Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVargas-Ramírez, Mario
dc.contributor.authorBriceño Zea, Jhon Sebastian
dc.date.accessioned2022-08-31T20:54:03Z
dc.date.available2022-08-31T20:54:03Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82229
dc.descriptionilustraciones, fotografías, graficas, mapas
dc.description.abstractEl desarrollo de investigaciones en sistemática molecular (i.e. genética de poblaciones, filogenética y filogeografía) se ha beneficiado del avance en las técnicas de secuenciación recientes, las cuales ofrecen la posibilidad de obtener secuencias de ADN de manera económica y rápida. El análisis adecuado de estas secuencias enmarcado en disciplinas como la filogenética molecular y la filogeografía, han incrementado el conocimiento acerca de las relaciones evolutivas de linajes genéticos a nivel intra e interespecíficos, patrones de distribución geográfica de dichos linajes, e identificación de posibles procesos que formaron estos patrones. Adicionalmente, estos análisis se han convertido en herramienta fundamental de la taxonomía integrativa, complementando análisis provenientes de otras líneas de evidencia como por ejemplo la morfología y la bioacústica. La taxonomía integrativa se ha utilizado generalmente para evaluar especies ampliamente distribuidas, la cuales pueden constituir complejos de especies. Este es el caso de las tortugas continentales semiacuáticas neotropicales Kinosternon leucostomum y Kinosternon scorpioides (Testudines: Kinosternidae), cuyas extensas distribuciones y su presencia en diferentes hábitats, impulsan la hipótesis de que existe variación genética interespecífica no reconocida entre las poblaciones a lo largo de sus rangos de distribución, pudiendo corresponder con varios linajes evolutivos dentro de cada taxón. En esta investigación se obtuvieron y analizaron secuencias de tres genes mitocondriales (12s, 16s y Cytb) y siete fragmentos cleares (BDNF, CMOS, HMGB, ODC, R35, RAG1, RAG2) de individuos provenientes de gran parte del rango de distribución de las dos especies en el neo trópico con los siguientes objetivos: 1. Evaluar si existe variación genética interespecífica no reconocida, 2. Evaluar las relaciones evolutivas entre linajes detectados, 3. determinar la distribución geográfica de estos posibles linajes y 4. Establecer inferencias taxonómicas comparando los resultados con la clasificación taxonómica actual. Los análisis filogenéticos (Inferencia Bayesiana y Máxima Verosimilitud), además de Análisis de Componentes Principales y redes de Máxima Parsimonia de haplotipos, revelaron patrones de diferenciación genética contrastantes para cada especie. Para K. escorpioides se identificó una fuerte estructura genética compuesta de varios linajes evolutivos independientes. Para K. leucostomum no se identificó estructura genética, constituyendo un solo linaje evolutivo con algunas diferencias geográficas. Se discute acerca de las causas y consecuencias de estos patrones en un contexto filogenético, filogeográfico y taxonómico. Adicionalmente se discute acerca de las consecuencias de estos resultados para la conservación de las dos especies. (Texto tomado de la fuente)
dc.description.abstractThe growth of research in molecular systematics (i.e., population genetics, phylogenetics and phylogeography) has benefited from advances in recent sequencing techniques, which offer the possibility of obtaining DNA sequences economically and rapidly. Adequate analysis of these sequences in disciplines such as molecular phylogenetics and phylogeography has increased knowledge about the evolutionary relationships of genetic lineages at intra- and interspecific levels, patterns of geographic distribution of these lineages, and identification of possible processes that formed these patterns. Additionally, these analyses have become a fundamental tool for integrative taxonomy, complementing analyses from other lines of evidence such as morphology and bioacoustics. Integrative taxonomy has generally been used to evaluate widely distributed species, which may constitute species complexes. This is the case of the neotropical semi-aquatic continental turtles Kinosternon leucostomum and Kinosternon scorpioides (Testudines: Kinosternidae), whose wide distributions and presence in different habitats, support the hypothesis that there is unrecognized interspecific genetic variation among populations throughout their distribution ranges, which may correspond to several evolutionary lineages within each taxon. In this research, sequences of three mitochondrial genes (12s, 16s and Cytb) and seven nuclear loci (BDNF, CMOS, HMGB, ODC, R35, RAG1, RAG2) were obtained and analyzed from individuals from a large part of the distribution range of the two species in the neotropics with the following goals: 1. To evaluate if there is unrecognized interspecific genetic variation, 2. To evaluate the evolutionary relationships between detected lineages, 3. to determine the geographic distribution of these possible lineages and 4. to establish taxonomic inferences by comparing the results with the current taxonomic classification. Phylogenetic analyses (Bayesian Inference and Maximum Likelihood), in addition to Principal Component Analysis and Maximum Parsimony networks of haplotypes revealed contrasting patterns of genetic differentiation for each species. For K. scorpioides, a strong genetic structure composed of several independent evolutionary lineages was identified. For K. leucostomum no genetic structure was identified, constituting a single evolutionary lineage with some geographic differences. The causes and consequences of these patterns are discussed in a phylogenetic, phylogeographic and taxonomic context. In addition, the consequences of these results for the conservation of the two species are discussed.
dc.format.extentiv, 110 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
dc.title¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.contributor.researchgroupBiodiversidad y Conservación Genética
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biología
dc.description.researchareaFilogenética
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Biología
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAcuña Mesen, R., Marquez B., C., 1993. El dimorfismo sexual de Kinosternon scorpioides (Testudines: Kinosternidae) en Palo Verde, Costa Rica. Rev. Biol. Trop. 41, 261–265. https://doi.org/10.15517/rbt.v41i2.23360
dc.relation.referencesArdila-Marulanda, M., De La Ossa V., J., De La Ossa-Lacayo, A., 2016. Uso de quelonios continentales en el golfo de Morrosquillo, Sucre, Colombia. Rev. Colomb. Cienc. Anim. - RECIA 8, 361. https://doi.org/10.24188/recia.v8.n0.2016.392
dc.relation.referencesAvendaño, J.E., Cortés-Herrera, J.O., Briceño-Lara, E.R., Rincón-Guarín, D.A., 2013. Crossing or bypassing the Andes: a commentary on recent range extensions of cis-Andean birds to the West of the Andes of Colombia. Orinoquia 17, 207–214
dc.relation.referencesBackström, N., Fagerberg, S., Ellegren, H., 2008. Genomics of natural bird populations: A gene-based set of reference markers evenly spread across the avian genome. Mol. Ecol. 17, 964–980. https://doi.org/10.1111/j.1365- 294X.2007.03551.x
dc.relation.referencesBaker, P.A.; Sherilyn, C.F.; Battisti, D.S.; Dick, C.W.; Vargas, O.M., Asner, G.P., Matin, R.E., Wheatley, A., Prates, I., 2020. Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America. In V. Rull, A. C. Carnaval (eds.), Neotropical Diversification: Patterns and Processes, Fascinating Life Sciences (1st ed., pp. 54-71). Springer, Cham.
dc.relation.referencesBarley, A.J., Spinks, P.Q., Thomson, R.C., Shaffer, H.B., 2010. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Mol. Phylogenet. Evol. 55, 1189–1194. https://doi.org/10.1016/j.ympev.2009.11.005
dc.relation.referencesBattey, C.J., Klicka, J., 2017. Cryptic speciation and gene flow in a migratory songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus). Mol. Phylogenet. Evol. 113, 67–75. https://doi.org/10.1016/j.ympev.2017.05.006
dc.relation.referencesBerger, W.H., 1990. The younger dryas cold spell - a quest for causes. Global and Planetary Change, 3(3), 219–237. doi:10.1016/0921-8181(90)90018-8
dc.relation.referencesBerriozabal-Islas, C., Ramírez-Bautista, A., Torres-Ángeles, F., Mota Rodrigues, J.F., Macip-Ríos, R., Octavio-Aguilar, P., 2020. Climate change effects on turtles of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat suitability and climate niche conservatism. Hydrobiologia 847, 4091–4110. https://doi.org/10.1007/s10750-020-04402-y
dc.relation.referencesBerry J, F., 1978. Variation and systematics in the Kinosternon scorpioides and K. leucostomum complexes (Reptilia: Testudines: Kinosternidae) of Mexico and Central. University of Utah.
dc.relation.referencesBerry, J.F., Iverson, J.B., 2001a. Kinosternon scorpioides. Cat. Am. Amphib. Reptil. doi:10.15781/T2GB1XN2W
dc.relation.referencesBerry, J.F., Iverson, J.B., 2001b. Kinosternon leucostomum. Cat. Am. Amphib. Reptil. doi:10.15781/T2M32NF5J
dc.relation.referencesBerry, J. F., J. B. Iverson y G. Forero-Medina. 2012. Kinosternon scorpioides (Linnaeus 1766). Pp. 340-348. En: Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
dc.relation.referencesBhaskar, R., Mohindra, V., 2019. Phylogenetic relationships among Indian freshwater turtles (family Trionychidae and Geoemydidae) with special reference to Lissemys punctata, inferred from mitochondrial cytochrome b gene sequences. Meta Gene 22, 100610. https://doi.org/10.1016/j.mgene.2019.100610
dc.relation.referencesBrumfield, R.T., Capparella, A.P., 1996. Historical diversification of birds in Northwestern South America: A molecular perspective on the role of vicariant events. Evolution (N. Y). 50, 1607–1624. https://doi.org/10.1111/j.1558- 5646.1996.tb03933.x
dc.relation.referencesBrusquetti, F., Netto, F., Baldo, D., Haddad, C., 2019. The influence of Pleistocene glaciations on Chacoan fauna: genetic structure and historical demography of an endemic frog of the South American Gran Chaco. Biological Journal of the Linnean Society, 126(3), 404-616. https://doi.org/10.1093/biolinnean/bly203
dc.relation.referencesBryson, R.W., García-Vázquez, U.O., Riddle, B.R., 2012. Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Mol. Phylogenet. Evol. 62, 87–96. https://doi.org/10.1016/j.ympev.2011.09.007
dc.relation.referencesBush, M.B., Oliveira, P.E. 2006. The rise and fall of the Refugial Hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica, 6(1). doi:10.1590/S1676-06032006000100002
dc.relation.referencesButler, C.J., 2019. A review of the effects of climate change on chelonians. Diversity 11. https://doi.org/10.3390/d11080138
dc.relation.referencesCabrera, M.R., Colantonio, S.E., 1997. Taxonomic Revision of the South American Subspecies of the Turtle Kinosternon scorpioides. Soc. Study Amphib. Reptil. 31, 507–513.
dc.relation.referencesCáceres-Martínez, C.H., Acevedo Rincón, A.A., Sierra Leal, J.A., González-Maya, J.F., 2017. Kinosternon scorpioides scorpioides (Testudines: kinosternidae): nuevo reporte en el Nororiente de Colombia. Acta Biol. Colomb. 22, 242–245. https://doi.org/10.15446/abc.v22n2.59804
dc.relation.referencesCadena, C.D., Pedraza, C.A., Brumfield, R.T., 2016. Climate, habitat associations and the potential distributions of Neotropical birds: Implications for diversification across the Andes. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 40, 275. https://doi.org/10.18257/raccefyn.280
dc.relation.referencesCarter, A.L., Janzen, F.J., 2021. Predicting the effects of climate change on incubation in reptiles : methodological advances and new directions 1–10. https://doi.org/10.1242/jeb.236018
dc.relation.referencesCeballos, C.P., Zapata, D., Alvarado, C., Rincón, E., 2016. Morphology, Diet, and Population Structure of the Southern White-lipped Mud Turtle Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) in the Nus River Drainage, Colombia. J. Herpetol. 50, 374–380. https://doi.org/10.1670/15-035
dc.relation.referencesChiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774. https://doi.org/10.1111/j.1365-294X.2004.02367.x
dc.relation.referencesChiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774. https://doi.org/10.1111/j.1365-294X.2004.02367.x
dc.relation.referencesCooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A.J., Taborda, A., 1995. Basin development and tectonic history of the Llano Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bull. 79, 1421–1444
dc.relation.referencesCordero, G.A., Reeves, R., Swarth, C.W., 2012. Long distance aquatic movement and home-range size of an eastern mud turtle, Kinosternon Subrubrum, population in the Mid-Atlantic Region of the United States. Chelonian Conserv. Biol. 11, 121– 124. https://doi.org/10.2744/CCB-0874.1
dc.relation.referencesCorredor-Londoño, G.A., Kattan, G., Galvis-Rizo, C.A., Amorocho, D., 2007. Tortugas del Valle del Cauca. Corporación Autónoma Regional del Valle del Cauca, Cali
dc.relation.referencesCrawford, N.G., Parham, J.F., Sellas, A.B., Faircloth, B.C., Glenn, T.C., Papenfuss, T.J., Henderson, J.B., Hansen, M.H., Simison, W.B., 2015. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257. https://doi.org/10.1016/j.ympev.2014.10.021
dc.relation.referencesD'Apolito, C., Absy, M.L., Latrubesse, E.M. 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quaternary Science Reviews, 76, 140–155. doi:10.1016/j.quascirev.2013.07.013
dc.relation.referencesDavis, M.A., Douglas, M.R., Collyer, M.L., Douglas, M.E., 2016. Deconstructing a species-complex: Geometric morphometric and molecular analyses define species in the Western Rattlesnake (Crotalus viridis). PLoS One 11, 1–21. https://doi.org/10.1371/journal.pone.0146166
dc.relation.referencesDias, R.M., Lima, S.M.Q., Mendes, L.F., Almeida, D.F., Paiva, P.C., Britto, M.R., 2019. Different speciation processes in a cryptobenthic reef fish from the Western Tropical Atlantic. Hydrobiologia 837, 133–147. https://doi.org/10.1007/s10750- 019-3966-z
dc.relation.referencesDutcher, K.E., Vandergast, A.G., Esque, T.C., Mitelberg, A., Matocq, M.D., Heaton, J.S., Nussear, K.E., 2020. Genes in space: what Mojave desert tortoise genetics can tell us about landscape connectivity. Conserv. Genet. 21, 289–303. https://doi.org/10.1007/s10592-020-01251-z
dc.relation.referencesEnnen, J.R., Kalis, M.E., Patterson, A.L., Kreiser, B.R., Lovich, J.E., Godwin, J., Qualls, C.P., 2014. Clinal variation or validation of a subspecies? A case study of the graptemys nigrinoda complex (testudines: Emydidae). Biol. J. Linn. Soc. 111, 810–822. https://doi.org/10.1111/bij.12234
dc.relation.referencesFritz, U., Fattizzo, T., Guicking, D., Tripepi, S., Pennisi, M.G., Lenk, P., Joger, U., Wink, M., 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool. Scr. 34, 351–371. https://doi.org/10.1111/j.1463-6409.2005.00188.x
dc.relation.referencesFritz, U., Gong, S., Auer, M., Kuchling, G., Schneewei, N., Hundsdörfer, A.K., 2010. The world’s economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: Pelodiscus). Org. Divers. Evol. 10, 227–242. https://doi.org/10.1007/s13127-010-0007-1
dc.relation.referencesFritz, U., Guicking, D., Auer, M., Sommer, R.S., Wink, M., Hundsdörfer, A.K., 2008. Diversity of the Southeast Asian leaf turtle genus Cyclemys: How many leaves on its tree of life? Zool. Scr. 37, 367–390. https://doi.org/10.1111/j.1463- 6409.2008.00332.x
dc.relation.referencesFrost, D.R., Rodrigues, M.T., Grant, T., Titus, T.A., 2001. Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): Direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phylogenet. Evol. 21, 352–371. https://doi.org/10.1006/mpev.2001.1015
dc.relation.referencesFujita, M.K., Engstrom, T.N., Starkey, D.E., Shaffer, H.B., 2004. Turtle phylogeny: Insights from a novel nuclear intron. Mol. Phylogenet. Evol. 31, 1031–1040. https://doi.org/10.1016/j.ympev.2003.09.016
dc.relation.referencesGiraldo, F., Garcés-Restrepo, F.M., Carr, J.L., 2012. Kinosternon scorpioides, in: Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (Ed.), Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
dc.relation.referencesHaffer, J. 1969. Speciation in Amazonian Forest Birds. Science, 165(3889), 131– 137. doi:10.1126/science.165.3889.131
dc.relation.referencesHall, T., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser.
dc.relation.referencesHernández Morales, C., Sturaro, M.J., Nunes, P.M.S., Lotzkat, S., Peloso, P.L.V., 2020. A species-level total evidence phylogeny of the microteiid lizard family Alopoglossidae (Squamata: Gymnophthalmoidea). Cladistics 36, 301–321. https://doi.org/10.1111/cla.12407
dc.relation.referencesHillis, D.M., 2019. Species delimitation in herpetology. J. Herpetol. 53, 3–12. https://doi.org/10.1670/18-123
dc.relation.referencesHu, Y., Thapa, A., Fan, H., Ma, T., Wu, Q., Ma, S., Zhang, D., Wang, B., Li, M., Yan, L., Wei, F., 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, 1–11. https://doi.org/10.1126/sciadv.aax5751
dc.relation.referencesIverson, J.B., 1991. Phylogenetic hypotheses for the evolution of modern kinosternine turtles. Herpetol. Monogr. 5, 1–27. https://doi.org/10.2307/1466974
dc.relation.referencesIverson, J.B., 2010. Reproduction in the red-cheeked mud turtle (Kinosternon scorpioides cruentatum) in Southeastern Mexico and Belize, with comparisons across the species range. Chelonian Conserv. Biol. 9, 250–261. https://doi.org/10.2744/CCB-0827.1
dc.relation.referencesIverson, J.B., Brown, R.M., Akre, T.S., Near, T.J., Le, M., Thomson, R.C., Starkey, D.E., 2007. In Search of the Tree of Life for Turtles. Defin. Turt. Divers. Proc. a Work. Genet. Ethics, Taxon. Freshw. Turtles Tortoises 85–106.
dc.relation.referencesIverson, J.B., Le, M., Ingram, C., 2013. Molecular phylogenetics of the mud and musk turtle family Kinosternidae. Mol. Phylogenet. Evol. 69, 929–939. https://doi.org/10.1016/j.ympev.2013.06.011
dc.relation.referencesIverson, J.D., Mata-Silva, V., García, E., Wilson, L.D., 2015. The herpetofauna of Chiapas , Mexico : composition , distribution , and conservation 271–329. Johnson, J.D., 1990. Biogeographic Aspects of the Herpetofauna of the Central Depression of Chiapas, México, with Comments on Surrounding Areas 35, 268– 278
dc.relation.referencesJombart, T., 2015. An introduction to adegenet 2.0.0. R Package.
dc.relation.referencesJuste, J., Ruedi, M., Puechmaille, S.J., Salicini, I., Ibáñez, C., 2018. Two New Cryptic Bat Species within the Myotis nattereri Species Complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. Acta Chiropterologica 20, 285–300. https://doi.org/10.3161/15081109ACC2018.20.2.001
dc.relation.referencesKartavtsev, Y.P., 2011. Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22, 55– 65. https://doi.org/10.3109/19401736.2011.588215
dc.relation.referencesKieswetter, C.M., Schneider, C.J., 2013. Phylogeography in the northern Andes: Complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae). Mol. Phylogenet. Evol. 69, 462–468. https://doi.org/10.1016/j.ympev.2013.08.007
dc.relation.referencesKnaus, B., Winter, D., Paradis, E., Jombart, T., Kamvar, Z.N., Knaus, B., Schliep, K., Alastair, P., Winter, D., 2020. Package ‘ pegas .’
dc.relation.referencesKocher, T.D., Thomas, W.K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F.X., Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S. A. 86, 6196–6200. https://doi.org/10.1073/pnas.86.16.6196
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
dc.relation.referencesLanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/dx.doi.org/10.1093/molbev/msw260
dc.relation.referencesLeaché, A.D., McGuire, J.A., 2006. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644. https://doi.org/10.1016/j.ympev.2005.12.016
dc.relation.referencesLoc-Barragán, J.A., Reyes-Velasco, J., Woolrich-Piña, G.A., Grünwald, C.I., Venegas de Anaya, M., Rangel-Mendoza, J.A., López-Luna, M.A., 2020. A new species of mud turtle of genus kinosternon (Testudines: Kinosternidae) from the pacific coastal plain of northwestern Mexico. Zootaxa 4885, 509–529. https://doi.org/10.11646/zootaxa.4885.4.3
dc.relation.referencesLópez-Luna, M.A., Cupul-Magaña, F.G., Escobedo-Galván, A.H., GonzálezHernández, A.J., Centenero-Alcalá, E., Rangel-Mendoza, J.A., Ramírez-Ramírez, M.M., Cazares-Hernández, E. 2018. A Distinctive New Species of Mud Turtle from Western México. Chelonian Conservation and Biology, 17(1), 2–13. doi:10.2744/CCB-1292.1
dc.relation.referencesLópez-Luna, M.A., Venegas-Anaya, M., Cupul-Magaña, F.G., Rangel-Mendoza, J.A., Escobedo-Galván, A.H. 2021. Mitochondrial DNA data support the recognition of the mud turtle, Kinosternon vogti (Cryptodira: Kinosternidae). Chelonian Conservation and Biology, 20(1), 97-102. https://doi.org/ 10.2744/CCB1387.1
dc.relation.referencesMaddison, W., Knowles, L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30. https://doi.org/10.1080/10635150500354928
dc.relation.referencesMárquez, C., 1995. Historia natural y dimorfismo sexual de la tortuga Kinosternon scorpioides en Palo Verde Costa Rica. Rev. Ecol. Latino-Americana 2, 37–44
dc.relation.referencesMata-Silva, V., DeSantis, D.L., García-Padilla, E., Johnson, J.D., Wilson, L.D., 2019. The endemic herpetofauna of Central America: A casualty of anthropocentrism. Amphib. Reptil. Conserv. 13, 1–64
dc.relation.referencesMcCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., Brumfield, R.T., 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66, 526–538. https://doi.org/10.1016/j.ympev.2011.12.007
dc.relation.referencesMcCranie, J.R. 2018. The Lizards, Crocodiles, and Turtles of Honduras. Systematics, Distribution, and Conservation. Bulletin of the Museum of Comparative Zoology, 1–129. doi:10.3099/0027-4100-15.1.1
dc.relation.referencesMendoza-Henao, A.M., Arias, E., Townsend, J.H., Parra-Olea, G., 2020. Phylogeny-based species delimitation and integrative taxonomic revision of the Hyalinobatrachium fleischmanni species complex, with resurrection of H. viridissimum (Taylor, 1942). Syst. Biodivers. 0, 1–21. https://doi.org/10.1080/14772000.2020.1776781
dc.relation.referencesMorales-Betancourt, M.A., Lasso, C.A., Páez, V.P., Bock, B.C., 2015. Libro rojo de reptiles de Colombia., in: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, p. 247
dc.relation.referencesMorales-Martínez, D.M., Rodríguez-Posada, M.E., Ramírez-Chaves, H.E., 2021. Erratum to: A new cryptic species of yellow-eared bat Vampyressa melissa species complex (Chiroptera: Phyllostomidae) from Colombia. J. Mammal. https://doi.org/10.1093/jmammal/gyab016
dc.relation.referencesMorales-Verdeja, S.A., Vogt, R.C., 1997. Terrestrial movements in relation to aestivation and the annual reproductive cycle of Kinosternon leucostomum. Copeia 1997, 123–130. https://doi.org/10.2307/1447847
dc.relation.referencesMothes, C.C., Howell, H.J., Searcy, C.A., 2020. Habitat suitability models for the imperiled wood turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Glob. Ecol. Conserv. 24, e01247. https://doi.org/10.1016/j.gecco.2020.e01247
dc.relation.referencesNascimento, F.F., Reis, M. Dos, Yang, Z., 2017. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454. https://doi.org/10.1038/s41559-017-0280-x
dc.relation.referencesNguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300
dc.relation.referencesPadial, J.M., De La Riva, I., 2009. Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zool. J. Linn. Soc. 155, 97–122. https://doi.org/10.1111/j.1096-3642.2008.00424.x
dc.relation.referencesPáez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH)
dc.relation.referencesPereira, L.A., Santos, E.M. Dos, Tchaicka, L., De Sousa, A.L., 2019. Population analysis of Kinosternon scorpioides using SSR markers. AIP Conf. Proc. 2186, 1– 5. https://doi.org/10.1063/1.5138059
dc.relation.referencesPérez-Pérez, A., López-Moreno, A.E., Suárez-Rodríguez, O., Rheubert, J.L., Hernández-Gallegos, O., 2017. How far do adult turtles move? Home range and dispersal of Kinosternon integrum. Ecol. Evol. 7, 8220–8231. https://doi.org/10.1002/ece3.3339
dc.relation.referencesPetzold, A., Vargas-Ramírez, M., Kehlmaier, C., Vamberger, M., Branch, W.R., Du Preez, L., Hofmeyr, M.D., Meyer, L., Schleicher, A., Široký, P., Fritz, U., 2014. A revision of African helmeted terrapins (Testudines: Pelomedusidae: Pelomedusa), with descriptions of six new species. Zootaxa 3795, 523–548. https://doi.org/10.11646/zootaxa.3795.5.2
dc.relation.referencesPhillips, J.G., Deitloff, J., Guyer, C., Huetteman, S., Nicholson, K.E., 2015. Biogeography and evolution of a widespread Central American lizard species complex: Norops humilis, (Squamata: Dactyloidae). BMC Evol. Biol. 15, 20–24. https://doi.org/10.1186/s12862-015-0391-4
dc.relation.referencesPine, R.H., Timm, R.M., Weksler, M., 2012. A newly recognized clade of transAndean Oryzomyini (Rodentia: Cricetidae), with description of a new genus. J. Mammal. 93, 851–870. https://doi.org/10.1644/11-MAMM-A-012.1
dc.relation.referencesPraschag, P., Hundsdörfer, A.K., Fritz, U., 2007. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442. https://doi.org/10.1111/j.1463- 6409.2007.00293.x
dc.relation.referencesPritchard, P.C., Trebbau, P., 1984. Turtles of Venezuela. Soc. Study Amphib. Reptil. 403.
dc.relation.referencesQuijada-Mascareñas, J, Ferguson, J.E., Pook, C.E., Salomão M.G., Thorpe, R.S., Wüster, W., 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. 34(8), 1296–1312. https://doi.org/10.1111/j.1365- 2699.2007.01707.x
dc.relation.referencesRambaut, A., 2018. FigTree.
dc.relation.referencesRambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032
dc.relation.referencesRamírez-Guerra, N., 2016. Caracterización filogenética de la tortuga Tapaculo Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) (MSc Thesis). Universidad de Antioquia.
dc.relation.referencesRhodin, A.G.J., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., van Dijk, P.P., 2021. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.). Chelonian Research Foundation & Turtle Conservancy. https://doi.org/10.3854/crm.8.checklist.atlas.v9.2021
dc.relation.referencesRíos, N., Bouza, C., Gutiérrez, V., García, G., 2017. Species complex delimitation and patterns of population structure at different geographic scales in Neotropical silver catfish (Rhamdia: Heptapteridae). Environ. Biol. Fishes 100, 1047–1067. https://doi.org/10.1007/s10641-017-0622-1
dc.relation.referencesRocha-Méndez, A., Sánchez-González, L.A., González, C., Navarro-Sigüenza, A.G., 2019. The geography of evolutionary divergence in the highly endemic avifauna from the Sierra Madre del Sur, Mexico. BMC Evol. Biol. 19, 1–21. https://doi.org/10.1186/s12862-019-1564-3
dc.relation.referencesRocha D.G., Igor K., 2019. What has become of the refugia hypothesis to explain biological diversity in Amazonia?. Ecology and Evolution, 9, 4302-4309. doi:10.1002/ece3.5051
dc.relation.referencesRocha, M.B. da, Molina, F. de B., 1990. Reproductive Biology of Kinosternon scorpioides (Testudines: Kinosternidae) in Captivity. Tortoises & Turtles.
dc.relation.referencesRonquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029
dc.relation.referencesRubinoff, D., Holland, B.S., 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 54, 952–961. https://doi.org/10.1080/10635150500234674
dc.relation.referencesRueda-Almonacid, J. V, Carr, J., Mittermeier, R., Rodríguez-Mahecha, J. V, Mast, R., Vogt, R., Rhodin, A., Velasquez, J., Rueda, J.N., Mittermeier, C., 2007. Las Tortugas y los Cocodrilianos de los Países Andinos del Trópico.
dc.relation.referencesSavage, J.M., 1966. The Origins and History of the Central American Herpetofauna. Copeia 1966, 719. https://doi.org/10.2307/1441404
dc.relation.referencesScott, P.A., Glenn, T.C., Rissler, L.J., 2018. Resolving taxonomic turbulence and uncovering cryptic diversity in the musk turtles (Sternotherus) using robust demographic modeling. Mol. Phylogenet. Evol. 120, 1–15. https://doi.org/10.1016/j.ympev.2017.11.008
dc.relation.referencesSerb, J.M., Phillips, C.A., Iverson, J.B., 2001. Molecular phylogeny and biogeography of Kinosternon flavescens based on complete mitochondrial control region sequences. Mol. Phylogenet. Evol. 18, 149–162. https://doi.org/10.1006/mpev.2000.0858
dc.relation.referencesShaffer, B.H., FitzSimmons, N.N., Georges, A., Rhodin, A.G.J., 2007. Defining Turtle Diversity, Chelonian Research Monographs.
dc.relation.referencesSlavenko, A., Itescu, Y., Ihlow, F., Meiri, S., 2016. Home is where the shell is: Predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114. https://doi.org/10.1111/1365-2656.12446
dc.relation.referencesSpinks, P.Q., Shaffer, H.B., 2007. Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): Mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conserv. Genet. 8, 641–657. https://doi.org/10.1007/s10592-006-9210-1
dc.relation.referencesSpinks, P.Q., Shaffer, H.B., 2009. Conflicting mitochondrial and nuclear phylogenies for the widely disjunct emys (testudines: emydidae) species complex, and what they tell us about biogeography and hybridization. Syst. Biol. 58, 1–20. https://doi.org/10.1093/sysbio/syp005
dc.relation.referencesSpinks, P.Q., Thomson, R.C., Gidiş, M., Bradley Shaffer, H., 2014. Multilocus phylogeny of the New-World mud turtles (Kinosternidae) supports the traditional classification of the group. Mol. Phylogenet. Evol. 76, 254–260. https://doi.org/10.1016/j.ympev.2014.03.025
dc.relation.referencesSpinks, P.Q., Thomson, R.C., Pauly, G.B., Newman, C.E., Mount, G., Shaffer, 63 H.B., 2013. Misleading phylogenetic inferences based on single-exemplar sampling in the turtle genus Pseudemys. Mol. Phylogenet. Evol. 68, 269–281. https://doi.org/10.1016/j.ympev.2013.03.031
dc.relation.referencesSpitzweg, C., Vamberger, M., Ihlow, F., Fritz, U., Hofmeyr, M.D., 2020. How many species of angulate tortoises occur in Southern Africa? (Testudines: Testudinidae: Chersina). Zool. Scr. 49, 412–426. https://doi.org/10.1111/zsc.12418
dc.relation.referencesStafford, P., Meyer, J., 2000. A Guide to the Reptiles pf Belize. The Natural History Musum, London, United Kingdom, and Academic Press, San Diego, California, United States.
dc.relation.referencesSwarth, C.W., 2010. Notes on the Movement and Aquatic Behavior 26, 233–235
dc.relation.referencesTempleton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619– 633. https://doi.org/10.1093/genetics/132.2.619
dc.relation.referencesTorres-Carvajal, O., Lobos, S.E., 2014. A new species of alopoglossus lizard (squamata, gymnophthalmidae) from the tropical andes, with a molecular phylogeny of the genus. Zookeys 120, 105–120. https://doi.org/10.3897/zookeys.410.7401
dc.relation.referencesTúnez, J.I., Cappozzo, H.L.., Pavés, H., Albareda, D.A., Cassini, M.H., 2013. The role of Pleistocene glaciations in shaping the genetic structure of South American fur seals (Arctocephalus australis). New Zealand Journal of Marine and Freshwater Research, 47(2), 139–152. https://doi.org/10.1080/00288330.2012.753463
dc.relation.referencesVargas-Ramírez, M., Caballero, S., Morales-Betancourt, M.A., Lasso, C.A., Amaya, L., Martínez, J.G., das Neves Silva Viana, M., Vogt, R.C., Farias, I.P., Hrbek, T., Campbell, P.D., Fritz, U., 2020. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823
dc.relation.referencesVargas-Ramírez, M., Carr, J.L., Fritz, U., 2013. Complex phylogeography in Rhinoclemmys melanosterna: conflicting mitochondrial and nuclear evidence suggests past hybridization (Testudines: Geoemydidae). Zootaxa 3670, 238. https://doi.org/10.11646/zootaxa.3670.2.8
dc.relation.referencesVargas-Ramírez, M., Maran, J., Fritz, U., 2010. Red- And yellow-footed tortoises, Chelonoidis carbonaria and C. denticulam (Reptilia: Testadines: Testudinidae), in South American savannahs and forests: Do their phylogeographies reflect distinct habitats? Org. Divers. Evol. 10, 161–172. https://doi.org/10.1007/s13127-010- 0016-0
dc.relation.referencesVargas-Ramírez, M., Moreno-Arias, R., 2014. Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the Eastern and Central Cordilleras of Colombia Revealed by DNA Sequence Data. South Am. J. Herpetol. 9, 131–141. https://doi.org/10.2994/SAJH-D-13- 00013.1
dc.relation.referencesVargas-Ramírez, M., Vences, M., Branch, W.R., Daniels, S.R., Glaw, F., Hofmeyr, M.D., Kuchling, G., Maran, J., Papenfuss, T.J., Široký, P., Vieites, D.R., Fritz, U., 2010. Deep genealogical lineages in the widely distributed African helmeted terrapin: Evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa). Mol. Phylogenet. Evol. 56, 428–440. https://doi.org/10.1016/j.ympev.2010.03.019
dc.relation.referencesViana, D.C., Rui, L.A., Santos, A.C. dos, Miglino, M.A., Assis Neto, A.C. de, Araujo, L.P.F., Oliveira, A.S., Sousa, A.L., 2014. Seasonal morphological variation of the vas deferens of scorpion mud turtle (Kinosternon scorpioides). Biota Neotrop. 14. https://doi.org/10.1590/1676-06032014006413
dc.relation.referencesVogt, R.C., Flores-Villela, O., 1992. Effects of Incubation Temperature on Sex Determination in a Community of Neotropical Freshwater Turtles in Southern Mexico. Herpetol. J. 48, 265–270
dc.relation.referencesWeinell, J.L., Bauer, A.M., 2018. Systematics and phylogeography of the widely distributed African skink Trachylepis varia species complex. Mol. Phylogenet. Evol. 120, 103–117. https://doi.org/10.1016/j.ympev.2017.11.014
dc.relation.referencesWill, K.W., Rubinoff, D., 2004. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47– 55. https://doi.org/10.1111/j.1096-0031.2003.00008.x
dc.relation.referencesWitt, C., Brichau, S., Carter, A., 2012. New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry. Tectonics 31, 1–15. https://doi.org/10.1029/2012TC003141
dc.relation.referencesWhinnett, A., Zimmermann, M., Willmott, K. R., Herrera, N., Mallarino, R., Simpson, F., Joron, M., Lamas, G., Mallet, J. 2005. Strikingly variable divergence times inferred across an Amazonian butterfly 'suture zone'. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2525–2533. doi:10.1098/rspb.2005.3247
dc.relation.referencesWong, R.A., Fong, J.J., Papenfuss, T.J., 2010. Phylogeography of the African Helmeted Terrapin, Pelomedusa subrufa: Genetic Structure, Dispersal, and Human Introduction. Proc. Calif. Acad. Sci. Ser. 4, 575–585
dc.relation.referencesZhang, D., Tang, L., Cheng, Y., Hao, Y., Xiong, Y., Song, G., Qu, Y., Rheindt, E., Alström, P., Jia, C., Lei, F., 2019. “ghost Introgression” As a Cause of Deep Mitochondrial Divergence in a Bird Species Complex. Mol. Biol. Evol. 36, 2375– 2386. https://doi.org/10.1093/molbev/msz170
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCARACTERISTICAS DEMOGRAFICAS
dc.subject.lembDemographic characteristics
dc.subject.proposalFilogenética
dc.subject.proposalPhylogenetics
dc.subject.proposalFilogeografía
dc.subject.proposalPhylogeography
dc.subject.proposalTortugas continentales
dc.subject.proposalContinental turtles
dc.subject.proposalmtDNA
dc.subject.proposalmtDNA
dc.subject.proposalnuDNA
dc.subject.proposalnuDNA
dc.subject.proposalComplejo de especies
dc.subject.proposalSpecies complex
dc.subject.proposalEspeciación críptica
dc.subject.proposalCryptic speciation
dc.title.translatedAre Kinosternon scorpioides and Kinosternon leucostomum (Testudines: Kinosternidae) species complexes? Evaluation using mitochondrial and nuclear markers and wide geographic sampling
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito