Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.authorAcelas Mantilla, Edgar Mauricio de Jesús
dc.date.accessioned2022-09-06T13:01:15Z
dc.date.available2022-09-06T13:01:15Z
dc.date.issued2022-08-25
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82253
dc.descriptionilustraciones, graficas
dc.description.abstractThe first chapter revises the most relevant aspects of phenylene vinylene (PV) systems applied to photocatalysis. Despite the photochemical applications of these conjugated systems that have been widely described and involve photodynamic therapy, pollutants degradation, chemical synthesis, and hydrogen production, among others, it should be noted that a major photostability improvement is required to promote future research in this field. Evidence has pointed out that the vinyl segment directly contributes to the degradation of the PV materials, thus limiting its exploration as organic photocatalysts. Notwithstanding, the scientific literature provides some clues regarding strategies such as structural rigidification and the use of electron-withdrawing groups and inorganic supports to attenuate the PV system fragmentation and therefore enhance the materials’ photocatalytic performance. The second chapter describes the synthesis and chemical/optoelectronic characterization of four target OPVs, prepared via Mizoroki-Heck reaction under solvothermal conditions as a strategy to assemble the conjugated framework with E-E configuration in moderate to high yields. These OPV materials displayed absorption features that included the visible region of the electromagnetic spectrum, suggesting their photochemical activity can be achieved under irradiation with wavelength values >400 nm. Moreover, their optoelectronic properties in both solution and solid-state confirm their potential as organic photocatalysts. Additionally, the preparation of amino OPVs was rationally explored. It was found that the reduction of nitro OPVs employing Na2S/pyridine provides a simple and straightforward synthetic tactic to overcome all the solubility issues related to these materials. The third chapter summarizes the photocatalytic behavior towards the degradation of indigo carmine dye (IC) of the four target OPVs when adsorbed on SiO2 and irradiated using a 350-450 nm LED panel. Different spectroscopic techniques and mass spectrometry allowed us to corroborate that tethering electron-withdrawing groups around the conjugated backbone contribute to the OPV systems’ photostability. OPV 1 resulted in the most efficient and photo-resistant material; its photodegradation products were clearly identified and found to directly relate to the chemical reaction of the conjugated framework with different ROS. The IC photodegradation route was also established, simultaneously identifying the dye degradation products, where the participation of OH· radicals could be disregarded. Nevertheless, reusability experiments confirmed a very low degradation percentage (20%) for the third cycle. The fourth chapter provides detail of the synthetic process and characterization of the chemical immobilization of OPV 1 onto SiO2 and TiO2 along with its copolymerization with rigid and flexible spacers as strategies to improve the photostability of the PV system during the heterogeneous photocatalytic degradation of IC. The assessment of the materials as photocatalyst was simultaneously carried out, where TiO2/OPV 1 displayed outstanding IC degradation performance under visible light. It was found that this process is boosted by the charge transfer process from the OPV moiety towards the TiO2 support, the latter responsible for directly interacting with oxygen to generate ROS producing the dye degradation. Additionally, a direct reductive IC decoloration pathway was observed for this material. On the other hand, when SiO2 was employed as support for OPV 1, the IC degradation was inferior compared to all other materials, even under UVA irradiation. Also, the prepared polymers exhibited a greater photocatalytic activity when 350-450 nm LEDs were used. In summary, both photocatalytic activity and stability significantly improved as demonstrated by TiO2/OPV 1 and the polymer with aromatic rigid spacers Pol-1, which preserved a significantly high IC degradation percentage up to the seventh reuse cycle. This thesis comprises the starting point for future research concerning the rational design of PV-based materials with enhanced properties, performance, and stability for their application as photocatalytic systems. Finally, the fifth chapter discloses the obtained results concerning the treatment of a real textile wastewater sample and 17β-estradiol solutions, the hormone released in the poultry process, using TiO2/OPV 1 (under visible light) and Pol-1 (under UV light) as photocatalysts. This, as a remediation strategy for national environmental issues of concern. In general, it was confirmed that the evaluated PV systems serve as preliminary approaches to address the above-mentioned environmental challenges, comprising a pertinent alternative towards the control of aqueous pollutants.
dc.description.abstractEl primer capítulo revisa los aspectos más relevantes del uso de sistemas conjugados tipo fenilen vinileno (FV) en diferentes aplicaciones fotocatalíticas. A pesar de que la actividad fotoquímica de estos sistemas se ha descrito en campos que van desde la terapia fotodinámica en sistemas biológicos, la degradación de contaminantes, la síntesis química y la producción de hidrógeno, es evidente que se requieren mejoras sustanciales en términos de fotoestabilidad que permitan promover futuras investigaciones en este campo, considerando que el fragmento vinílico es el principal responsable de la degradación de estos materiales limitando su exploración como fotocatalizadores. No obstante, existe suficiente evidencia experimental que permite proponer estrategias como el ensamble de estructuras más rígidas, el uso de sustituyentes electroactractores y el uso de soportes inorgánicos para atenuar la fragmentación del sistema FV y, de este modo, mejorar sustancialmente su desempeño en las aplicaciones mencionadas anteriormente. El segundo capítulo describe la síntesis y caracterización química y optoelectrónica de cuatro compuestos oligo (fenilen vinileno) target, preparados a partir de la reacción de Mizoroki-Heck bajo condiciones solvotérmicas como estrategia sintética para el ensamble de la estructura conjugada en configuración E-E con rendimientos de moderados a altos. Se encontró que estos materiales exhiben características de absorción desde la región visible del espectro electromagnético, lo cual sugiere que su actividad fotoquímica puede darse incluso empleando fuentes de irradiación con longitudes de onda >400 nm. Además, sus propiedades optoelectrónicas, tanto en solución como en estado sólido, confirman su potencial como fotocatalizadores orgánicos. Adicionalmente, se exploró la preparación de compuestos amino oligo (fenilen vinileno) a partir de diferentes rutas, encontrándose que la reducción de nitro oligo (fenilen vinilenos) empleando el sistema Na2S/piridina constituye una ruta simple que permite superar los inconvenientes relacionados con la solubilidad de estos materiales. El tercer capítulo muestra el comportamiento fotocatalítico de los cuatro sistemas fenilen vinileno adsorbidos sobre SiO2 frente a la degradación del colorante índigo carmín (IC), empleando como fuente de luz un panel LED de 350-450 nm. Se logró comprobar mediante diferentes técnicas espectroscópicas, así como espectrometría de masas, que los sustituyentes electroatractores contribuyen a la fotoestabilidad de los sistemas. Adicionalmente, fue posible establecer que el sistema OPV 1 es el más eficiente y foto-resistente. Llegando también a identificar claramente sus productos de fotodegradación, los cuales están relacionados principalmente con la reacción del sistema conjugado con diferentes ROS. También, fue posible corroborar la ruta a través de la cual transcurre la degradación del colorante. Simultáneamente se realizó la caracterización de los productos de degradación del índigo carmín, descartándose la participación de radicales OH·. No obstante, experimentos de reusabilidad mostraron una baja capacidad de degradación cercana al 20% para el tercer ciclo. El cuarto capítulo detalla los procesos sintéticos y la caracterización relacionados con el anclaje químico del sistema OPV 1 sobre SiO2 y TiO2 así como su copolimerización con segmentos rígidos y flexibles; estrategias propuestas para la mejora de la estabilidad frente a su uso como fotocatalizadores. Simultáneamente se llevó a cabo su evaluación como fotocatalizadores heterogéneos para la degradación de IC, encontrando que el material TiO2/OPV 1 es capaz de degradar de manera eficiente el IC en tan solo 8 minutos bajo la acción de luz visible. Se determinó que este proceso está facilitado por la transferencia de carga del OPV 1 hacia el TiO2, este último responsable de interactuar con el oxígeno para generar ROS, ocasionando la degradación del colorante. Así mismo, se evidenció reducción directa del IC por el OPV, como ruta de degradación alternativa, exclusiva de este material. Por su parte, cuando se empleó SiO2 como soporte para el OPV 1, la degradación del IC fue baja, inclusive empleando radiación UVA. Por otro lado, los polímeros sintetizados exhibieron una mayor actividad fotocatalítica empleando LEDs de 350-450 nm. En conjunto, la actividad fotocatalítica y la estabilidad mejoraron significativamente, encontrándose que el TiO2/OPV 1 y el polímero con separadores aromáticos rígidos Pol-1, mantienen un elevado porcentaje de degradación del IC hasta el séptimo ciclo de reúso. Lo anterior lleva a que esta tesis se constituya en punto de partida para futuras investigaciones relacionadas con el diseño racional de materiales basados en fenilen vinilenos que puedan presentar mejores propiedades, desempeño y estabilidad para su aplicación como sistemas fotocatalíticos. Finalmente, el quinto capítulo expone los resultados obtenidos en la fotodegradación de colorantes presentes en una muestra real de agua residual textil y de soluciones de 17β-estradiol, hormona excretada en el proceso productivo avícola, empleando como fotocatalizadores los sistemas TiO2/OPV 1 (bajo irradiación con luz visible) y Pol-1 (bajo irradiación con luz UV). Lo anterior como propuesta de remediación a problemáticas de impacto nacional tanto para la industria textil como la industria avícola. En general, se confirma que los sistemas FV evaluados tienen potencial para abordar de manera preliminar estos desafíos ambientales, proyectándose como una alternativa relevante en el control de contaminantes acuosos. (Texto tomado de la fuente)
dc.format.extentxxv, 220 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titlePhotostability enhancement in oligo (phenylene vinylene) systems and their application as heterogeneous photocatalysts
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupGrupo de Investigación en Macromoléculas
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaFotocatalizadores orgánicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesOelgemöller, M.; Jung, C.; Mattay, J. Green Photochemistry: Production of Fine Chemicals with Sunlight. Pure Appl. Chem. 2007, 79, 1939–1947. https://doi.org/10.1351/pac200779111939.
dc.relation.referencesRomero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057.
dc.relation.referencesAmos, S. G. E.; Garreau, M.; Buzzetti, L.; Waser, J. Photocatalysis with Organic Dyes: Facile Access to Reactive Intermediates for Synthesis. Beilstein J. Org. Chem. 2020, 16, 1163–1187. https://doi.org/10.3762/bjoc.16.103.
dc.relation.referencesBlayney, A. J.; Perepichka, I. F.; Wudl, F.; Perepichka, D. F. Advances and Challenges in the Synthesis of Poly(p-Phenylene Vinylene)-Based Polymers. Isr. J. Chem. 2014, 54, 674–688. https://doi.org/10.1002/ijch.201400067.
dc.relation.referencesMuktha, B.; Madras, G.; Guru Row, T. N.; Scherf, U.; Patil, S. Conjugated Polymers for Photocatalysis. J. Phys. Chem. B 2007, 111, 7994–7998. https://doi.org/10.1021/jp071096n.
dc.relation.referencesLi, X.; Yan, H.; Durrant, J. Studies on the Photo-Stability of Poly p-(Phenylene Vinylene). Spectrosc. Spectral Anal. (Beijing, China) 2004, 25, 743–746.
dc.relation.referencesLiras, M.; Barawi, M.; De La Peña O’Shea, V. A. Hybrid Materials Based on Conjugated Polymers and Inorganic Semiconductors as Photocatalysts: From Environmental to Energy Applications. Chem. Soc. Rev. 2019, 48, 5454–5487. https://doi.org/10.1039/c9cs00377k.
dc.relation.referencesYoung, C. A.; Hammack, A.; Lee, H. J.; Jia, H.; Yu, T.; Marquez, M. D.; Jamison, A. C.; Gnade, B. E.; Lee, T. R. Poly(1,4-Phenylene Vinylene) Derivatives with Ether Substituents to Improve Polymer Solubility for Use in Organic Light-Emitting Diode Devices. ACS Omega 2019, 4, 22332–22344. https://doi.org/10.1021/acsomega.9b02396.
dc.relation.referencesDiederich, F.; Martin, R. E. Linear Monodisperse p -Conjugated Oligomers : Angew. Chem. Int. Ed. 1999, 38, 1350–1377. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6.
dc.relation.referencesMikroyannidis, J. A.; Tsagkournos, D. V.; Balraju, P.; Sharma, G. D. Synthesis and Photovoltaic Properties of an Alternating Phenylenevinylene Copolymer with Substituted-Triphenylamine Units along the Backbone for Bulk Heterojunction and Dye-Sensitized Solar Cells. J. Power Sources 2011, 196, 2364–2372. https://doi.org/10.1016/j.jpowsour.2010.09.118.
dc.relation.referencesMüller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-Colour Organic Light-Emitting Displays by Solution Processing. Nature 2003, 421, 829–833. https://doi.org/10.1038/nature01390.
dc.relation.referencesMorgado, J.; Cacialli, F.; Friend, R. H.; Chuah, B. S.; Moratti, S. C.; Holmes, A. B. Luminescence Properties of PPV-Based Copolymers with Crown Ether Substituents. Synth. Met. 2000, 111, 449–452. https://doi.org/10.1016/S0379-6779(99)00397-5.
dc.relation.referencesNg, P. K.; Gong, X.; Chan, S. H.; Lam, L. S.; Chan, W. K. The Role of Ruthenium and Rhenium Diimine Complexes in Conjugated Polymers That Exhibit Interesting Opto-Electronic Properties. Chem. - A Eur. J. 2001, 7, 4358–4367. https://doi.org/10.1002/1521-3765(20011015)7:20<4358::AID-CHEM4358>3.0.CO;2-M.
dc.relation.referencesHsieh, B. R.; Yu, Y.; Vanlaeken, A. C.; Lee, H. General Methodology toward Soluble Poly(p-Phenylenevinylene) Derivatives. Macromolecules 1997, 30, 8094–8095. https://doi.org/10.1021/ma9713771.
dc.relation.referencesYu, C. Y.; Lai, Y. C. Soluble Phenylenevinylene Polymers Containing Tetraphenylethene Units by Ring-Opening Metathesis Polymerization. Macromol. Chem. Phys. 2018, 219, 1–5. https://doi.org/10.1002/macp.201800135.
dc.relation.referencesSierra, C. A.; Lahti, P. M. A Photoluminescent , Segmented Oligo-Polyphenylenevinylene Copolymer with Hydrogen-Bonding Pendant Chains. Chem. Mater. 2004, 16, 55–61. https://doi.org/10.1021/cm034708z.
dc.relation.referencesCarvajal, T. R.; Kuebler, S. M.; Sierra, C. A. Synthesis of Novel Phenylenevinylene Linkers with Electron-Donating Substituents by the Heck Reaction. Synth. Met. 2015, 209, 183–187. https://doi.org/10.1016/j.synthmet.2015.07.024.
dc.relation.referencesDíaz, C.; Alzate, D.; Rodríguez, R.; Ochoa, C.; Sierra, C. A. High Yield and Stereospecific Synthesis of Segmented Poly (p-Phenylene Vinylene) by the Heck Reaction. Synth. Met. 2013, 172, 32–36. https://doi.org/10.1016/j.synthmet.2013.03.023.
dc.relation.referencesCastellanos-García, L. J.; Agudelo, B. C.; Rosales, H. F.; Cely, M.; Ochoa-Puentes, C.; Blanco-Tirado, C.; Sierra, C. A.; Combariza, M. Y. Oligo P-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI. J. Am. Soc. Mass Spectrom. 2017, 28, 2548–2560. https://doi.org/10.1007/s13361-017-1783-z.
dc.relation.referencesMikroyannidis, J. A. Synthesis by the Gilch Method of Blue-Light-Emitting Poly (p-Phenylenevinylene) Derivatives Bearing Highly Phenylated Pendants. Chem. Mater. 2003, 15, 1865–1871. https://doi.org/10.1021/cm0209113.
dc.relation.referencesSon, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Luminescence Enhancement by the Introduction of Disorder into Poly(p-Phenylene Vinylene). Science. 1995, 269, 376–378. https://doi.org/10.1126/science.269.5222.376.
dc.relation.referencesLowet, F.; Vanderzande, D.; Gelan, J.; Mullens, J. A New Synthetic Route to a Soluble High Molecular Weight Precursor for Poly(p-Phenylenevinylene) Derivatives. Macromolecules 1995, 28, 1330–1331. https://doi.org/10.1021/ma00108a079.
dc.relation.referencesNomura, K. Well-Defined End-Functionalized Conjugated Polymers/Oligomers Exhibiting Unique Emission Properties through the End Groups: The Exclusive Synthesis by Combined Olefin Metathesis with Wittig-Type Coupling. Macromol. Mater. Eng. 2019, 304, 1900307. https://doi.org/10.1002/mame.201900307.
dc.relation.referencesKim, K.; Ahn, T. Synthesis and Light-Emitting Properties of a Carbazole-Containing Hyperbranched Conjugated Poly(Phenylene Vinylene). Mol. Cryst. Liq. Cryst. 2020, 705, 112–119. https://doi.org/10.1080/15421406.2020.1743427.
dc.relation.referencesLiu, Z.; Yuan, Y.; Wen, X.; Zhang, J.; Lei, G.; Zhang, P. Synthesis, Characterization, Photoluminescent, and Electroluminescent Properties of Poly(Biphenylenevinylene-Alt-Methoxyoctyloxyphenylenevinylene). Polym. Bull. 2013, 70, 1221–1235. https://doi.org/10.1007/s00289-012-0843-6.
dc.relation.referencesPfeiffer, S.; Hörhold, H. H. Synthesis of Soluble MEH-PPV and MEH-PPB by Horner Condensation Polymerization. Synth. Met. 1999, 101, 109–110. https://doi.org/10.1016/S0379-6779(98)01279-X.
dc.relation.referencesLehmann, M.; Maier, P. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens. Angew. Chemie - Int. Ed. 2015, 54, 9710–9714. https://doi.org/10.1002/anie.201501988.
dc.relation.referencesRotas, G.; Stranius, K.; Tkachenko, N.; Tagmatarchis, N. Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene–Azafullerene Systems. Adv. Funct. Mater. 2018, 28, 1702278. https://doi.org/10.1002/adfm.201702278.
dc.relation.referencesSierra, A. F.; Rodríguez, R.; Sierra, C. A. Synthesis of a Stereoselective Nitro Phenylenevinylene Derivative by the Heck Reaction Using Phosphites. Rev. Colomb. Quim. 2010, 39, 163–171.
dc.relation.referencesLiang, F.; Pu, Y. J.; Kurata, T.; Kido, J.; Nishide, H. Synthesis and Electroluminescent Property of Poly(p-Phenylenevinylene)s Bearing Triarylamine Pendants. Polymer (Guildf). 2005, 46, 3767–3775. https://doi.org/10.1016/j.polymer.2005.03.036.
dc.relation.referencesZhang, W.; Zhu, L.; Qin, J.; Yang, C. Novel Water-Soluble Red-Emitting Poly(p -Phenylenevinylene) Derivative: Synthesis, Characterization, and Fluorescent Acetylcholinesterase Assays. J. Phys. Chem. B 2011, 115, 12059–12064. https://doi.org/10.1021/jp206930v.
dc.relation.referencesRamírez-Pradilla, J. S.; Blanco-Tirado, C.; Combariza, M. Y. Electron-Transfer Ionization of Nanoparticles, Polymers, Porphyrins, and Fullerenes Using Synthetically Tunable α-Cyanophenylenevinylenes as UV MALDI-MS Matrices. ACS Appl. Mater. Interfaces 2019, 11, 10975–10987. https://doi.org/10.1021/acsami.8b22246.
dc.relation.referencesPasco, S. T.; Lahti, P. M.; Karasz, F. E. Synthesis of Substituted Poly( p -Phenylenevinylene) Copolymers by the Heck Method for Luminescence Studies . Macromolecules 1999, 32, 6933–6937. https://doi.org/10.1021/ma990825x.
dc.relation.referencesFlores-Rojas, G. G.; Lijanova, I. V.; Morales-Saavedra, O. G.; Sanchez-Montes, K.; Martínez-García, M. Synthesis and NLO Behavior of Oligo(Phenylenevinylene)-Porphyrin Dendrimers. Dye. Pigm. 2013, 96, 125–129. https://doi.org/10.1016/j.dyepig.2012.07.011.
dc.relation.referencesFlores-Noria, R.; Vázquez, R.; Arias, E.; Moggio, I.; Rodríguez, M.; Ziolo, R. F.; Rodríguez, O.; Evans, D. R.; Liebig, C. Synthesis and Optoelectronic Properties of Phenylenevinylenequinoline Macromolecules. New J. Chem. 2014, 38, 974–984. https://doi.org/10.1039/c3nj01193c.
dc.relation.referencesNojima, M.; Ohta, Y.; Yokozawa, T. Investigation of Catalyst-Transfer Condensation Polymerization for Synthesis of Poly(p-Phenylenevinylene). J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2643–2653. https://doi.org/10.1002/pola.27281.
dc.relation.referencesBabudri, F.; Cardone, A.; Chiavarone, L.; Ciccarella, G.; Farinola, G. M.; Naso, F.; Scamarcio, G. Synthesis and Characterization of Poly(2,3,5,6-Tetrafluoro-1,4-Phenylenevinylene). Chem. Commun. 2001, 1940–1941. https://doi.org/10.1039/b105029j.
dc.relation.referencesSharma, A.; Sharma, N.; Kumar, R.; Shard, A.; Sinha, A. K. Direct Olefination of Benzaldehydes into Hydroxy Functionalized Oligo (p-Phenylenevinylene)s via Pd-Catalyzed Heterodomino Knoevenagel- Decarboxylation-Heck Sequence and Its Application for Fluoride Sensing π-Conjugated Units. Chem. Commun. 2010, 46, 3283–3285. https://doi.org/10.1039/c001980a.
dc.relation.referencesAllolio, C.; Strassner, T. Palladium Complexes with Chelating Bis-NHC Ligands in the Mizoroki-Heck Reaction-Mechanism and Electronic Effects, a DFT Study. J. Org. Chem. 2014, 79, 12096–12105. https://doi.org/10.1021/jo501897s.
dc.relation.referencesCárdenas, J. C.; Fadini, L.; Sierra, C. A. Triphenylphosphite and Ionic Liquids: Positive Effects in the Heck Cross-Coupling Reaction. Tetrahedron Lett. 2010, 51, 6867–6870. https://doi.org/10.1016/j.tetlet.2010.10.104.
dc.relation.referencesCárdenas, J. C.; Ochoa-Puentes, C.; Gutiérrez-Puebla, E.; Sierra, C. A. Synthesis, Crystal Structure Determination and Photoluminescence Properties of a Pure anti trans-trans Phenylenevinylene Derivative. Synth. Met. 2016, 215, 194–199. https://doi.org/10.1016/j.synthmet.2016.02.021.
dc.relation.referencesEstrada, S. E.; Ochoa-Puentes, C.; Sierra, C. A. Phenylenevinylene Oligomers by Mizoroki-Heck Cross Coupling Reaction. Structural and Optoelectronic Characterization. J. Mol. Struct. 2017, 1133, 448–457. https://doi.org/10.1016/j.molstruc.2016.12.032.
dc.relation.referencesBaptista, M. S.; Cadet, J.; Di Mascio, P.; Ghogare, A. A.; Greer, A.; Hamblin, M. R.; Lorente, C.; Nunez, S. C.; Ribeiro, M. S.; Thomas, A. H.; Vignoni, M.; Yoshimura, T. M. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. https://doi.org/10.1111/php.12716.
dc.relation.referencesNeville, S. P.; Kirkby, O. M.; Kaltsoyannis, N.; Worth, G. A.; Fielding, H. H. Identification of a New Electron-Transfer Relaxation Pathway in Photoexcited Pyrrole Dimers. Nat. Commun. 2016, 7, 11357. https://doi.org/10.1038/ncomms11357.
dc.relation.referencesEl-Khouly, M. E.; Ito, O.; Smith, P. M.; D’Souza, F. Intermolecular and Supramolecular Photoinduced Electron Transfer Processes of Fullerene-Porphyrin/Phthalocyanine Systems. J. Photochem. Photobiol. C Photochem. Rev. 2004, 5, 79–104. https://doi.org/10.1016/j.jphotochemrev.2004.01.003.
dc.relation.referencesMarin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda, M. A. Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chem. Rev. 2012, 112, 1710–1750. https://doi.org/10.1021/cr2000543.
dc.relation.referencesYan, M.; Rothberg, L. J.; Papadimitrakopoulos, F.; Galvin, M. E.; Miller, T. M. Defect Quenching of Conjugated Polymer Luminescence. Phys. Rev. Lett. 1994, 73, 744–747. https://doi.org/10.1103/PhysRevLett.73.744.
dc.relation.referencesPapadimitrakopoulos, F.; Yan, M.; Rothberg, L. J.; Katz, H. E.; Chandross, E. A.; Galvin, M. E. Thermal and Photochemical Origin of Carbonyl Group Defects in Poly-(p-Phenylenevinylene). Mol. Cryst. Liq. Cryst. 1994, 256, 663–669.
dc.relation.referencesScurlock, R. D.; Wang, B.; Ogilby, P. R.; Sheats, J. R.; Clough, R. L. Singlet Oxygen as a Reactive Intermediate in the Photodegradation of an Electroluminescent Polymer. J. Am. Chem. Soc. 1995, 117, 10194–10202. https://doi.org/10.1021/ja00146a004.
dc.relation.referencesCumpston, B. H.; Jensen, K. F. Photo-Oxidation of Polymers Used in Electroluminescent Devices. Synth. Met. 1995, 73, 195–199. https://doi.org/10.1016/0379-6779(95)80015-8.
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M.; Lutsen, L. Aging of a Donor Conjugated Polymer: Photochemical Studies of the Degradation of Poly[2-Methoxy-5- (30,70-Dimethyloctyloxy)-1,4-Phenylenevinylene]. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 317–331. https://doi.org/10.1002/pola.21815
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Reactive Intermediates in the Initiation Step of the Photo-Oxidation of MDMO-PPV. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6044–6052. https://doi.org/10.1002/pola.23628
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Photo- and Thermo-Oxidation of Poly(p-Phenylene-Vinylene) and Phenylene-Vinylene Oligomer. Polym. Degrad. Stab. 2011, 96, 1149–1158. https://doi.org/10.1016/j.polymdegradstab.2011.02.002.
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Photo- and Thermal Degradation of MDMO-PPV:PCBM Blends. Sol. Energy Mater. Sol. Cells 2007, 91, 394–398. https://doi.org/10.1016/j.solmat.2006.10.015.
dc.relation.referencesFerreira, G. R.; Nowacki, B.; Magalhães, A.; DeAzevedo, E. R.; De Sá, E. L.; Akcelrud, L. C.; Bianchi, R. F. Controlling Photo-Oxidation Processes of a Polyfluorene Derivative: The Effect of Additives and Mechanism. Mater. Chem. Phys. 2014, 146, 212–217. https://doi.org/10.1016/j.matchemphys.2014.02.037.
dc.relation.referencesChambon, S.; Manceau, M.; Firon, M.; Cros, S.; Rivaton, A.; Gardette, J. L. Photo-Oxidation in an 18O2 Atmosphere: A Powerful Tool to Elucidate the Mechanism of UV-Visible Light Oxidation of Polymers - Application to the Photodegradation of MDMO-PPV. Polymer (Guildf). 2008, 49, 3288–3294. https://doi.org/10.1016/j.polymer.2008.04.001.
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Durability of MDMO-PPV and MDMO-PPV: PCBM Blends under Illumination in the Absence of Oxygen. Sol. Energy Mater. Sol. Cells 2008, 92, 785–792. https://doi.org/10.1016/j.solmat.2007.12.003.
dc.relation.referencesDu, J.; Xie, N.; Wang, X.; Sun, L.; Zhao, Y.; Wu, F. Optical Limiting Effects of Cyano Substituted Distyrylbenzene Derivatives. Dye. Pigment. 2016, 134, 368–374. https://doi.org/10.1016/j.dyepig.2016.07.035.
dc.relation.referencesCumpston, B. H.; Jensen, K. F. Photooxidative Stability of Substituted Poly(Phenylene Vinylene) (PPV) and Poly(Phenylene Acetylene) (PPA). J. Appl. Polym. Sci. 1998, 69, 2451–2458. https://doi.org/10.1002/(sici)1097-4628(19980919)69:12<2451::aid-app16>3.0.co;2-%23.
dc.relation.referencesSantos, F. S. dos; Bertuzzi, D. L.; Pedroso, A. V.; Voinarovicz, M. A.; Klider, K. C. C. W. do. S.; Péres, L. O.; Garcia, J. R. Evaluation of the Photocurrent Value for Poly(2,5-Dicyano- p -Phenylene-Vinylene)-Co-(p-Phenylene-Vinylene) (DCN-PPV/PPV). J. Solid State Electrochem. 2016, 20, 2551–2557. https://doi.org/10.1007/s10008-016-3217-4.
dc.relation.referencesKoch, A. T. H.; Harrison, N. T.; Haylett, N.; Daik, R.; Feast, W. J.; Friend, R. H. Enhanced Photostability of Poly(1,3-Phenylene Diphenylvinylene)-Derivatives by Diphenyl-Substitution. Synth. Met. 1999, 100, 113–122. https://doi.org/10.1016/S0379-6779(98)00166-0.
dc.relation.referencesLi, R.; Mo, Y.; Shi, R.; Li, P.; Li, C.; Wang, Z.; Wang, X.; Li, S. Synthesis and Properties of Poly(p-Phenylene Vinylene) Derivatives with Hyperbranched Structure and Containing a Nitro Substituent. Monatshefte fur Chemie 2014, 145, 85–90. https://doi.org/10.1007/s00706-013-1051-2.
dc.relation.referencesSong, S.; Park, S. H.; Jung, J.; Kim, I.; Lee, K.; Jin, Y.; Suh, H. Increasing of Stability Depended on the Position of Alkoxy Group in PPV. Synth. Met. 2011, 161, 1186–1193. https://doi.org/10.1016/j.synthmet.2011.03.032.
dc.relation.referencesRimmele, M.; Ableidinger, K.; Marsh, A. V.; Cheetham, N. J.; Taublaender, M. J.; Buchner, A.; Prinz, J.; Fröhlich, J.; Unterlass, M. M.; Heeney, M.; Glöcklhofer, F. Thioalkyl- and Sulfone-Substituted Poly(p-Phenylene Vinylene)S. Polym. Chem. 2019, 10, 738–750. https://doi.org/10.1039/c8py01717d.
dc.relation.referencesLux, A.; Holmes, A. B.; Cervini, R.; Davies, J. E.; Moratti, S. C.; Grüner, J.; Cacialli, F.; Friend, R. H. New CF3-Substituted PPV-Type Oligomers and Polymers for Use as Hole Blocking Layers in LEDs. Synth. Met. 1997, 84, 293–294. https://doi.org/10.1016/s0379-6779(97)80757-6.
dc.relation.referencesKim, Y.; Swager, T. M. Ultra-Photostable n-Type PPVs. Chem. Commun. 2005, 372–374. https://doi.org/10.1039/b412948b.
dc.relation.referencesTsuji, H.; Nakamura, E. Carbon-Bridged Oligo(Phenylene Vinylene)s: A de Novo Designed, Flat, Rigid, and Stable π-Conjugated System. Acc. Chem. Res. 2019, 52, 2939–2949. https://doi.org/10.1021/acs.accounts.9b00369.
dc.relation.referencesMorales-Vidal, M.; Boj, P. G.; Villalvilla, J. M.; Quintana, J. A.; Yan, Q.; Lin, N. T.; Zhu, X.; Ruangsupapichat, N.; Casado, J.; Tsuji, H.; Nakamura, E.; Diáz-Garciá, M. A. Carbon-Bridged Oligo(p-Phenylenevinylene)s for Photostable and Broadly Tunable, Solution-Processable Thin Film Organic Lasers. Nat. Commun. 2015, 6, 1–8. https://doi.org/10.1038/ncomms9458.
dc.relation.referencesSong, S.; Jin, Y.; Kim, S. H.; Moon, J.; Kim, K.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Stabilized Polymers with Novel Indenoindene Backbone against Photodegradation for LEDs and Solar Cells. Macromolecules 2008, 41, 7296–7305. https://doi.org/10.1021/ma801420e.
dc.relation.referencesWakabayashi, J.; Gon, M.; Tanaka, K.; Chujo, Y. Near-Infrared Absorptive and Emissive Poly(p-Phenylene Vinylene) Derivative Containing Azobenzene-Boron Complexes. Macromolecules 2020, 53, 4524–4532. https://doi.org/10.1021/acs.macromol.0c00745.
dc.relation.referencesNeugebauer, H.; Brabec, C.; Hummelen, J. C.; Sariciftci, N. S. Stability and Photodegradation Mechanisms of Conjugated Polymer/Fullerene Plastic Solar Cells. Sol. Energy Mater. Sol. Cells 2000, 61, 35–42. https://doi.org/10.1016/S0927-0248(99)00094-X.
dc.relation.referencesNothaft, M.; Höhla, S.; Jelezko, F.; Pflaum, J.; Wrachtrup, J. The Role of Oxygen-Induced Processes on the Emission Characteristics of Single Molecule Emitters. Phys. Status Solidi Basic Res. 2012, 249, 661–665. https://doi.org/10.1002/pssb.201100794.
dc.relation.referencesOzimova, A. E.; Bruevich, V. V.; Dittrich, T.; Paraschuk, D. Y. Enhanced Photostability and Red-NIR Photosensitivity of Conjugated Polymer Charge-Transfer Complexes. Macromol. Symp. 2010, 296, 138–143. https://doi.org/10.1002/masy.201051021.
dc.relation.referencesGonçalves, V. C.; Carvalho, A. J.; Balogh, D. T. Polymeric Coatings for Photostability Enhancement of Poly(p-Phenylene Vinylene). Derivative Films. Polym. Int. 2010, 59, 637–641. https://doi.org/10.1002/pi.2741.
dc.relation.referencesGonçalves, V. C.; Olivati, C. A.; Carvalho, A. J. F.; Balogh, D. T. Effect of a Polymeric Protective Coating on Optical and Electrical Properties of Poly(p -Phenylene Vinylene) Derivatives. J. Nanomater. 2013, 160464. https://doi.org/10.1155/2013/160464.
dc.relation.referencesLe Rendu, P.; Nguyen, T. P.; Carrois, L. Cellulose Acetate and PVDC Used as Protective Layers for Organic Diodes. Synth. Met. 2003, 138, 285–288. https://doi.org/10.1016/S0379-6779(02)01294-8.
dc.relation.referencesGedelian, C. A.; Ou, Y.; Li, H.; Lu, T. M. Use of Ultra-Thin Aluminum Oxide Layer to Reduce Photoluminescence Decay in Poly(p-Phenylene Vinylene) Films. Thin Solid Films 2010, 518, 4367–4369. https://doi.org/10.1016/j.tsf.2010.01.031.
dc.relation.referencesLee, H. C.; Lee, T. W.; Lim, Y. T.; Park, O. O. Improved Environmental Stability in Poly(p-Phenylene Vinylene)/Layered Silicate Nanocomposite. Appl. Clay Sci. 2002, 21, 287–293. https://doi.org/10.1016/S0169-1317(02)00090-X.
dc.relation.referencesJing, C.; Chen, L.; Shi, Y.; Jin, X. Synthesis and Characterization of Exfoliated MEH-PPV/Clay Nanocomposites by in Situ Polymerization. Eur. Polym. J. 2005, 41, 2388–2394. https://doi.org/10.1016/j.eurpolymj.2005.05.007.
dc.relation.referencesSaramas, D.; Martin, D. C.; Magaraphan, R. Optical Films Based on Poly(p-Phenylene Vinylene) (PPV) and Its Nanocomposites. Rev. Adv. Mater. Sci. 2003, 5, 199–204.
dc.relation.referencesYang, S. H.; Nguyen, T. P.; Le Rendu, P.; Hsu, C. S. Optical and Electrical Investigations of Poly(p-Phenylene Vinylene)/ Silicon Oxide and Poly(p-Phenylene Vinylene)/Titanium Oxide Nanocomposites. Thin Solid Films 2005, 471, 230–235. https://doi.org/10.1016/j.tsf.2004.05.130.
dc.relation.referencesYang, S. H.; Le Rendu, P.; Nguyen, T. P.; Hsu, C. S. Fabrication of MEH-PPV/SiO2 and MEH-PPV/TiO2 Nanocomposites with Enhanced Luminescent Stabilities. Rev. Adv. Mater. Sci. 2007, 15, 144–149.
dc.relation.referencesŠvrček, V.; Fujiwara, H.; Kondo, M. Improved Transport and Photostability of Poly(Methoxy-Ethylexyloxy- Phenylenevinilene) Polymer Thin Films by Boron Doped Freestanding Silicon Nanocrystals. Appl. Phys. Lett. 2008, 92, 143301. https://doi.org/10.1063/1.2905269.
dc.relation.referencesZhang, J.; Wang, B. J.; Ju, X.; Liu, T.; Hu, T. D. New Observations on the Optical Properties of PPV/TiO2 Nanocomposites. Polymer. 2001, 42, 3697–3702. https://doi.org/10.1016/S0032-3861(00)00703-5.
dc.relation.referencesVu, T. T. D.; Mighri, F.; Do, T. O.; Ajji, A. Synthesis of Capped TiO2 Nanocrystals of Controlled Shape and Their Use with MEH-PPV to Develop Nanocomposite Films for Photovoltaic Applications. J. Nanosci. Nanotechnol. 2012, 12, 2815–2824. https://doi.org/10.1166/jnn.2012.5792.
dc.relation.referencesYang, B. D.; Yoon, K. H.; Chung, K. W. Effect of TiO2 and SiO2 Nanoparticles on the Stability of Poly(p-Phenylene Vinylene) Precursor. Synth. Met. 2004, 143, 25–29. https://doi.org/10.1016/j.synthmet.2003.10.006.
dc.relation.referencesVan der Zanden, B.; Goossens, A. Oxygen Doping of TiO2/Poly(Phenylene-Vinylene) Bilayer Solar Cells. J. Appl. Phys. 2003, 94, 6959–6965. https://doi.org/10.1063/1.1621054.
dc.relation.referencesNielsen, C. B.; Arnbjerg, J.; Johnsen, M.; Joørgensen, M.; Ogilby, P. R. Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production. J. Org. Chem. 2009, 74, 9094–9104. https://doi.org/10.1021/jo9020216.
dc.relation.referencesPoulsen, T. D.; Frederiksen, P. K.; Jørgensen, M.; Mikkelsen, K. V.; Ogilby, P. R. Two-Photon Singlet Oxygen Sensitizers: Quantifying, Modeling, and Optimizing the Two-Photon Absorption Cross Section. J. Phys. Chem. A 2001, 105, 11488–11495. https://doi.org/10.1021/jp011974w.
dc.relation.referencesFrederiksen, P. K.; Jørgensen, M.; Ogilby, P. R. Two-Photon Photosensitized Production of Singlet Oxygen. J. Am. Chem. Soc. 2001, 123, 1215–1221. https://doi.org/10.1021/ja003468a.
dc.relation.referencesFrederiksen, P. K.; McIlroy, S. P.; Nielsen, C. B.; Nikolajsen, L.; Skovsen, E.; Jørgensen, M.; Mikkelsen, K. V.; Ogilby, P. R. Two-Photon Photosensitized Production of Singlet Oxygen in Water. J. Org. Chem. 2005, 127, 255–269. https://doi.org/10.1021/jo0482099.
dc.relation.referencesNielsen, C. B.; Johnsen, M.; Arnbjerg, J.; Pittelkow, M.; McIlroy, S. P.; Ogilby, P. R.; Jørgensen, M. Synthesis and Characterization of Water-Soluble Phenylene-Vinylene-Based Singlet Oxygen Sensitizers for Two-Photon Excitation. J. Org. Chem. 2005, 70 (18), 7065–7079. https://doi.org/10.1021/jo050507y.
dc.relation.referencesDubinina, G. G.; Price, R. S.; Abboud, K. A.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Drobizhev, M.; Rebane, A.; Schanze, K. S. Phenylene Vinylene Platinum(II) Acetylides with Prodigious Two-Photon Absorption. J. Am. Chem. Soc. 2012, 134, 19346–19349. https://doi.org/10.1021/ja309393c.
dc.relation.referencesDubinina, G. G.; Price, R. S.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Drobizhev, M.; Rebane, A.; Schanze, K. S. Modified p -Phenylene Vinylene Platinum (II) Acetylides with Enhanced Two-Photon Absorption in Solid Host . Org. Photonic Mater. Devices XV 2013, 8622, 86220I. https://doi.org/10.1117/12.2004180.
dc.relation.referencesWu, W. High-Performance Conjugated Polymer Photosensitizers. Chem 2018, 4, 1762–1764. https://doi.org/10.1016/j.chempr.2018.07.017.
dc.relation.referencesWu, W.; Mao, D.; Xu, S.; Kenry; Hu, F.; Li, X.; Kong, D.; Liu, B. Polymerization-Enhanced Photosensitization. Chem 2018, 4, 1937–1951. https://doi.org/10.1016/j.chempr.2018.06.003.
dc.relation.referencesWang, B.; Yuan, H.; Liu, Z.; Nie, C.; Liu, L.; Lv, F.; Wang, Y.; Wang, S. Cationic Oligo(p-Phenylene Vinylene) Materials for Combating Drug Resistance of Cancer Cells by Light Manipulation. Adv. Mater. 2014, 26, 5986–5990. https://doi.org/10.1002/adma.201402183.
dc.relation.referencesChen, Y.; Zhou, L.; Wang, J.; Liu, X.; Lu, H.; Liu, L.; Lv, F.; Wang, S. Photoactive Oligo(p-Phenylenevinylene) Functionalized with Phospholipid Units for Control and Visualization of Delivery into Living Cells. ACS Appl. Mater. Interfaces 2018, 10, 27555–27561. https://doi.org/10.1021/acsami.8b07847.
dc.relation.referencesLiu, Y.; Tian, L.; Li, Y.; Chen, Y.; Chen, Y.; Liu, L.; Wang, S. Photoactive Oligo(p-Phenylene Vinylene) Material for Functional Regulation of Induced Pluripotent Stem Cells. ACS Appl. Mater. Interfaces 2020, 12, 3438–3444. https://doi.org/10.1021/acsami.9b19331.
dc.relation.referencesLi, S.; Yuan, H.; Chen, H.; Wang, X.; Zhang, P.; Lv, F.; Liu, L.; Wang, S. Cationic Poly(p-Phenylene Vinylene) Materials as a Multifunctional Platform for Light-Enhanced SiRNA Delivery. Chem. - An Asian J. 2016, 11, 2686–2689. https://doi.org/10.1002/asia.201600447.
dc.relation.referencesZhu, C.; Yang, Q.; Liu, L.; Lv, F.; Li, S.; Yang, G.; Wang, S. Multifunctional Cationic Poly(p-Phenylene Vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria over Mammalian Cells. Adv. Mater. 2011, 23, 4805–4810. https://doi.org/10.1002/adma.201102850.
dc.relation.referencesYuan, H.; Chong, H.; Wang, B.; Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Chemical Molecule-Induced Light-Activated System for Anticancer and Antifungal Activities. J. Am. Chem. Soc. 2012, 134, 13184–13187. https://doi.org/10.1021/ja304986t.
dc.relation.referencesGuo, J.; Xing, C.; Yuan, H.; Chai, R.; Zhan, Y. Oligo (p-Phenylene Vinylene)/Polyisocyanopeptide Biomimetic Composite Hydrogel-Based Three-Dimensional Cell Culture System for Anticancer and Antibacterial Therapeutics. ACS Appl. Bio Mater. 2019, 2, 2520–2527. https://doi.org/10.1021/acsabm.9b00217.
dc.relation.referencesLiu, S.; Yuan, H.; Bai, H.; Zhang, P.; Lv, F.; Liu, L.; Dai, Z.; Bao, J.; Wang, S. Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. J. Am. Chem. Soc. 2018, 140, 2284–2291. https://doi.org/10.1021/jacs.7b12140.
dc.relation.referencesJiang, L.; Bai, H.; Liu, L.; Lv, F.; Ren, X.; Wang, S. Luminescent, Oxygen-Supplying, Hemoglobin-Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew. Chemie - Int. Ed. 2019, 58, 10660–10665. https://doi.org/10.1002/anie.201905884.
dc.relation.referencesGuiglion, P.; Butchosa, C.; Zwijnenburg, M. A. Polymer Photocatalysts for Water Splitting: Insights from Computational Modeling. Macromol. Chem. Phys. 2016, 217, 344–353. https://doi.org/10.1002/macp.201500432.
dc.relation.referencesMansha, M.; Khan, I.; Ullah, N.; Qurashi, A. Synthesis, Characterization and Visible-Light-Driven Photoelectrochemical Hydrogen Evolution Reaction of Carbazole-Containing Conjugated Polymers. Int. J. Hydrogen Energy 2017, 42, 10952–10961. https://doi.org/10.1016/j.ijhydene.2017.02.053.
dc.relation.referencesLanzarini, E.; Antognazza, M. R.; Biso, M.; Ansaldo, A.; Laudato, L.; Bruno, P.; Metrangolo, P.; Resnati, G.; Ricci, D.; Lanzani, G. Polymer-Based Photocatalytic Hydrogen Generation. J. Phys. Chem. C 2012, 116, 10944–10949. https://doi.org/10.1021/jp212107f.
dc.relation.referencesBi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Two-Dimensional Semiconducting Covalent Organic Frameworks via Condensation at Arylmethyl Carbon Atoms. Nat. Commun. 2019, 10, 2467. https://doi.org/10.1038/s41467-019-10504-6.
dc.relation.referencesJin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. 2D Sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. Chem 2019, 5, 1632–1647. https://doi.org/10.1016/j.chempr.2019.04.015.
dc.relation.referencesWang, Z. J.; Li, R.; Landfester, K.; Zhang, K. A. I. Porous Conjugated Polymer via Metal-Free Synthesis for Visible Light-Promoted Oxidative Hydroxylation of Arylboronic Acids. Polymer. 2017, 126, 291–295. https://doi.org/10.1016/j.polymer.2017.04.052.
dc.relation.referencesOppelt, K. T.; Gasiorowski, J.; Egbe, D. A. M.; Kollender, J. P.; Himmelsbach, M.; Hassel, A. W.; Sariciftci, N. S.; Knör, G. Rhodium-Coordinated Poly(Arylene-Ethynylene)- alt -Poly(Arylene-Vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD+/NADH Reduction. J. Am. Chem. Soc. 2014, 136, 12721–12729. https://doi.org/10.1021/ja506060u.
dc.relation.referencesSoo, H. Sen; Agiral, A.; Bachmeier, A.; Frei, H. Visible Light-Induced Hole Injection into Rectifying Molecular Wires Anchored on Co3O4 and SiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 17104–17116. https://doi.org/10.1021/ja306162g.
dc.relation.referencesKatsoukis, G.; Frei, H. Heterobinuclear Light Absorber Coupled to Molecular Wire for Charge Transport across Ultrathin Silica Membrane for Artificial Photosynthesis. ACS Appl. Mater. Interfaces 2018, 10, 31422–31432. https://doi.org/10.1021/acsami.8b11684.
dc.relation.referencesEdri, E.; Frei, H. Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer. J. Phys. Chem. C 2015, 119, 28326–28334. https://doi.org/10.1021/acs.jpcc.5b09994.
dc.relation.referencesKatsoukis, G.; Jo, W. J.; Frei, H. Structure and Orientation of Molecular Wires Embedded in Ultrathin Silica Membrane for Artificial Photosynthesis Elucidated by Polarized FT-IRRAS. J. Phys. Chem. C 2019, 123, 18905–18913. https://doi.org/10.1021/acs.jpcc.9b02523.
dc.relation.referencesErdur, S.; Yilmaz, G.; Goen Colak, D.; Cianga, I.; Yagci, Y. Poly(Phenylenevinylene)s as Sensitizers for Visible Light Induced Cationic Polymerization. Macromolecules 2014, 47, 7296–7302. https://doi.org/10.1021/ma5019457.
dc.relation.referencesChang, D. W.; Dai, L. Photo-Induced Formation and Self-Assembling of Gold Nanoparticles in Aqueous Solution of Amphiphilic Dendrimers with Oligo(p-Phenylene Vinylene) Core Branches and Oligo(Ethylene Oxide) Terminal Chains. Nanotechnology 2007, 18, 365605. https://doi.org/10.1088/0957-4484/18/36/365605.
dc.relation.referencesGhosh, S.; Kouamé, N. A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P. H.; Remita, H. Conducting Polymer Nanostructures for Photocatalysis under Visible Light. Nat. Mater. 2015, 14, 505–511. https://doi.org/10.1038/nmat4220.
dc.relation.referencesSirimanne, P. M.; Premalal, E. V. A. Optical Properties of Poly-[2-Methoxy-5-(2-Ethyl-Hexyloxy)-Phenylene Vinylene and its Application in Photovoltaic Cells. Sri Lankan J. Phys. 2007, 8, 29–37. http://doi.org/10.4038/sljp.v8i0.211.
dc.relation.referencesSpitsina, N.; Romanova, I.; Lobach, A.; Yakuschenko, I.; Kapunov, M.; Tolstov, I.; Triebel, M.; Frankevich, E. Poly(2-Methoxy-5-(2’-Ethyl-Hexyloxy)-1,4-Phenylenevinylene)(MEH-PPV)/Nitrogen Containing Derivatives of Fullerene Composites : Optical Characterization and Application in Flexible Polymer Solar Cells. J. Low Temp. Phys. 2006, 142, 201–206. https://doi.org/10.1007/s10909-006-9010-5.
dc.relation.referencesLei, T.; Dou, J.-H.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. Electron-Deficient Poly( p -Phenylene Vinylene) Provides Electron Mobility over 1 Cm 2 V –1 s –1 under Ambient Conditions. J. Am. Chem. Soc. 2013, 135, 12168–12171. https://doi.org/10.1021/ja403624a.
dc.relation.referencesLee, H.; Vak, D.; Baeg, K.-J.; Nah, Y.-C.; Kim, D.-Y.; Noh, Y.-Y. Synthesis of Poly(p-Phenylene-Vinylene) Derivatives Containing an Oxadiazole Pendant Group and Their Applications to Organic Electronic Devices. J. Nanosci. Nanotechnol. 2013, 13, 3321–3330. https://doi.org/10.1166/jnn.2013.7291.
dc.relation.referencesYong, W.-W.; Lu, H.; Li, H.; Wang, S.; Zhang, M.-T. Photocatalytic Hydrogen Production with Conjugated Polymers as Photosensitizers. ACS Appl. Mater. Interfaces 2018, 10, 10828–10834. https://doi.org/10.1021/acsami.7b18917.
dc.relation.referencesThomas, S. W.; Joly, G. D.; Swager, T. M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107, 1339–1386. https://doi.org/10.1021/cr0501339.
dc.relation.referencesNoguchi, T.; Roy, B.; Yoshihara, D.; Sakamoto, J.; Yamamoto, T.; Shinkai, S. A Chiral Recognition System Orchestrated by Self-Assembly: Molecular Chirality, Self-Assembly Morphology, and Fluorescence Response. Angew. Chemie - Int. Ed. 2017, 56, 12518–12522. https://doi.org/10.1002/anie.201706142.
dc.relation.referencesMcGehee, M. D.; Heeger, A. J. Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers. Adv. Mater. 2000, 12, 1655–1668. https://doi.org/10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2.
dc.relation.referencesLaughlin, B. J.; Smith, R. C. Gilch and Horner-Wittig Routes to Poly(p-Phenylenevinylene) Derivatives Incorporating Monoalkyl Defect-Free 9,9-Dialkyl-1,4-Fluorenylene Units. Macromolecules 2010, 43, 3744–3749. https://doi.org/10.1021/ma902346w.
dc.relation.referencesSato, S.; Tajima, K.; Hashimoto, K. Synthesis and Characterization of Regioregular Cyano-Substituted Poly(p-Phenylenevinylene). Macromolecules 2009, 42, 1785–1788. https://doi.org/10.1016/0022-3999(83)90056-9.
dc.relation.referencesCampbell, T. W.; McDonald, R. N. Synthesis of Hydrocarbon Derivatives by the Wittig Synthesis .1. Distyrylbenzenes. J. Org. Chem. 1959, 24, 1246–1251. https://doi.org/10.1021/jo01091a022.
dc.relation.referencesCárdenas, J. C.; Ochoa-Puentes, C.; Gutiérrez-Puebla, E.; Sierra, C. A. Synthesis, Crystal Structure Determination and Photoluminescence Properties of a Pure Anti trans-trans Phenylenevinylene Derivative. Synth. Met. 2016, 215, 194–199. https://doi.org/10.1016/j.synthmet.2016.02.021.
dc.relation.referencesDíaz, C.; Alzate, D.; Rodríguez, R.; Ochoa, C.; Sierra, C. A. High Yield and Stereospecific Synthesis of Segmented Poly (p-Phenylene Vinylene) by the Heck Reaction. Synth. Met. 2013, 172, 32–36. https://doi.org/10.1016/j.synthmet.2013.03.023.
dc.relation.referencesEstrada-Flórez, S. E.; Moncada, F. S.; Lanterna, A. E.; Sierra, C. A.; Scaiano, J. C. Spectroscopic and Time-Dependent DFT Study of the Photophysical Properties of Substituted 1,4-Distyrylbenzenes. J. Phys. Chem. A 2019, 123, 6496–6505. https://doi.org/10.1021/acs.jpca.9b04492.
dc.relation.referencesDu, Z. T.; Liu, R.; Wang, J. R.; Li, A. P. Synthesis of a Diamino Substituted Terphenyldivinyl Chromophore. Molecules 2009, 14, 2111–2117. https://doi.org/10.3390/molecules14062111.
dc.relation.referencesDenny, W. A.; Atwell, G. J.; Baguley, B. C.; Cain, B. F. Potential Antitumor Agents. 29. Quantitative Structure-Activity Relationships for the Antileukemic Bisquaternary Ammonium Heterocycles. J. Med. Chem. 1979, 22, 134–150. https://doi.org/10.1021/jm00188a005.
dc.relation.referencesCaruso, U.; Casalboni, M.; Fort, A.; Fusco, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F. New Side-Chain Polyurethanes with Highly Conjugated Push-Pull Chromophores for Second Order NLO Applications. Opt. Mater. 2005, 27, 1800–1810. https://doi.org/10.1016/j.optmat.2004.11.009.
dc.relation.referencesRoviello, A.; Borbone, F.; Carella, A.; Diana, R.; Roviello, G.; Panunzi, B.; Ambrosio, A.; Maddalena, P. High Quantum Yield Photoluminescence of New Polyamides Containing Oligo-PPV Amino Derivatives and Related Oligomers. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2677–2689. https://doi.org/10.1002/pola.23353.
dc.relation.referencesZhou, B. Y.; He, Q.; Yang, Y.; Zhong, H.; He, C.; Sang, G.; Liu, W.; Yang, C. Binaphthyl-Containing Green- and Red-Emitting Molecules for Solution-Processable Organic Light-Emitting Diodes. Adv. Funct. Mater. 2008, 18, 3299–3306. https://doi.org/10.1002/adfm.200800375.
dc.relation.referencesBrouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem 2011, 83, 2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31.
dc.relation.referencesDenmark, S. E.; Butler, C. R. Vinylation of Aryl Bromides Using an Inexpensive Vinylpolysiloxane. Org. Lett. 2006, 8, 63–66. https://doi.org/10.1021/ol052517r
dc.relation.referencesZheng, G. C.; Cai, Z. Bin; Pan, Y. L.; Bai, L.; Zhou, Y. T.; Li, S. L.; Tian, Y. P. Synthesis and Two-Photon Absorption Properties of Novel 2-Substituted-4,5-Diphenyl-1H-Imidazoles. Tetrahedron 2016, 72, 2988–2996. https://doi.org/10.1016/j.tet.2016.04.015.
dc.relation.referencesGabr, Y. Studies on the Copolymerization of 4-Aminostyrene with 4-Nitro- and 2,4-Dinitrostyrene. Acta Chim. Slov. 2007, 54, 818–824.
dc.relation.referencesChanne Gowda, D.; Mahesh, B.; Gowda, S. Zinc-Catalyzed Ammonium Formate Reductions: Rapid and Selective Reduction of Aliphatic and Aromatic Nitro Compounds. Indian J. Chem. - Sect. B Org. Med. Chem. 2001, 40, 75–77. https://doi.org/10.1002/chin.200123046.
dc.relation.referencesHoward, J. L.; Cao, Q.; Browne, D. L. Mechanochemistry as an Emerging Tool for Molecular Synthesis: What Can It Offer? Chem. Sci. 2018, 9, 3080–3094. https://doi.org/10.1039/c7sc05371a.
dc.relation.referencesShahabi, D.; Tavakol, H. One-Pot Synthesis of Quinoline Derivatives Using Choline Chloride / Tin (II) Chloride Deep Eutectic Solvent as a Green Catalyst. J. Mol. Liq. 2016, 220, 324–328. https://doi.org/10.1016/j.molliq.2016.04.094.
dc.relation.referencesSaikachi, H.; Muto, H. Reaction of Aromatic p-Substituted Biphosphoranes with Bisaldehydes. Chem. Pharm. Bull. 1971, 19, 959–969. https://doi.org/10.1248/cpb.19.959.
dc.relation.referencesMurata, T.; Gondo, Y.; Itabashi, K. The Reduction of Aromatic Nitro Compounds with Hydrogen Sulfide. J. Syn. Org. Chem. JPN 1977, 35, 61–63. https://doi.org/10.5059/yukigoseikyokaishi.35.61
dc.relation.referencesCope, O. J.; Brown, R. K. The Reduction of Nitrobenzene by Sodium Sulphide in Aqueous Ethanol. Can. J. Chem. 1961, 39, 1695–1710. https://doi.org/10.1139/v61-217.
dc.relation.referencesBoys, M. L.; Downs, V. L. Preparation of Primary Thioamides from Nitriles Using Sodium Hydrogen Sulfide and Diethylamine Hydrochloride. Synth. Commun. 2006, 36, 295–298. https://doi.org/10.1080/00397910500377099.
dc.relation.referencesShiraishi, Y.; Takeshita, S.; Isobe, T. Two Photoenergy Conversion Modes of YVO4:Eu3+ Nanoparticles: Photoluminescence and Photocatalytic Activity. J. Phys. Chem. C 2015, 119, 13502–13508. https://doi.org/10.1021/acs.jpcc.5b03425.
dc.relation.referencesCao, X.; Meng, L.; Li, Z.; Mao, Y.; Lan, H.; Chen, L.; Fan, Y.; Yi, T. Large Red-Shifted Fluorescent Emission via Intermolecular π-π Stacking in 4-Ethynyl-1,8-Naphthalimide-Based Supramolecular Assemblies. Langmuir 2014, 30, 11753–11760. https://doi.org/10.1021/la503299j.
dc.relation.referencesZhao, J.; Sun, L.; Canepa, S.; Sun, H.; Yesibolati, M. N.; Sherburne, M.; Xu, R.; Sritharan, T.; Loo, J. S. C. C.; Ager, J. W.; Barber, J.; Mølhave, K.; Xu, Z. J. Phosphate Tuned Copper Electrodeposition and Promoted Formic Acid Selectivity for Carbon Dioxide Reduction. J. Mater. Chem. A 2017, 5, 11905–11916. https://doi.org/10.1039/c7ta01871a.
dc.relation.referencesOthman, I.; Mohamed, R. M.; Ibrahem, F. M. Study of Photocatalytic Oxidation of Indigo Carmine Dye on Mn-Supported TiO2. J. Photochem. Photobiol. A Chem. 2007, 189, 80–85. https://doi.org/10.1016/j.jphotochem.2007.01.010.
dc.relation.referencesLi, H. X.; Xu, B.; Tang, L.; Zhang, J. H.; Mao, Z. G. Reductive Decolorization of Indigo Carmine Dye with Bacillus Sp. MZS10. Int. Biodeterior. Biodegrad. 2015, 103, 30–37. https://doi.org/10.1016/j.ibiod.2015.04.007.
dc.relation.referencesVautier, M.; Guillard, C.; Herrmann, J. M. Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. J. Catal. 2001, 201, 46–59. https://doi.org/10.1006/jcat.2001.3232.
dc.relation.referencesBarka, N.; Assabbane, A.; Nounah, A.; Ichou, Y. A. Photocatalytic Degradation of Indigo Carmine in Aqueous Solution by TiO2-Coated Non-Woven Fibres. J. Hazard. Mater. 2008, 152, 1054–1059. https://doi.org/10.1016/j.jhazmat.2007.07.080.
dc.relation.referencesMittal, A.; Mittal, J.; Kurup, L. Batch and Bulk Removal of Hazardous Dye, Indigo Carmine from Wastewater through Adsorption. J. Hazard. Mater. 2006, 137, 591–602. https://doi.org/10.1016/j.jhazmat.2006.02.047.
dc.relation.referencesMittal, A.; Mittal, J.; Kurup, L. Utilization of Hen Feathers for the Adsorption of Indigo Carmine from Simulated Effluents. J. Environ. Prot. Sci 2007, 1, 92–100.
dc.relation.referencesPrado, A. G. S.; Torres, J. D.; Faria, E. A.; Dias, S. C. L. Comparative Adsorption Studies of Indigo Carmine Dye on Chitin and Chitosan. J. Colloid Interface Sci. 2004, 277, 43–47. https://doi.org/10.1016/j.jcis.2004.04.056.
dc.relation.referencesWang, J.; Lu, L.; Feng, F. Improving the Indigo Carmine Decolorization Ability of a Bacillus Amyloliquefaciens Laccase by Site-Directed Mutagenesis. Catalysts 2017, 7, 275. https://doi.org/10.3390/catal7090275.
dc.relation.referencesPalma-Goyes, R. E.; Silva-Agredo, J.; González, I.; Torres-Palma, R. A. Comparative Degradation of Indigo Carmine by Electrochemical Oxidation and Advanced Oxidation Processes. Electrochim. Acta 2014, 140, 427–433. https://doi.org/10.1016/j.electacta.2014.06.096.
dc.relation.referencesFlox, C.; Ammar, S.; Arias, C.; Brillas, E.; Vargas-Zavala, A. V.; Abdelhedi, R. Electro-Fenton and Photoelectro-Fenton Degradation of Indigo Carmine in Acidic Aqueous Medium. Appl. Catal. B Environ. 2006, 67, 93–104. https://doi.org/10.1016/j.apcatb.2006.04.020.
dc.relation.referencesHammami, S.; Oturana, M. A.; Oturana, N.; Bellakhal, N.; Dachraoui, M. Comparative Mineralization of Textile Dye Indigo by Photo-Fenton Process and Anodic Oxidation Using Boron-Doped Diamond Anode. Desalin. Water Treat. 2012, 45, 297–304. https://doi.org/10.1080/19443994.2012.692059.
dc.relation.referencesSubramani, A. K.; Byrappa, K.; Ananda, S.; Lokanatha Rai, K. M.; Ranganathaiah, C.; Yoshimura, M. Photocatalytic Degradation of Indigo Carmine Dye Using TiO2 Impregnated Activated Carbon. Bull. Mater. Sci. 2007, 30, 37–41. https://doi.org/10.1007/s12034-007-0007-8.
dc.relation.referencesSood, S.; Kumar, S.; Umar, A.; Kaur, A.; Mehta, S. K.; Kansal, S. K. TiO 2 Quantum Dots for the Photocatalytic Degradation of Indigo Carmine Dye. J. Alloys Compd. 2015, 650, 193–198. https://doi.org/10.1016/j.jallcom.2015.07.164.
dc.relation.referencesHuo, P.; Kumar, P.; Liu, B. The Mechanism of Adsorption, Diffusion, and Photocatalytic Reaction of Organic Molecules on TiO2 Revealed by Means of On-Site Scanning Tunneling Microscopy Observations. Catalysts 2018, 8, 616. https://doi.org/10.3390/catal8120616.
dc.relation.referencesBora, L. V.; Mewada, R. K. Visible/Solar Light Active Photocatalysts for Organic Effluent Treatment: Fundamentals, Mechanisms and Parametric Review. Renew. Sustain. Energy Rev. 2017, 76, 1393–1421. https://doi.org/10.1016/j.rser.2017.01.130.
dc.relation.referencesLima, C. S.; Batista, K. A.; García Rodríguez, A.; Souza, J. R.; Fernandes, K. F. Photodecomposition and Color Removal of a Real Sample of Textile Wastewater Using Heterogeneous Photocatalysis with Polypyrrole. Sol. Energy 2015, 114, 105–113. https://doi.org/10.1016/j.solener.2015.01.038.
dc.relation.referencesNowakowska, M.; Szczubiałka, K. Photoactive Polymeric and Hybrid Systems for Photocatalytic Degradation of Water Pollutants. Polym. Degrad. Stab. 2017, 145, 120–141. https://doi.org/10.1016/j.polymdegradstab.2017.05.021.
dc.relation.referencesWang, Z. J.; Li, R.; Landfester, K.; Zhang, K. A. I. Porous Conjugated Polymer via Metal-Free Synthesis for Visible Light-Promoted Oxidative Hydroxylation of Arylboronic Acids. Polymer. 2017, 126, 291–295. https://doi.org/10.1016/j.polymer.2017.04.052.
dc.relation.referencesCárdenas, J. C.; Ochoa-Puentes, C.; Sierra, C. A. Phenylenevinylene Systems: The Oligomer Approach. In Conducting Polymers; 2016; p Ch. 10. https://doi.org/10.5772/63394
dc.relation.referencesNath, K.; Chandra, M.; Pradhan, D.; Biradha, K. Supramolecular Organic Photocatalyst Containing a Cubanelike Water Cluster and Donor − Acceptor Stacks: Hydrogen Evolution and Dye Degradation under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 29417–29424. https://doi.org/10.1021/acsami.8b07437.
dc.relation.referencesTakeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde. J. Phys. Chem. 1995, 99, 9986–9991. https://doi.org/10.1021/j100024a047.
dc.relation.referencesBresolí-Obach, R.; Torra, J.; Zanocco, R. P.; Zanocco, A. L.; Nonell, S. Singlet Oxygen Quantum Yield Determination Using Chemical Acceptors. In Reactive Oxygen Species Methods and Protocols; Espada, J., Ed.; Humana: New York, 2020; Vol. 2202, pp 165–188. https://doi.org/10.1007/978-1-0716-0896-8.
dc.relation.referencesBeghetto, C.; Renken, C.; Eriksson, O.; Jori, G.; Bernardi, P.; Ricchelli, F. Implications of the Generation of Reactive Oxygen Species by Photoactivated Calcein for Mitochondrial Studies. Eur. J. Biochem. 2000, 267, 5585–5592. https://doi.org/10.1046/j.1432-1327.2000.01625.x.
dc.relation.referencesYoung, R. H.; Martin, R. L.; Chinh, N.; Mallon, C.; Kayser, R. H. Substituent Effects in Dye-Sensitized Photooxidation Reactions of Furans. Can. J. Chem. 1972, 50, 932–938. https://doi.org/10.1139/v72-144.
dc.relation.referencesXu, H.; Cooper, W. J.; Jung, J.; Song, W. Photosensitized Degradation of Amoxicillin in Natural Organic Matter Isolate Solutions. Water Res. 2011, 45, 632–638. https://doi.org/10.1016/j.watres.2010.08.024.
dc.relation.referencesBatista, A. P. S.; Teixeira, A. C. S. C.; Cooper, W. J.; Cottrell, B. A. Correlating the Chemical and Spectroscopic Characteristics of Natural Organic Matter with the Photodegradation of Sulfamerazine. Water Res. 2016, 93, 20–29. https://doi.org/10.1016/j.watres.2015.11.036.
dc.relation.referencesPrieto-Montero, R.; Sola-Llano, R.; Montero, R.; Longarte, A.; Arbeloa, T.; López-Arbeloa, I.; Martínez-Martínez, V.; Lacombe, S. Methylthio BODIPY as a Standard Triplet Photosensitizer for Singlet Oxygen Production: A Photophysical Study. Phys. Chem. Chem. Phys. 2019, 21, 20403-20414. https://doi.org/10.1039/c9cp03454d.
dc.relation.referencesAdarsh, N.; Avirah, R. R.; Ramaiah, D. Tuning Photosensitized Singlet Oxygen Generation Efficiency of Novel Aza-BODIPY Dyes. Org. Lett. 2011, 12, 5720–5723. https://doi.org/10.1021/ol200572p.
dc.relation.referencesOrmond, A. B.; Freeman, H. S. Effects of Substituents on the Photophysical Properties of Symmetrical Porphyrins. Dye. Pigm. 2013, 96, 440–448. https://doi.org/10.1016/j.dyepig.2012.09.011.
dc.relation.referencesDelanaye, L.; Bahri, M. A.; Tfibel, F.; Fontaine-Aupart, M. P.; Mouithys-Mickalad, A.; Heine, B.; Piette, J.; Hoebeke, M. Physical and Chemical Properties of Pyropheophorbide-a Methyl Ester in Ethanol, Phosphate Buffer and Aqueous Dispersion of Small Unilamellar Dimyristoyl-L-α-Phosphatidylcholine Vesicles. Photochem. Photobiol. Sci. 2006, 5, 317–325. https://doi.org/10.1039/b513219c.
dc.relation.referencesInnocenzi, P.; Kozuka, H.; Yoko, T. Fluorescence Properties of the Ru(Bpy)32+ Complex Incorporated in Sol-Gel-Derived Silica Coating Films. J. Phys. Chem. B 1997, 101, 2285–2291. https://doi.org/10.1021/jp970004z.
dc.relation.referencesUrgoitia, G.; Sanmartin, R.; Herrero, M. T.; Domínguez, E. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds. ACS Catal. 2017, 7, 3050–3060. https://doi.org/10.1021/acscatal.6b03654.
dc.relation.referencesKuang, L.; Zhao, Y.; Zhang, W.; Ge, S. Roles of Reactive Oxygen Species and Holes in the Photodegradation of Cationic and Anionic Dyes by TiO2 under UV Irradiation. J. Environ. Eng. 2015, 142, 04015065. https://doi.org/10.1061/(asce)ee.1943-7870.0001032.
dc.relation.referencesDong, G.; Yang, L.; Wang, F.; Zang, L.; Wang, C. Removal of Nitric Oxide through Visible Light Photocatalysis by G-C3N4 Modified with Perylene Imides. ACS Catal. 2016, 6, 6511–6519. https://doi.org/10.1021/acscatal.6b01657.
dc.relation.referencesSchneider, J.; Bahnemann, D. W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. https://doi.org/10.1021/jz4018199.
dc.relation.referencesSeraghni, N.; Ghoul, I.; Lemmize, I.; Reguig, A.; Debbache, N.; Sehili, T. Use of Oxalic Acid as Inducer in Photocatalytic Oxidation of Cresol Red in Aqueous Solution under Natural and Artificial Light. Environ. Technol. 2018, 39, 2908–2915. https://doi.org/10.1080/09593330.2017.1369580.
dc.relation.referencesOllis, D. F. Kinetics of Photocatalyzed Reactions: Five Lessons Learned. Front. Chem. 2018, 6, 378. https://doi.org/10.3389/fchem.2018.00378.
dc.relation.referencesMa, L.; Wang, X.; Wang, B.; Chen, J.; Wang, J.; Huang, K.; Zhang, B.; Cao, Y.; Han, Z.; Qian, S.; Yao, S. Photooxidative Degradation Mechanism of Model Compounds of Poly(p-Phenylenevinylenes) [PPVs]. Chem. Phys. 2002, 285, 85–94. https://doi.org/10.1016/S0301-0104(02)00691-2.
dc.relation.referencesNiu, J.; Dai, Y.; Yin, L.; Shang, J.; Crittenden, J. C. Photocatalytic Reduction of Triclosan on Au-Cu2O Nanowire Arrays as Plasmonic Photocatalysts under Visible Light Irradiation. Phys. Chem. Chem. Phys. 2015, 17, 17421–17428. https://doi.org/10.1039/c5cp02244d.
dc.relation.referencesNavio, J. A.; Fuentes Mota, J.; Pradera Adrian, M. A.; García Gómez, M. Oxidation of 2-Furoic Acid via Singlet Oxygen Generated Photochemically. J. Photochem. Photobiol. A Chem. 1990, 52, 91–95. https://doi.org/10.1016/1010-6030(90)87094-R.
dc.relation.referencesFabregat, V.; Burguete, M. I.; Galindo, F.; Luis, S. V. Singlet Oxygen Generation by Photoactive Polymeric Microparticles with Enhanced Aqueous Compatibility. Environ. Sci. Pollut. Res. 2014, 21, 11884–11892. https://doi.org/10.1007/s11356-013-2311-8.
dc.relation.referencesGollnick, K.; Miinchen, D.-; Germany, W. Singlet oxygen photooxygenation of furans: Isolation and reactions of (4+2)-cycloaddition products (unsaturated sec.-ozonides). Tetrahedron 1985, 41, 2057–2068. https://doi.org/10.1016/S0040-4020(01)96576-7.
dc.relation.referencesLower, S. K.; El-Sayed, M. A. The Triplet State and Molecular Electronic Processes in Organic Molecules. Chem. Rev. 1966, 66, 199–241. https://doi.org/10.1021/cr60240a004.
dc.relation.referencesWitkos̈, K.; Lech, K.; Jarosz, M. Identification of Degradation Products of Indigoids by Tandem Mass Spectrometry. J. Mass Spectrom. 2015, 50, 1245–1251. https://doi.org/10.1002/jms.3641.
dc.relation.referencesChacón-Patiño, M. L.; Blanco-Tirado, C.; Hinestroza, J. P.; Combariza, M. Y. Biocomposite of Nanostructured MnO2 and Fique Fibers for Efficient Dye Degradation. Green Chem. 2013, 15, 2920–2928. https://doi.org/10.1039/b000000x.
dc.relation.referencesKoppenol, W. H.; Stanbury, D. M.; Bounds, P. L. Electrode Potentials of Partially Reduced Oxygen Species, from Dioxygen to Water. Free Radic. Biol. Med. 2010, 49, 317–322. https://doi.org/10.1016/j.freeradbiomed.2010.04.011.
dc.relation.referencesMukthar Ali, M.; Arya Nair, J. S.; Sandhya, K. Y. Role of Reactive Oxygen Species in the Visible Light Photocatalytic Mineralization of Rhodamine B Dye by P25–Carbon Dot Photocatalyst. Dye. Pigment. 2019, 163, 274–284. https://doi.org/10.1016/j.dyepig.2018.11.057.
dc.relation.referencesEl-Mansy, M. A. M. Quantum Chemical Studies on Structural, Vibrational, Nonlinear Optical Properties and Chemical Reactivity of Indigo Carmine Dye. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2017, 183, 284–290. https://doi.org/10.1016/j.saa.2017.04.047.
dc.relation.referencesLacombe, S.; Pigot, T. Materials for Selective Photo-Oxygenation vs. Photocatalysis: Preparation, Properties and Applications in Environmental and Health Fields. Catal. Sci. Technol. 2016, 6, 1571–1592. https://doi.org/10.1039/c5cy01929j.
dc.relation.referencesLi, W.; Zhang, W.; Dong, X.; Yan, L.; Qi, R.; Wang, W.; Xie, Z.; Jing, X. Porous Heterogeneous Organic Photocatalyst Prepared by HIPE Polymerization for Oxidation of Sulfides under Visible Light. J. Mater. Chem. 2012, 22, 17445–17448. https://doi.org/10.1039/c2jm32778c.
dc.relation.referencesDervaux, J.; Cormier, P. A.; Struzzi, C.; Scardamaglia, M.; Bittencourt, C.; Petaccia, L.; Cornil, D.; Lasser, L.; Cornil, J.; Lazzaroni, R.; Snyders, R. Probing the Interaction between 2,2′-Bithiophene-5-Carboxylic Acid and TiO2 by Photoelectron Spectroscopy: A Joint Experimental and Theoretical Study. J. Chem. Phys. 2017, 147, 244704. https://doi.org/10.1063/1.5008800.
dc.relation.referencesLiu, B.; Terano, M. Investigation of the Physico-Chemical State and Aggregation Mechanism of Surface Cr Species on a Phillips CrOx/SiO2 Catalyst by XPS and EPMA. J. Mol. Catal. A Chem. 2001, 172, 227–240. https://doi.org/10.1016/S1381-1169(01)00121-2.
dc.relation.referencesHu, F.; Lei, X. Synthesis of Diaryl Sulfones at Room Temperature: Cu-Catalyzed Cross-Coupling of Arylsulfonyl Chlorides with Arylboronic Acids. ChemCatChem 2015, 7, 1539–1542. https://doi.org/10.1002/cctc.201500174.
dc.relation.referencesCastellanos, N. J.; Martínez, F.; Lynen, F.; Biswas, S.; Van Der Voort, P.; Arzoumanian, H. Dioxygen Activation in Photooxidation of Diphenylmethane by a Dioxomolybdenum(VI) Complex Anchored Covalently onto Mesoporous Titania. Transit. Met. Chem. 2013, 38, 119–127. https://doi.org/10.1007/s11243-012-9668-2.
dc.relation.referencesJia, X.; Ma, J.; Xia, F.; Xu, Y.; Gao, J.; Xu, J. Carboxylic Acid-Modified Metal Oxide Catalyst for Selectivity-Tunable Aerobic Ammoxidation. Nat. Commun. 2018, 9, 933. https://doi.org/10.1038/s41467-018-03358-x.
dc.relation.referencesFrank, O.; Zukalova, M.; Laskova, B.; Kürti, J.; Koltai, J.; Kavan, L. Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 2012, 14, 14567–14572. https://doi.org/10.1039/c2cp42763j.
dc.relation.referencesBelekbir, S.; El Azzouzi, M.; El Hamidi, A.; Rodríguez-Lorenzo, L.; Santaballa, J. A.; Canle, M. Improved Photocatalyzed Degradation of Phenol, as a Model Pollutant, over Metal-Impregnated Nanosized TiO2. Nanomaterials 2020, 10, 996. https://doi.org/10.3390/nano10050996.
dc.relation.referencesPighini, C.; Aymes, D.; Millot, N.; Saviot, L. Low-Frequency Raman Characterization of Size-Controlled Anatase TiO2 Nanopowders Prepared by Continuous Hydrothermal Syntheses. J. Nanoparticle Res. 2007, 9, 309–315. https://doi.org/10.1007/s11051-005-9061-6.
dc.relation.referencesAbdulrazzak, F. H.; Hussein, F. H. Effects of Nanoparticle Size on Catalytic and Photocatalytic Activity of Carbon Nanotubes-Titanium Dioxide Composites. J. Environ. Anal. Chem. 2015, 02, 1000e110. https://doi.org/10.4172/2380-2391.1000e110.
dc.relation.referencesHo, W. K. H.; Bao, Z. Y.; Gan, X.; Wong, K. Y.; Dai, J.; Lei, D. Probing Conformation Change and Binding Mode of Metal Ion-Carboxyl Coordination Complex through Resonant Surface-Enhanced Raman Spectroscopy and Density Functional Theory. J. Phys. Chem. Lett. 2019, 10, 4692–4698. https://doi.org/10.1021/acs.jpclett.9b01435.
dc.relation.referencesGeisler, T.; Dohmen, L.; Lenting, C.; Fritzsche, M. B. K. Real-Time in Situ Observations of Reaction and Transport Phenomena during Silicate Glass Corrosion by Fluid-Cell Raman Spectroscopy. Nat. Mater. 2019, 18, 342–348. https://doi.org/10.1038/s41563-019-0293-8.
dc.relation.referencesNawaz, R.; Kait, C. F.; Chia, H. Y.; Isa, M. H.; Huei, L. W. Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds. Nanomaterials 2019, 9, 1586. https://doi.org/10.3390/nano9111586.
dc.relation.referencesLuo, Y. B.; Wang, X. L.; Xu, D. Y.; Wang, Y. Z. Preparation and Characterization of Poly(Lactic Acid)-Grafted TiO 2 Nanoparticles with Improved Dispersions. Appl. Surf. Sci. 2009, 255, 6795–6801. https://doi.org/10.1016/j.apsusc.2009.02.074.
dc.relation.referencesSmith, M.; Scudiero, L.; Espinal, J.; McEwen, J. S.; Garcia-Perez, M. Improving the Deconvolution and Interpretation of XPS Spectra from Chars by Ab Initio Calculations. Carbon N. Y. 2016, 110, 155–171. https://doi.org/10.1016/j.carbon.2016.09.012.
dc.relation.referencesRuiz-Cañas, M. C.; Quintero, H. I.; Corredor, L. M.; Manrique, E.; Romero Bohórquez, A. R. New Nanohybrid Based on Hydrolyzed Polyacrylamide and Silica Nanoparticles: Morphological, Structural and Thermal Properties. Polymers (Basel). 2020, 12, 1152. https://doi.org/10.3390/POLYM12051152.
dc.relation.referencesKaur, A.; Chahal, P.; Hogan, T. Selective Fabrication of SiC/Si Diodes by Excimer Laser under Ambient Conditions. IEEE Electron Device Lett. 2016, 37, 142–145. https://doi.org/10.1109/LED.2015.2508479.
dc.relation.referencesVashisth, A.; Khatri, S.; Hahn, S. H.; Zhang, W.; Van Duin, A. C. T.; Naraghi, M. Mechanical Size Effects of Amorphous Polymer-Derived Ceramics at the Nanoscale: Experiments and ReaxFF Simulations. Nanoscale 2019, 11, 7447–7456. https://doi.org/10.1039/c9nr00958b.
dc.relation.referencesSosa, N.; Chanlek, N.; Wittayakun, J. Facile Ultrasound-Assisted Grafting of Silica Gel by Aminopropyltriethoxysilane for Aldol Condensation of Furfural and Acetone. Ultrason. Sonochem. 2020, 62, 104857. https://doi.org/10.1016/j.ultsonch.2019.104857.
dc.relation.referencesWei, Y.; Rakhatkyzy, M.; Salih, K. A. M.; Wang, K.; Hamza, M. F.; Guibal, E. Controlled Bi-Functionalization of Silica Microbeads through Grafting of Amidoxime/Methacrylic Acid for Sr(II) Enhanced Sorption. Chem. Eng. J. 2020, 402, 125220. https://doi.org/10.1016/j.cej.2020.125220.
dc.relation.referencesPost, P.; Wurlitzer, L.; Maus-Friedrichs, W.; Weber, A. P. Characterization and Applications of Nanoparticles Modified In-Flight with Silica or Silica-Organic Coatings. Nanomaterials 2018, 8, 530. https://doi.org/10.3390/nano8070530.
dc.relation.referencesPrimo, A.; Corma, A.; García, H. Titania Supported Gold Nanoparticles as Photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886–910. https://doi.org/10.1039/c0cp00917b.
dc.relation.referencesIUPAC Recommendations for the Characterization of Porous Solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. https://doi.org/10.1351/pac199466081739.
dc.relation.referencesThommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117.
dc.relation.referencesMakuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.
dc.relation.referencesPedone, A.; Bloino, J.; Barone, V. Role of Host-Guest Interactions in Tuning the Optical Properties of Coumarin Derivatives Incorporated in MCM-41: A TD-DFT Investigation. J. Phys. Chem. C 2012, 116, 17807–17818. https://doi.org/10.1021/jp305294u.
dc.relation.referencesvan Hal, P. A.; Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Slooff, L. H.; van Gennip, W. J. H.; Jonkheijm, P.; Janssen, R. A. J. Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction. Adv. Mater. 2003, 15, 118–121. https://doi.org/10.1002/adma.200390022.
dc.relation.referencesBledowski, M.; Wang, L.; Ramakrishnan, A.; Khavryuchenko, O. V.; Khavryuchenko, V. D.; Ricci, P. C.; Strunk, J.; Cremer, T.; Kolbeck, C.; Beranek, R. Visible-Light Photocurrent Response of TiO2-Polyheptazine Hybrids: Evidence for Interfacial Charge-Transfer Absorption. Phys. Chem. Chem. Phys. 2011, 13, 21511–21519. https://doi.org/10.1039/c1cp22861g.
dc.relation.referencesDiStefano, T. H.; Eastman, D. E. The Band Edge of Amorphous SiO2 by Photoinjection and Photoconductivity Measurements. Solid State Commun. 1971, 9, 2259–2261. https://doi.org/10.1016/0038-1098(71)90643-0.
dc.relation.referencesAstašauskas, V.; Bellissimo, A.; Kuksa, P.; Tomastik, C.; Kalbe, H.; Werner, W. S. M. Optical and Electronic Properties of Amorphous Silicon Dioxide by Single and Double Electron Spectroscopy. J. Electron Spectros. Relat. Phenomena 2020, 241, 146829. https://doi.org/10.1016/j.elspec.2019.02.008.
dc.relation.referencesFatimah, I.; Prakoso, N. I.; Sahroni, I.; Musawwa, M. M.; Sim, Y. L.; Kooli, F.; Muraza, O. Physicochemical Characteristics and Photocatalytic Performance of TiO2/SiO2 Catalyst Synthesized Using Biogenic Silica from Bamboo Leaves. Heliyon 2019, 5, e02766. https://doi.org/10.1016/j.heliyon.2019.e02766.
dc.relation.referencesKaiti, S.; Himmelberg, P.; Williams, J.; Abdellatif, M.; Fossum, E. Linear Poly(Arylene Ether)s with Pendant Phenylsulfonyl Groups: Nucleophilic Aromatic Substitution Activated from the Meta Position. Macromolecules 2006, 39, 7909–7914. https://doi.org/10.1021/ma061248x.
dc.relation.referencesZhao, Z.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew. Chemie - Int. Ed. 2020, 59, 9888–9907. https://doi.org/10.1002/anie.201916729.
dc.relation.referencesParrott, E. P. J.; Tan, N. Y.; Hu, R.; Zeitler, J. A.; Tang, B. Z.; Pickwell-Macpherson, E. Direct Evidence to Support the Restriction of Intramolecular Rotation Hypothesis for the Mechanism of Aggregation-Induced Emission: Temperature Resolved Terahertz Spectra of Tetraphenylethene. Mater. Horizons 2014, 1, 251–258. https://doi.org/10.1039/c3mh00078h.
dc.relation.referencesLi, S.; Zhao, W.; Zhang, J.; Liu, X.; Zheng, Z.; He, C.; Xu, B.; Wei, Z.; Hou, J. Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chem. Mater. 2020, 32, 1993–2003. https://doi.org/10.1021/acs.chemmater.9b04971.
dc.relation.referencesPinnock, S. S.; Malele, C. N.; Che, J.; Jones, W. E. The Role of Intermolecular Interactions in Solid State Fluorescent Conjugated Polymer Chemosensors. J. Fluoresc. 2012, 22, 583–589. https://doi.org/10.1007/s10895-011-0993-1.
dc.relation.referencesDemyanenko, A. V.; Bogomolov, A. S.; Dozmorov, N. V.; Svyatova, A. I.; Pyryaeva, A. P.; Goldort, V. G.; Kochubei, S. A.; Baklanov, A. V. Singlet Oxygen 1O2 in Photocatalysis on TiO2. Where Does It Come From? J. Phys. Chem. C 2019, 123, 2175–2181. https://doi.org/10.1021/acs.jpcc.8b09381.
dc.relation.referencesBerr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole Scavenger Redox Potentials Determine Quantum Efficiency and Stability of Pt-Decorated CdS Nanorods for Photocatalytic Hydrogen Generation. Appl. Phys. Lett. 2012, 100, 223903. https://doi.org/10.1063/1.4723575.
dc.relation.referencesJohnson, J. W.; Wroblowa, H.; Bockris, J. O. M. The Mechanism of the Electrochemical Oxidation of Oxalic Acid. Electrochim. Acta 1964, 9, 639–651. https://doi.org/10.1016/0013-4686(64)80036-0.
dc.relation.referencesArimi, A.; Günnemann, C.; Curti, M.; Bahnemann, D. W. Regarding the Nature of Charge Carriers Formed by Uv or Visible Light Excitation of Carbon-Modified Titanium Dioxide. Catalysts 2019, 9, 697. https://doi.org/10.3390/catal9080697.
dc.relation.referencesLeandri, V.; Gardner, J. M.; Jonsson, M. Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. J. Phys. Chem. C 2019, 123, 6667–6674. https://doi.org/10.1021/acs.jpcc.9b00337.
dc.relation.referencesKrieger, W.; Lamsfuß, J.; Zhang, W.; Kockmann, N. Local Mass Transfer Phenomena and Chemical Selectivity of Gas-Liquid Reactions in Capillaries. Chem. Eng. Technol. 2017, 40, 2134–2143. https://doi.org/10.1002/ceat.201700420.
dc.relation.referencesPlácido, J.; Chanagá, X.; Ortiz-Monsalve, S.; Yepes, M.; Mora, A. Degradation and Detoxification of Synthetic Dyes and Textile Industry Effluents by Newly Isolated Leptosphaerulina Sp. from Colombia. Bioresour. Bioprocess. 2016, 3, 6. https://doi.org/10.1186/s40643-016-0084-x.
dc.relation.referencesFenavi. Caracterización Económica Del Sector Avícola En El Departamento de Santander; 2016. https://fenavi.org/publicaciones-programa-economico/caracterizacion-economica-del-sector-avicola-en-santander/
dc.relation.referencesAznar, R.; Albero, B.; Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. Analysis of Emerging Organic Contaminants in Poultry Manure by Gas Chromatography–Tandem Mass Spectrometry. J. Sep. Sci. 2018, 41, 940–947. https://doi.org/10.1002/jssc.201700883.
dc.relation.referencesHakk, H.; Millner, P.; Larsen, G. Decrease in Water-Soluble 17β-Estradiol and Testosterone in Composted Poultry Manure with Time. J. Environ. Qual. 2005, 34, 943–950. https://doi.org/10.2134/jeq2004.0164.
dc.relation.referencesAdeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental Impact of Estrogens on Human, Animal and Plant Life: A Critical Review. Environ. Int. 2017, 99, 107–119. https://doi.org/10.1016/j.envint.2016.12.010.
dc.relation.referencesHerman, J. S.; Mills, A. L. Biological and Hydrogeological Interactions Affect the Persistence of 17beta-Estradiol in an Agricultural Watershed. Geobiology 2003, 1, 141–151. https://doi.org/10.1046/j.1472-4669.2003.00011.x.
dc.relation.referencesMurcia, J. J.; Cely, Á. C.; Rojas, H. A.; Hidalgo, M. C.; Navío, J. A. Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stainedwastewater Coming from Handicrafts Factories. Catalysts 2019, 9, 179. https://doi.org/10.3390/catal9020179.
dc.relation.referencesLima, C. S.; Batista, K. A.; García Rodríguez, A.; Souza, J. R.; Fernandes, K. F. Photodecomposition and Color Removal of a Real Sample of Textile Wastewater Using Heterogeneous Photocatalysis with Polypyrrole. Sol. Energy 2015, 114, 105–113. https://doi.org/10.1016/j.solener.2015.01.038.
dc.relation.referencesSun, J.; Qiao, L.; Sun, S.; Wang, G. Photocatalytic Degradation of Orange G on Nitrogen-Doped TiO2 Catalysts under Visible Light and Sunlight Irradiation. J. Hazard. Mater. 2008, 155, 312–319. https://doi.org/10.1016/j.jhazmat.2007.11.062.
dc.relation.referencesUpreti, A. R.; Li, Y.; Khadgi, N.; Naraginti, S.; Zhang, C. Efficient Visible Light Photocatalytic Degradation of 17α-Ethinyl Estradiol by a Multifunctional Ag-AgCl/ZnFe2O4 Magnetic Nanocomposite. RSC Adv. 2016, 6, 32761–32769. https://doi.org/10.1039/c6ra00707d.
dc.relation.referencesYilmaz, B.; Kadioglu, Y. Determination of 17 β-Estradiol in Pharmaceutical Preparation by UV Spectrophotometry and High Performance Liquid Chromatography Methods. Arab. J. Chem. 2017, 10, S1422–S1428. https://doi.org/10.1016/j.arabjc.2013.04.018.
dc.relation.referencesAlqahtani, S. S.; Bin Humaid, D. M.; Alshail, S. H.; Alshammari, D. T.; Al-Showiman, H.; Alzoman, N. Z.; Maher, H. M. Development and Validation of a High Performance Liquid Chromatography/Diode Array Detection Method for Estrogen Determination: Application to Residual Analysis in Meat Products. Open Chem. 2020, 18, 995–1010. https://doi.org/10.1515/chem-2020-0118.
dc.relation.referencesSalierno, J. D.; Pollack, S. J.; Van Veld, P. A.; Ottinger, M. A.; Yonkos, L. T.; Kane, A. S. Steroid Hormones and Anthropogenic Contaminants in Poultry Litter Leachate. Water. Air. Soil Pollut. 2012, 223, 2181–2187. https://doi.org/10.1007/s11270-011-1014-3.
dc.relation.referencesKumar, A.; Kumar, A.; Sharma, G.; Naushad, M.; Veses, R. C.; Ghfar, A. A.; Stadler, F. J.; Khan, M. R. Solar-Driven Photodegradation of 17-β-Estradiol and Ciprofloxacin from Waste Water and CO2 Conversion Using Sustainable Coal-Char/Polymeric-g-C3N4/RGO Metal-Free Nano-Hybrids. New J. Chem. 2017, 41, 10208–10224. https://doi.org/10.1039/c7nj01580a.
dc.relation.referencesMazellier, P.; Méité, L.; De Laat, J. Photodegradation of the Steroid Hormones 17β-Estradiol (E2) and 17α-Ethinylestradiol (EE2) in Dilute Aqueous Solution. Chemosphere 2008, 73, 1216–1223. https://doi.org/10.1016/j.chemosphere.2008.07.046.
dc.relation.referencesOhko, Y.; Iuchi, K. I.; Niwa, C.; Tatsuma, T.; Nakashima, T.; Iguchi, T.; Kubota, Y.; Fujishima, A. 17β-Estradiol Degradation by TiO2 Photocatalysis as a Means of Reducing Estrogenic Activity. Environ. Sci. Technol. 2002, 36, 4175–4181. https://doi.org/10.1021/es011500a.
dc.relation.referencesShore, L. S.; Shemesh, M. Naturally Produced Steroid Hormones and Their Release into the Environment. Pure Appl. Chem. 2003, 75, 1859–1871. https://doi.org/10.1351/pac200375111859.
dc.relation.referencesTakrouri, K.; Chen, T.; Papadopoulos, E.; Sahoo, R.; Kabha, E.; Chen, H.; Cantel, S.; Wagner, G.; Halperin, J. A.; Aktas, B. H.; Chorev, M. Structure-Activity Relationship Study of 4EGI-1, Small Molecule EIF4E/EIF4G Protein-Protein Interaction Inhibitors. Eur. J. Med. Chem. 2014, 77, 361–377. https://doi.org/10.1016/j.ejmech.2014.03.034.
dc.relation.referencesCao, J.; Feng, J. X.; Wu, Y. X.; Pei, X. Q.; Yan, J. J.; Liu, Y.; Qin, W. J.; Zhang, X. Bin. An Ion-Responsive Fluorescent Compound Based on NO-Photoisomerisation Styryl Derivative Linked to Monoaza-15-Crown-5. Supramol. Chem. 2011, 23, 407–410. https://doi.org/10.1080/10610278.2010.532215.
dc.relation.referencesKlaus, F.; Baudisch, O. Über Die Einwirkung Der Salpetrigen Säure Auf P‐Dimethylamino‐benzoesäure‐methylester Und P‐Dimethylamino Benzaldehyd. (Reaktionen Tertiärer Amine Und Beitrag Zur Sterischen Hinderung). Ber. Dtsch. Chem. Ges. 1918, 51, 1036–1048. https://doi.org/10.1002/cber.191805101127.
dc.relation.referencesMuraki, T.; Togo, H.; Yokoyama, M. Reactivity and Synthetic Utility of 1-(Arenesulfonyloxy) Benziodoxolones. J. Org. Chem. 1999, 64, 2883–2889. https://doi.org/10.1021/jo9825207.
dc.relation.referencesBerliner, E.; Monack, C. The Nucleophilic Displacement in the Benzene Series. Am. Chem. Soc. 1951, 74, 1574–1579. https://doi.org/10.1021/ja01126a069.
dc.relation.referencesYang, Z.; Geise, H. J.; Mehbod, M.; Debrue, G.; Visser, J. W.; Sonneveld, E. J.; Van’t dack, L.; Gijbels, R. Conductivity and Electron Density of Undoped Model Compounds of Poly(Phenylene Vinylene). Synth. Met. 1990, 39, 137–151.
dc.relation.referencesMates, T. E.; Ober, C. K.; Norwood, R. Conductivity and Third-Order Nonlinear Optical Measurements of Polymers with Distyrylbenzene and Diphenylbutadiene Segments. Chem. Mater. 1993, 5, 217–221. https://doi.org/10.1021/cm00026a012.
dc.relation.referencesDam, N.; Scurlock, R. D.; Wang, B.; Ma, L.; Sundahl, M.; Ogilby, P. R. Singlet Oxygen as a Reactive Intermediate in the Photodegradation of Phenylenevinylene Oligomers. Chem. Mater. 1999, 11, 1302–1305. https://doi.org/10.1021/cm9807687.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposaloligo (phenylene vinylene)
dc.subject.proposalheterogeneous photocatalysis
dc.subject.proposalstability
dc.subject.proposalchemical immobilization
dc.subject.proposalphotodegradation
dc.subject.proposaloligo (fenilen vinileno)
dc.subject.proposalfotocatálisis heterogénea
dc.subject.proposalestabilidad
dc.subject.proposalanclaje químico
dc.subject.proposalfotodegradación
dc.title.translatedMejora de la fotoestabilidad en sistemas oligo (fenilen vinileno) y sus aplicaciones como fotocatalizadores heterogéneos
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito