782. https://doi.org/10.1016/j.fgb.2004.03.007
dc.relation.referencesLadi, E., Shukla, N., Bohra, Y., Tiwari, A. K., & Kumar, J. (2020). Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phytophthora infestans in dual combination. Phytoparasitica, 48(3), 357–370. https://doi.org/10.1007/s12600-020-00804-9
dc.relation.referencesLagos, T. C., Checa, O. E., Bacca, T., Betancourt, C. A., Vélez, J. A., Benavides, C. A., Portilla, A. E., Lagos, L. K., & Insuasty, S. (2012). Principales Problemas Sanitarios en el cultivo de Tomate de árbol Cyphomandra betacea (Cav.) Sendt en el Departamento de Nariño (Universidad de Nariño (ed.)). https://repository.agrosavia.co/handle/20.500.12324/1862
dc.relation.referencesLeal, A. (2020). Agronegocios.. https://www.agronegocios.co/agricultura/colombia-exporto-us743-millones-de-frutas-exoticas-en-2019-6-mas-que-en-2018-2950228
dc.relation.referencesLi, G., Meng, F., Wei, X., & Lin, M. (2019). Postharvest dipping treatment with BABA induced resistance against rot caused by Gilbertella persicaria in red pitaya fruit. Scientia Horticulturae, 257(July). https://doi.org/10.1016/j.scienta.2019.108713
dc.relation.referencesLi, J., Trivedi, P., & Wang, N. (2016). Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology®, 106(1), 37–46. https://doi.org/10.1094/PHYTO-08-15-0196-R
dc.relation.referencesLiljeroth, E., Bengtsson, T., Wiik, L., & Andreasson, E. (2010). Induced resistance in potato to Phytophthora infestans-effects of BABA in greenhouse and field tests with different potato varieties. European Journal of Plant Pathology, 127(2), 171–183. https://doi.org/10.1007/s10658-010-9582-4
dc.relation.referencesLobo Arias, M. (2006). Recursos genéticos y mejoramiento de frutales andinos: una visión conceptual. Corpoica Ciencia y Tecnología Agropecuaria, 7(2), 40–54. https://doi.org/10.21930/rcta.vol7_num2_art:68
dc.relation.referencesLudewing, U., & Koch, W. (2000). Amino acid transporters in plants. Plant Membrane and Vacuolar Transporters, 1465, 267–282. https://doi.org/10.1079/9781845934026.0267
dc.relation.referencesLuna, Estrella;, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520
dc.relation.referencesLuna, Estrella, López, A., Kooiman, J., & Ton, J. (2014). Role of NPR1 and KYP in long-lasting induced resistance by Î2-aminobutyric acid. Frontiers in Plant Science, 5(May), 1–9. https://doi.org/10.3389/fpls.2014.00184
dc.relation.referencesLuna, Estrella, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Induced resistance for plant defense. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520
dc.relation.referencesMa, Y., Chang, Z. zhou, Zhao, J. tao, & Zhou, M. guo. (2008). Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 44(1), 24–31. https://doi.org/10.1016/j.biocontrol.2007.10.005
dc.relation.referencesMachinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417–1424. https://doi.org/10.1016/j.jplph.2012.05.005
dc.relation.referencesMADR. (2005). La cadena de los frutales de exportación en Colombia: Una mirada global de su estructura y dinámica 1991-2005. Min. Agricultura y Desarrollo Rural, Obs. Agrocadenas Colombia, 67. http://www.agronet.gov.co/www/docs_agronet/2005112145659_caracterizacion_cacao.pdf
dc.relation.referencesMajeed, A., Muhammad, Z., Ahmad, H., Islam, S., Ullah, Z., & Ullah, R. (2017). Late Blight of Potato (Phytophthora infestans) II: Employing Integrated Approaches in Late Blight Disease Management. PSM Biological Research, 2(3), 117–123. https://www.journals.psmpublishers.org/index.php/biolres/article/view/71
dc.relation.referencesMarcucci, E., Aleandri, M. P., Chilosi, G., & Magro, P. (2010). Induced resistance by β-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 158(10), 659–667. https://doi.org/10.1111/j.1439-0434.2010.01677.x
dc.relation.referencesMarquez, C., Otero, C., & Cortes, M. (2007). Cambios fisiológicos, texturales, fisicoquímicos y microestructurales del tomate de árbol (Cyphomandra betacea S.) En poscosecha changes physiological, textural, physicochemical and microestructural of the tree tomato (Cyphomandra betacea S.) At postharve. Vitae, 14(2), 07–08. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0121-40042007000200002
dc.relation.referencesMartin, R. L., Le Boulch, P., Clin, P., Schwarzenberg, A., Yvin, J. C., Andrivon, D., ... & Val, F. (2020). A comparison of PTI defense profiles induced in Solanum tuberosum by PAMP and non-PAMP elicitors shows distinct, elicitor-specific responses. Plos one, 15(8), e0236633.
dc.relation.referencesMatson, M. E. H., Small, I. M., Fry, W. E., & Judelson, H. S. (2015). Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology, 105(12), 1594–1600. https://doi.org/10.1094/PHYTO-05-15-0129-R
dc.relation.referencesMauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132
dc.relation.referencesMcKee, M. L., Zheng, L., O’sullivan, E. C., Kehoe, R. A., Doyle Prestwich, B. M., Mackrill, J. J., & McCarthy, F. O. (2020). Synthesis and evaluation of novel ellipticines and derivatives as inhibitors of Phytophthora infestans. Pathogens, 9(7), 1–23. https://doi.org/10.3390/pathogens9070558
dc.relation.referencesMhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.16437
dc.relation.referencesMhatre, P. H., Lekshmanan, D. K., Palanisamy, V. E., Bairwa, A., & Sharma, S. (2021). Management of the late blight (Phytophthora infestans) disease of potato in the southern hills of India. Journal of Phytopathology, 169(1), 52–61. https://doi.org/10.1111/jph.12958
dc.relation.referencesMideros, M. F., Turissini, D. A., Guayazán, N., Ibarra-Avila, H., Danies, G., Cárdenas, M., Myers, K., Tabima, J., Goss, E. M., Bernal, A., Lagos, L. E., Grajales, A., Gonzalez, L. N., Cooke, D. E. L., Fry, W. E., Grünwald, N., Matute, D. R., & Restrepo, S. (2018). Phytophthora betacei , a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia . Persoonia - Molecular Phylogeny and Evolution of Fungi, 41(1), 39–55. https://doi.org/10.3767/persoonia.2018.41.03
dc.relation.referencesMiller, J., Olsen, N., Woodell, L., Porter, L., & Clayson, S. (2006). Post-Harvest Applications of Zoxamide and Phosphite for Control of Potato Tuber Rots Caused by Oomycetes at Harvest. American Journal of Potato Research, 83(January), 269–278.
dc.relation.referencesMosquera Espinosa, A. T. (2016). Fitonematodos asociados a Cyphomandra betacea (Cav.) Sendtn., Solanum quitoense Lam. y Daucus carota L. en el Departamento de Boyacá, Colombia. Acta Agronómica, 65(1), 87–97. https://doi.org/10.15446/acag.v65n1.45180
dc.relation.referencesMosquera, T., Fernández, C., Martínez, L., & Acuña, A. (2008). Genética de la resistencia de la papa ( Solanum tuberosum ) a patógenos . Estado de arte Genetics of the Solanum tuberosum pathogen resistance . State of research. 26(1), 7–15.
dc.relation.referencesNajdabbasi, N., Mirmajlessi, S. M., Dewitte, K., Landschoot, S., Mänd, M., Audenaert, K., Ameye, M., & Haesaert, G. (2020). Biocidal activity of plant-derived compounds against Phytophthora infestans: An alternative approach to late blight management. Crop Protection, 138, 105315. https://doi.org/10.1016/j.cropro.2020.105315
dc.relation.referencesNavia, Ó., Gandarillas, A., Ortuño, N., Meneses, E., & Franco, J. (2012). Tizón de la Papa (Phytophthora infestans ) y Agricultura Sostenible : Integración de Resistencia Sistémica Inducida y Estrategias de Manejo Integrado. Fundación PROINPA, 1–18. http://www.proinpa.org/phocadownload/articulos/Papa/Oscar Navia_tizon papa.pdf
dc.relation.referencesNowicki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. U. (2012). Potato and Tomato Late Blight Caused by Phytophthora infestans : An Overview of Pathology and Resistance Breeding. Plant Disease, 96(1), 4–17. https://doi.org/10.1094/PDIS-05-11-0458
dc.relation.referencesOliva, R. F., Kroon, L. P. N. M., Chacón, G., Flier, W. G., Ristaino, J. B., & Forbes, G. A. (2010). Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathology, 59(4), 613–625. https://doi.org/10.1111/j.1365-3059.2010.02287.x
dc.relation.referencesOlivieri, F. P., Lobato, M. C., González Altamiranda, E., Daleo, G. R., Huarte, M., Guevara, M. G., & Andreu, A. B. (2009). BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. European Journal of Plant Pathology, 123(1), 47–56. https://doi.org/10.1007/s10658-008-9340-z
dc.relation.referencesOostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107(1), 19–28. https://doi.org/10.1023/A:1008760518772
dc.relation.referencesOrdoñez, M. E., Hohl, H. R., Velasco, J. A., Ramon, M. P., Oyarzun, P. J., Smart, C. D., Fry, W. E., Forbes, G. A., & Erselius, L. J. (2000). A novel population of Phytophthora, similar to P. infestans, attacks wild Solanum species in ecuador. Phytopathology, 90(2), 197–202. https://doi.org/10.1094/PHYTO.2000.90.2.197
dc.relation.referencesOvadia, A., Biton, R., & Cohen, Y. (2000). Induced resistance to downy mildew and fusarium wilt in cucurbits. https://doi.org/10.17660/ActaHortic.2000.510.8
dc.relation.referencesPajot, E., Le Corre, D., & Silué, D. (2001). Phytogard® and DL-β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L). European Journal of Plant Pathology, 107(9), 861–869. https://doi.org/10.1023/A:1013136608965
dc.relation.referencesPardo-De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López-Kleine, L., Restrepo, S., & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. https://doi.org/10.1111/ppa.12410
dc.relation.referencesPark, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113–116. https://doi.org/10.1126/science.1147113
dc.relation.referencesPastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–13. https://doi.org/10.3389/fpls.2014.00295
dc.relation.referencesPeerzada, S. H., Bhat, K. A., & Viswanath, H. S. (2020). Studies on Management of Late Blight (Phytophthora infestans (Mont) de Bary) of Potato Using Organic Soil Amendments. International Journal of Current Microbiology and Applied Sciences, 9(2), 2093–2099. https://doi.org/10.20546/ijcmas.2020.902.237
dc.relation.referencesPiekna Grochala, J., & Kepczyńska, E. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-z
dc.relation.referencesPieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2011). Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28(1), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
dc.relation.referencesPirondi, A., Brunelli, A., Muzzi, E., & Collina, M. (2017). Post-infection activity of fungicides against Phytophthora infestans on tomato (Solanum lycopersicum L.). Journal of General Plant Pathology, 83(4), 244–252. https://doi.org/10.1007/s10327-017-0717-8
dc.relation.referencesPorat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Droby, S. (2003). Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. European Journal of Plant Pathology, 109, 901–907. https://doi.org/10.1094/phyto.2002.92.4.393
dc.relation.referencesRamírez, F., & Kallarackal, J. (2019). Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review. Scientia Horticulturae, 248(January), 206–215. https://doi.org/10.1016/j.scienta.2019.01.019
dc.relation.referencesRejeb, I. Ben, Pastor, V., Gravel, V., & Mauch-Mani, B. (2018). Impact of β-aminobutyric acid on induced resistance in tomato plants exposed to a combination of abiotic and biotic stress. Journal of Agricultural Science and Botany, 2(3). http://www.alliedacademies.org/articles/impact-of-aminobutyric-acid-on-induced-resistance-in-tomato-plantsexposed-to-a-combination-of-abiotic-and-biotic-stress-10758.html
dc.relation.referencesReuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites. Plant Disease, 87(8), 933–936. https://doi.org/10.1094/PDIS.2003.87.8.933
dc.relation.referencesReuveni, Moshe, Zahavi, T., & Cohen, Y. (2001). Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA). Phytoparasitica, 29(2), 125–133. https://doi.org/10.1007/BF02983956
dc.relation.referencesRevelo, E., Dorado, G., Lagos, L. E., & Burbano-Figueroa, O. (2011). Foliar virulence of isolates of Phytophthora infestans sensu lato on detached leaves of two Solanum betaceum cultivars. Tropical Plant Pathology, 36(6), 367–373. https://doi.org/10.1590/s1982-56762011000600005
dc.relation.referencesRiofrío, L. A. (2010). Regeneración de plantas de tomate de árbol ( Solanum betacea ) a partir de protoplastos. Universidad San Fracisco De Quito
dc.relation.referencesRojas-Estevez, P., Urbina-Gómez, D. A., Ayala-Usma, D. A., Guayazan-Palacios, N., Mideros, M. F., Bernal, A. J., Cardenas, M., & Restrepo, S. (2020). Effector Repertoire of Phytophthora betacei: In Search of Possible Virulence Factors Responsible for Its Host Specificity. Frontiers in Genetics, 11(June). https://doi.org/10.3389/fgene.2020.00579
dc.relation.referencesSafaie Farahani, A., & Taghavi, S. M. (2017). Induction of resistance in pepper against Xanthomonas euvesicatoria by β-aminobutyric acid. Australasian Plant Disease Notes, 12(1), 12–15. https://doi.org/10.1007/s13314-016-0226-1
dc.relation.referencesSafarova, F., & Novruzova, E. (2021). Self-defense Mechanisms of Plants in Nature. Bulletin of Science and Practice, 7(8), 73-77. (in Russian). https://doi.org/10.33619/2414-2948/69/09
dc.relation.referencesSanabria, K., Pérez, W., & Andrade-Piedra, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 105241
dc.relation.referencesŠašek, V., Nováková, M., Dobrev, P. I., Valentová, O., & Burketová, L. (2012). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? European Journal of Plant Pathology, 133(1), 279–289. https://doi.org/10.1007/s10658-011-9897-9
dc.relation.referencesSaville, A., Graham, K., Grünwald, N. J., Myers, K., Fry, W. E., & Ristaino, J. B. (2015). Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Disease, 99(5), 659–666. https://doi.org/10.1094/PDIS-05-14-0452-RE
dc.relation.referencesSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
dc.relation.referencesSchotsmans, W. C., East, A., & Woolf, A. (2011). Tamarillo (Solanum betaceum (Cav.)). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (Vol. 4). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092618.427
dc.relation.referencesShailasree, S., Ramachandra, K. K., & Shetty, S. H. (2007). β-Amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australasian Plant Pathology, 36(2), 204–211. https://doi.org/10.1071/AP06093
dc.relation.referencesShailasree, S., Sarosh, B. R., Vasanthi, N. S., & Shetty, H. S. (2001). Seed treatment with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Management Science, 57(8), 721–728. https://doi.org/10.1002/ps.346
dc.relation.referencesShattock, R. C. (2002). Phytophthora infestans: Populations, pathogenicity and phenylamides. Pest Management Science, 58(9), 944–950. https://doi.org/10.1002/ps.527
dc.relation.referencesShoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450
dc.relation.referencesSi-Ammour, A., Mauch-Mani, B., & Mauch, F. (2003). Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: β-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Molecular Plant Pathology, 4(4), 237–248. https://doi.org/10.1046/j.1364-3703.2003.00168.x
dc.relation.referencesSiegrist, J., Orober, M., & Buchenauer, H. (2000). β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiological and Molecular Plant Pathology, 56, 95–106. https://doi.org/10.1006?pmpp.1999.0255,
dc.relation.referencesSilué, D., Pajot, E., & Cohen, Y. (2002). Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-β-amino-n-butanoic acid (BABA). Plant Pathology, 51(1), 97–102. https://doi.org/10.1046/j.1365-3059.2002.00649.x
dc.relation.referencesSlaughter, A. R., Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M., & Mauch-Mani, B. (2008). Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: Involvement of pterostilbene. European Journal of Plant Pathology, 122(1), 185–195. https://doi.org/10.1007/s10658-008-9285-2
dc.relation.referencesSoto Plancarte, A., Rodríguez Alvarado, G., Fernández Pavía, Y. L., Pedraza Santos, M. E., López Pérez, L., Celaya Díaz, M., & Fernández Pavía, S. P. (2017). Protocolos de aislamiento y diagnóstico de Phytophthora spp . enfoque aplicado a la investigación * Isolation and diagnosis protocols of Phytophthora spp . applied research approach Resumen. Revista Mexicana de Ciencias Agrícolas Vol.8, 8(December), 1867–1880. https://doi.org/10.29312/remexca.v8i8.708
dc.relation.referencesSunwoo, J. Y., Lee, Y. K., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-ß-amino-n-butyric acid. European Journal of Plant Pathology, 102(7), 663–670. https://doi.org/10.1007/BF01877247
dc.relation.referencesTamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA.
dc.relation.referencesTavallali, V., Karimi, S., Mohammadi, S., & Hojati, S. (2008). Effects of ß-aminobutyric Acid on the Induction of Resistance to Penicillium italicum. World Applied Sciences Journal, 5(3), 345–351.
dc.relation.referencesTejeda-sartorius, M., Martínez-gallardo, N. A., Olalde-Portugal, V., & Délano-frier, J. P. (2007). Jasmonic Acid Accelerates the Expression of a Pathogen-Specific Lipoxygenase (POTLX-3) and Delays Foliar Late Blight Development in Potato (Solanum tuberosum L.). Revista Mexicana de Fitopatología, 25(1), 18–25.
dc.relation.referencesThevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G., & Mauch-Mani, B. (2016). The priming molecule β -aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 213(2), 552–559. https://doi.org/10.1111/nph.14298
dc.relation.referencesTon, J., Jakab, G., Toquin, V., Flors, V., Lavicoli, A., Maeder, M., Métrax, J.-P., & Mauch-Mani, B. (2005). Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis. The Plant Cell, 17(March), 987–999. https://doi.org/10.1105/tpc.104.029728.2
dc.relation.referencesTon, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38(1), 119–130. https://doi.org/10.1111/j.1365-313X.2004.02028.x
dc.relation.referencesTosi, L., Luigetti, R., & Zazzerini, A. (1998). Induced Resistance Against Plasmopara helianthi in Sunflower Plants by DL-β-Amino-n-butyric acid. Journal of Phytopathology, 146(5–6), 295–299. https://doi.org/10.1111/j.1439-0434.1998.tb04694.x
dc.relation.referencesUpson, J. L., Zess, E. K., Białas, A., Wu, C. hang, & Kamoun, S. (2018). The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 44, 108–116. https://doi.org/10.1016/j.pbi.2018.03.003
dc.relation.referencesVallad, G. E., & Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science Society of America, 44, 1920–1934.
dc.relation.referencesVasyukova, N. I., Ozeretskovskaya, O. L., Chalenko, G. I., Gerasimova, N. G., L’vova, A. A., Il’ina, A. V., Levov, A. N., Varlamov, V. P., & Tarchevsky, I. A. (2010). Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments. Applied Biochemistry and Microbiology, 46(3), 346–351. https://doi.org/10.1134/S0003683810030166
dc.relation.referencesWalters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71(1–3), 3–17. https://doi.org/10.1016/j.pmpp.2007.09.008
dc.relation.referencesWalters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. Journal of Agricultural Science, 147(5), 523–535. https://doi.org/10.1017/S0021859609008806
dc.relation.referencesWalters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology, 95(12), 1368–1373. https://doi.org/10.1094/PHYTO-95-1368
dc.relation.referencesWalters, Dale R. (2009). Are plants in the field already induced? Implications for practical disease control. Crop Protection, 28(6), 459–465. https://doi.org/10.1016/j.cropro.2009.01.009
dc.relation.referencesWalters, Dale R., Havis, N. D., Paterson, L., Taylor, J., & Walsh, D. J. (2011). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95(5), 595–600. https://doi.org/10.1094/PDIS-08-10-0577
dc.relation.referencesWilkinson, S. W., Pastor, V., Paplauskas, S., Pétriacq, P., & Luna, E. (2018). Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology, 67(1), 30–41. https://doi.org/10.1111/ppa.12725
dc.relation.referencesWorrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D., & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193(3), 770–778. https://doi.org/10.1111/j.1469-8137.2011.03987.x
dc.relation.referencesYuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030. https://doi.org/10.1016/j.pbi.2021.102030
dc.relation.referencesZapata P., J. L., & Bernal E., J. A. (2012). Caracterización de razas fisiológicas de Phytophthora infestans (Mont.) de Bary en lulo (Solanum quitoense Lam.). Corpoica Ciencia y Tecnología Agropecuaria, 13(1), 13. https://doi.org/10.21930/rcta.vol13_num1_art:235
dc.relation.referencesZhang, C., Wang, J., Zhang, J., Hou, C., & Wang, G. (2011). Effects of β-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biology and Technology, 61(2–3), 145–151. https://doi.org/10.1016/j.postharvbio.2011.02.008
dc.relation.referencesZhang, S., Reddy, M. S., Kokalis-Burelle, N., Wells, L. W., Nightengale, S. P., & Kloepper, J. W. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Disease, 85(8), 879–884. https://doi.org/10.1094/PDIS.2001.85.8.879
dc.relation.referencesZimmerli, L., Jakab, G., Metraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897
dc.relation.referencesZimmerli, Laurent, Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897
dc.relation.referencesZimmerli, Laurent, Me, J., & Mauch-mani, B. (2001). β- aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126(June), 517–523.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTomate de árbol - Enfermedades y plagas
dc.subject.lembTree tomato - disease and pests
dc.subject.proposalCrecimiento de Phytophthora
dc.subject.proposalDefensa sistémica
dc.subject.proposalDuración
dc.subject.proposalBABA
dc.subject.proposalPhytophthora infestans sensu lato
dc.subject.proposalReducción de enfermedad en campo
dc.subject.proposalPhytophthora growth
dc.subject.proposalDurability
dc.subject.proposalReduction of disease in the field.
dc.subject.proposalSystemic resistance
dc.title.translatedInduction of defense in Solanum betaceum against attack by Phytophthora infestans sensu lato by β-aminobutyric acid
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEstudio sobre resistencia inducida transgeneracional en la interacción tomate de árbol (Solanum betaceum)- Phytophthora infestans sensu lato"; Código 130171250695, contrato 254-2016
oaire.fundernameMinciencias | Ministerio de Ciencia Tecnología e Innovación
oaire.fundernameUniversidad Nacional de Colombia
oaire.fundernamePolitécnico Colombiano Jaime Isaza Cadavid
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular en Producción Agraria Sostenible


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito