Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorÁlvarez Flórez, Fagua Virginia
dc.contributor.advisorMelgarejo Muñoz, Luz Marina
dc.contributor.authorToro Tobón, Gabriela
dc.date.accessioned2022-09-12T16:29:58Z
dc.date.available2022-09-12T16:29:58Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82280
dc.descriptionilustraciones, fotografías, graficas, tablas
dc.description.abstractLos ambientes semiáridos caracterizados por poseer bajas precipitaciones, están sujetos a procesos de desertificación del suelo. Estos ambientes poseen paisajes heterogéneos con parches de vegetación, conocidos como islas de recursos, que son generadas por especies nodriza que retrasan los procesos de desertificación, pues aumentan la disponibilidad de agua y de nutrientes en el suelo. El presente proyecto tuvo como objetivo caracterizar algunas estrategias fisiológicas, bioquímicas y anatómicas de tres especies de árboles nodriza formadores de islas de recursos en un ambiente semiárido de la Guajira. Las especies de árboles trabajadas fueron Haematoxylum brasiletto, Pithecellobium dulce y Pereskia guamacho. Se evaluaron rasgos fisiológicos foliares (Área, área foliar específica, conductancia estomática contenido foliar de masa seca, contenido hídrico relativo, contenido hídrico, déficit por saturación hídrica, densidad estomática, espesor foliar, pH), y se realizó el análisis de los parámetros de la emisión de la fluorescencia de la clorofila a, donde se tuvieron en cuenta los flujos de energía específicos (ABS/RC, Dio/RC, Tro/RC, Eto/RC, REo/RC) y fenomenológicos (ABS/Cso, Dio/Cso, Tro/Cso, Eto/Cso, REo/Cso), las eficiencias cuánticas (ΦPo, ΦEo, Ψo), el índice de desempeño (PIABS) y la curva OJIP. A partir de esto, se evidenciaron las estrategias esclerófilas con alto desempeño fotoquímico de las especies H. brasiletto y P. dulce. Contrario a esto, P. guamacho posee hojas suculentas que disipan el exceso de energía lumínica en forma de calor. En la caracterización bioquímica, H. brasiletto y P. dulce presentaron los mayores contenidos de pigmentos fotosintéticos (Chl a, Chl b, Chl total y Carotenoides) y de nitrógeno foliar, mientras que P. guamacho obtuvo el mayor contenido de proteína, y fue H. brasiletto la especie con mayor contenido de prolina en las hojas. En la caracterización anatómica foliar, se observó una hoja compacta con un mesófilo dorsiventral similar en las especies H. brasiletto y P. dulce, y una hoja equifacial suculenta en P. guamacho. Este estudio proporciona una base de información integrada para la compresión de las estrategias fisiológicas, bioquímicas y anatómicas que poseen especies de árboles nodriza formadores de islas de recursos en la Guajira, Colombia. (Texto tomado de la fuente)
dc.description.abstractSemi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation, known as resource islands, which are generated by nurse species that delay desertification processes, as they increase the availability of water and nutrients in the soil. The present project aimed to characterize some physiological, biochemical, and anatomical strategies of three species of nurse trees that form resource islands in a semi-arid environment of La Guajira. The tree species studied were Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. Foliar physiological traits were evaluated (Area, specific leaf area, stomatal conductance, leaf dry mass content, relative water content, water content, water saturation deficit, stomatal density, leaf thickness, pH), and the analysis of the parameters of the emission of the fluorescence of chlorophyll a was carried out, taking into account the specific energy flows (ABS / RC, Dio / RC, Tro / RC, Eto / RC, REo / RC) and phenomenological ones (ABS / Cso, Dio / Cso, Tro / Cso, Eto / Cso, REo / Cso), the quantum efficiencies (ΦPo, ΦEo, Ψo), the performance index (PIABS) and the OJIP curve. From this, the sclerophyllous strategies with a high photochemical performance of the H. brasiletto and P. dulce species were evidenced. Contrary to this, P. guamacho has succulent leaves that dissipate excess light energy in the form of heat. In the biochemical characterization, H. brasiletto and P. dulce had the highest content of photosynthetic pigments (Chl a, Chl b, total Chl, and Carotenoids) and foliar nitrogen, while P. guamacho obtained the highest protein content, and was H. brasiletto the species with the highest proline content in the leaves. In the foliar anatomical characterization, a compact leaf with a similar dorsiventral mesophyll was observed in H. brasiletto and P. dulce species, and a succulent equifacial leaf in P. guamacho. This study provides an integrated information base for understanding the physiological, biochemical, and anatomical strategies of nurse tree species forming resource islands in La Guajira, Colombia.
dc.description.sponsorshipLa presente tesis de maestría se desarrolló en el marco del Proyecto de MinCiencias - UNAL: Caracterización de microbiota y rasgos funcionales de flora asociada a islas de recursos en un ambiente semiárido de la alta Guajira y su relación con la materia orgánica y la calidad del suelo. Contrato N°80740-244-2019 del día 27 de marzo del 2019.
dc.format.extentxvi, 85 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología
dc.titleCaracterización fisiológica, bioquímica y anatómica de especies de árboles nodriza formadores de islas de recursos en La Guajira, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.contributor.financerMinisterio de Ciencia, Tecnología e Innovación
dc.contributor.researchgroupFisiología del estrés y biodiversidad en plantas y microorganismos
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biología
dc.description.researchareaFisiología vegetal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Biología
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAfzal, A., Duiker, S. W., & Watson, J. E. (2017). Leaf thickness to predict plant water status. Biosystems Engineering, 156, 148-156.
dc.relation.referencesAguiar FC, Fabião AM, Bejarano MD, Merritt D, Nilsson C, Martins MJ. (2013). FLOWBASE – a riparian plant traitbase (http://www.isa.ulisboa.pt/proj/flowbase/). Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal.
dc.relation.referencesAhmad, I., Kamran, M., Su, W., Haiqi, W., Ali, S., Bilegjargal, B., ... & Han, Q. (2019). Application of uniconazole improves photosynthetic efficiency of maize by enhancing the antioxidant defense mechanism and delaying leaf senescence in semiarid regions. Journal of Plant Growth Regulation, 38(3), 855-869.
dc.relation.referencesAhmad, S., Su, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., ... & Han, Q. (2020). Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma, 257(4), 1079-1092.
dc.relation.referencesAmstrong, W.P. 1992. Logwood and Brazilwood: Trees that spawned 2 Nations. (Modificado de: Pacific Horticulture 53:38-43). Recuperado el 8 de noviembre del 2011 de: http://waynesword.palomar.edu/ecoph4.htm
dc.relation.referencesAn, Y., & Liang, Z. (2013). Drought tolerance of Periploca sepium during seed germination: antioxidant defense and compatible solutes accumulation. Acta physiologiae plantarum, 35(3), 959-967.
dc.relation.referencesAponte, M. (2010). Organización espacial de la región geográfica de la Alta Guajira colombiana. Perspectiva Geográfica, (15), 157-176.
dc.relation.referencesAragón-Gastélum, J. L., Ramírez-Benítez, J. E., González-Durán, E., González-Salvatierra, C., Ramírez-Tobías, H. M., Flores, J., ... & Jarquín-Gálvez, R. (2020). Photochemical activity in early-developmental phases of Agave angustifolia subsp. tequilana under induced global warming: Implications to temperature stress and tolerance. Flora, 263, 151535.
dc.relation.referencesÁvila-Calderón, L. E. A., & Rutiaga-Quiñones, J. G. (2014). Componentes químicos de la madera y la corteza de Haematoxylum brasiletto Karsten (Leguminosae). Madera y bosques, 20(2), 153-158.
dc.relation.referencesAyyaz, A., Amir, M., Umer, S., Iqbal, M., Bano, H., Gul, H. S., ... & Farooq, M. A. (2020). Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon, 6(7), e04364.
dc.relation.referencesBacelar, E. A., Correia, C. M., Moutinho-Pereira, J. M., Gonçalves, B. C., Lopes, J. I., & Torres-Pereira, J. M. (2004). Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree physiology, 24(2), 233-239.
dc.relation.referencesBailey, I. W. (1961). Comparative anatomy of the leaf-bearing Cactaceae, III: form and distribution of crystals in Pereskia, Pereskiopsis and Quiabentia. Journal of the Arnold Arboretum, 42(3), 334-346.
dc.relation.referencesBarclay, R., McElwain, J., DilchEr, D., & SagEMan, B. (2007). The cuticle database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record. Courier-Forschungsinstitut Senckenberg, 258, 39.
dc.relation.referencesBarros, V., Melo, A., Santos, M., Nogueira, L., Frosi, G., & Santos, M. G. (2020). Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiology and Biochemistry, 147, 181-190.
dc.relation.referencesBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
dc.relation.referencesBaunthiyal, M., & Sharma, V. (2014). Response of three semi-arid plant species to fluoride; consequences for chlorophyll florescence. International journal of phytoremediation, 16(4), 397-414.
dc.relation.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento & M. Gutiérrez. (2012a). Brasil. (Haematoxylum brasiletto). En Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/detalle/ncientifico/12940/
dc.relation.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento y M. Gutiérrez. (2012b). chiminango. (Pithecellobium dulce). En Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/detalle/ncientifico/16827/
dc.relation.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento y M. Gutiérrez. (2012c). Guamacho. (Pereskia guamacho). En Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/detalle/ncientifico/6626/
dc.relation.referencesBertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225.
dc.relation.referencesBestric, M. & Zivcak, M., (2013). PSII Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and aplications. En Banjan, G. & Bandhu, A. (Ed.). Molecular Stress Physiology of Plants. New York, USA, Springer. 87-133.
dc.relation.referencesBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
dc.relation.referencesBroetto, F., Duarte, H. M., & Lüttge, U. (2007). Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3–CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. Journal of plant physiology, 164(7), 904-912.
dc.relation.referencesBonanomi, G., Rietkerk, M., Dekker, S. C., & Mazzoleni, S. (2008). Islands of fertility induce co-occurring negative and positive plant-soil feedbacks promoting coexistence. Plant Ecology, 197(2), 207-218.
dc.relation.referencesBoughalleb, F., Abdellaoui, R., Ben-Brahim, N. and Neffati, M. 2014. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Central European Journal of Biology, 9, 1215-12125.
dc.relation.referencesButterworth, C., & Edwards, E. J. (2008). Investigating Pereskia and the earliest divergences in Cactaceae. Haseltonia, 2008(14), 46-53.
dc.relation.referencesCarrillo-López, A., & Yahia, E. M. (2019). Morphology and anatomy. In Yahia, E. M & Carrillo-López, A. (Eds.). Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 113-130). Woodhead Publishing.
dc.relation.referencesCarvalho, E. C. D., Martins, F. R., Soares, A. A., Oliveira, R. S., Muniz, C. R., & Araújo, F. S. (2015). Hydraulic architecture of lianas in a semiarid climate: efficiency or safety?. Acta Botanica Brasilica, 29, 198-206.
dc.relation.referencesCelaya, H., & Castellanos, A. E. (2011). Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana, 29(3), 343-356.
dc.relation.referencesChaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011). Plant functional traits with particular reference to tropical deciduous forests: A review. Journal of biosciences, 36(5), 963-981.
dc.relation.referencesChaturvedi, R. K., Tripathi, A., Raghubanshi, A. S., & Singh, J. S. (2021). Functional traits indicate a continuum of tree drought strategies across a soil water availability gradient in a tropical dry forest. Forest Ecology and Management, 482, 118740.
dc.relation.referencesChaves, M. M., Costa, J. M., Zarrouk, O., Pinheiro, C., Lopes, C. M., & Pereira, J. S. (2016). Controlling stomatal aperture in semi-arid regions—the dilemma of saving water or being cool?. Plant Science, 251, 54-64.
dc.relation.referencesCornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., ... & Pausas, J. G. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian journal of Botany, 51(4), 335-380.
dc.relation.referencesCornelissen, J. H., Quested, H. M., Van Logtestijn, R. S. P., Pérez-Harguindeguy, N., Gwynn-Jones, D., Díaz, S., ... & Aerts, R. (2006). Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?. Oecologia, 147(2), 315-326. DOI 10.1007/s00442-005-0269-z
dc.relation.referencesCornelissen, J. H., Sibma, F., Van Logtestijn, R. S., Broekman, R. A., & Thompson, K. (2011). Leaf pH as a plant trait: Species‐driven rather than soil‐driven variation. Functional Ecology, 25(3), 449-455.
dc.relation.referencesCosentino, S. L., Patanè, C., Sanzone, E., Testa, G., & Scordia, D. (2016). Leaf gas exchange, water status and radiation use efficiency of giant reed (Arundo donax L.) in a changing soil nitrogen fertilization and soil water availability in a semi-arid Mediterranean area. European Journal of Agronomy, 72, 56-69.
dc.relation.referencesCousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. The Plant Journal, 101(4), 816-830.
dc.relation.referencesCrespo, S. C., Moreno-Chacón, A. L., Rojas, A., & Melgarejo, L. M. (2011). Principal component analysis of changes due to water stress for some osmolytes, pigments and antioxidant enzymes in Gmelina arborea Robx: leaves from trees planted in northern Colombia. Journal of the Brazilian Chemical Society, 22(12), 2275-2280.
dc.relation.referencesCroft, H., Chen, J. M., Wang, R., Mo, G., Luo, S., Luo, X., ... & Bonal, D. (2020). The global distribution of leaf chlorophyll content. Remote Sensing of Environment, 236, 111479.
dc.relation.referencesCruz, R. & Jiménez, J. (2008). Haematoxylum sousanum (Leguminosae, Caesalpinioideae), una especie nueva del sur de México. Novon: A Journal for Botanical Nomenclature, 18(1), 25-28.
dc.relation.referencesDave, Y. S., & Patel, N. D. (1976). Structure of Stomatal Complexes in Pedilanthus tithymaloides POIT. III. Flora, 165(3), 235-241.
dc.relation.referencesDe Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In Plant responses to drought stress (pp. 37-61). Springer, Berlin, Heidelberg.
dc.relation.referencesDe Oliveira, A. C. P., Nunes, A., Rodrigues, R. G., & Branquinho, C. (2020). The response of plant functional traits to aridity in a tropical dry forest. Science of The Total Environment, 747, 141177. https://doi.org/10.1016/j.scitotenv.2020.141177
dc.relation.referencesDe Pinto, G. L., De Moncada, N. P., Martínez, M., De Gotera, O. G., Rivas, C., & Ocando, E. (1994). Composition of Pereskia guamacho gum exudates. Biochemical systematics and ecology, 22(3), 291-295.
dc.relation.referencesDe Waroux, Y. L. P., & Lambin, E. F. (2011). Monitoring degradation in arid and semi-arid forests and woodlands: the case of the argan woodlands (Morocco). Applied Geography, 32(2), 777-786.
dc.relation.referencesDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
dc.relation.referencesEdwards, E. J., & Diaz, M. (2006). Ecological physiology of Pereskia guamacho, a cactus with leaves. Plant, cell & environment, 29(2), 247-256.
dc.relation.referencesEdwards, E. J., & Donoghue, M. J. (2006). Pereskia and the origin of the cactus life-form. The American Naturalist, 167(6), 777-793.
dc.relation.referencesEsfandiari, E., Shakiba, M. R., Mahboob, S. A., Alyari, H., & Toorchi, M. (2007). Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Journal of Food Agriculture and Environment, 5(1), 149.
dc.relation.referencesEstrada-Castillo, S., Negritto, M. A., Fernández-Alonso, J. L., & Carbonó-Delahoz, E. (2019). The species of Pereskia (Pereskioideae, Cactaceae) from Colombia. Caldasia, 41(2), 289-300.
dc.relation.referencesEvans, J. R., & Clarke, V. C. (2019). The nitrogen cost of photosynthesis. Journal of Experimental Botany, 70(1), 7-15.
dc.relation.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture, 29, 153-188.
dc.relation.referencesFeyera, S., Beck, E., & Lüttge, U. (2002). Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees, 16(4-5), 245-249.
dc.relation.referencesFlores, J., & Jurado, E. (2003). Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14: 911-916.
dc.relation.referencesFradera-Soler, M., Rudall, P. J., Prychid, C. J., & Grace, O. M. (2021). Evolutionary success in arid habitats: Morpho-anatomy of succulent leaves of Crassula species from southern Africa. Journal of Arid Environments, 185, 104319.
dc.relation.referencesFrosi, G., Oliveira, M. T., Almeida-Cortez, J., & Santos, M. G. (2013). Ecophysiological performance of Calotropis procera: an exotic and evergreen species in Caatinga, Brazilian semi-arid. Acta Physiologiae Plantarum, 35(2), 335-344.
dc.relation.referencesFuentes, J., Varga, D., & Pintó, J. (2018). The Use of High-Resolution Historical Images to Analyse the Leopard Pattern in the Arid Area of La Alta Guajira, Colombia. Geosciences, 8(10), 366.
dc.relation.referencesGarcia‐Forner, N., Adams, H. D., Sevanto, S., Collins, A. D., Dickman, L. T., Hudson, P. J., ... & Mcdowell, N. G. (2016). Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant, cell & environment, 39(1), 38-49.
dc.relation.referencesGarcía-Martí, M., Piñero, M. C., García-Sanchez, F., Mestre, T. C., López-Delacalle, M., Martínez, V., & Rivero, R. M. (2019). Amelioration of the oxidative stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants, 8(4), 81.
dc.relation.referencesGarrido, I., Uriarte, D., Hernández, M., Llerena, J. L., Valdés, M. E., & Espinosa, F. (2016). The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L., cv. Tempranillo) grown in semiarid region: Effects of cluster thinning and water deficit. International journal of molecular sciences, 17(11), 1923.
dc.relation.referencesGarrido, I., Uriarte, D., Hernández, M., Llerena, J. L., Valdés, M. E., & Espinosa, F. (2016). The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L., cv. Tempranillo) grown in semiarid region: Effects of cluster thinning and water deficit. International journal of molecular sciences, 17(11), 1923.
dc.relation.referencesGómez-Espinoza, O., González-Ramírez, D., Méndez-Gómez, J., Guillén-Watson, R., Medaglia-Mata, A., & Bravo, L. A. (2021). Calcium Oxalate Crystals in Leaves of the Extremophile Plant Colobanthus quitensis (Kunth) Bartl.(Caryophyllaceae). Plants, 10(9), 1787.
dc.relation.referencesGonçalves, A. Z., Latansio, S., Detmann, K. C., Marabesi, M. A., Neto, A. A., Aidar, M. P., ... & Mercier, H. (2020). What does the RuBisCO activity tell us about a C3-CAM plant?. Plant Physiology and Biochemistry, 147, 172-180.
dc.relation.referencesGonçalves, C., & Santos Júnior, D. (2005). Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance. Brazilian Journal of Plant Physiology, 17, 307-313.
dc.relation.referencesGonzález‐Rodríguez, Á. M., Brito, P., & Fernández‐Marín, B. (2020). Summit evergreen shrubs living at a semi‐arid treeline: photoprotection systems activation in an open vs an understory site. Physiologia Plantarum, 169, 228–243.
dc.relation.referencesGoremykina, E. V., & Ryabysheva, A. A. (2019). Spatial Distribution of Sclerenchyma in Leaf Blades of Some Fescues (Festuca L., Gramineae Juss.). Moscow University Biological Sciences Bulletin, 74(3), 127-132.
dc.relation.referencesGriffiths, H., & Males, J. (2017). Succulent plants. Current Biology, 27(17), R890-R896.
dc.relation.referencesGu, D., Wang, Q., & Mallik, A. (2018). Non-convergent transpiration and stomatal conductance response of a dominant desert species in central Asia to climate drivers at leaf, branch and whole plant scales. Journal of Agricultural Meteorology, 74(1), 9-17.
dc.relation.referencesGuerra, A., & Scremin-Dias, E. (2018). Leaf traits, sclerophylly and growth habits in plant species of a semiarid environment. Brazilian Journal of Botany, 41(1), 131-144.
dc.relation.referencesGururani, M. A., Venkatesh, J., Ganesan, M., Strasser, R. J., Han, Y., Kim, J. I., ... & Song, P. S. (2015). In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One, 10(5).
dc.relation.referencesHaase, P., Pugnaire, F. I., Clark, S. C., & Incoll, L. D. (2000). Photosynthetic rate and canopy development in the drought-deciduous shrub Anthyllis cytisoides L. Journal of Arid Environments, 46(1), 79-91.
dc.relation.referencesHacke, U. G., Sperry, J. S., & Pittermann, J. (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1(1), 31-41.
dc.relation.referencesHajihashemi, S., Brestic, M., Kalaji, H. M., Skalicky, M., & Noedoost, F. (2020). Environmental pollution is reflected in the activity of the photosynthetic apparatus. Photosynthetica, 58(Special Issue), 529-539.
dc.relation.referencesHansatech Instruments Ltd. (2017). Handy PEA and Pocket PEA. System manual. Version 2.00.
dc.relation.referencesHernández-Pérez, V., Márquez-Guzmán, J., Sánchez-Nieto, S., & Cruz-Ortega, R. (2015). Alvaradoa amorphoides germination at low water potential and the role of the antioxidant system. Botanical Sciences, 93(2), 283-291.
dc.relation.referencesHeyduk, K. (2021). The genetic control of succulent leaf development. Current Opinion in Plant Biology, 59, 101978.
dc.relation.referencesHien, V., Lee, B. R., Islam, M. T., Park, S. H., Jung, H. I., Bae, D. W., & Kim, T. H. (2019). Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and Experimental Botany, 157, 1-10.
dc.relation.referencesHulshof, C. M., Martínez-Yrízar, A., Burquez, A., Boyle, B., & Enquist, B. J. (2013). Plant functional trait variation in tropical dry forests: A review and synthesis. Tropical Dry Forests in the Americas: Ecology, Conservation, and Management; Sánchez-Azofeifa, A., Powers, JS, Fernandes, GW, Quesada, M., Eds, 129-140.
dc.relation.referencesInoue, S., Dang, Q. L., Man, R., & Tedla, B. (2019). Northward migration of trembling aspen will increase growth but reduce resistance to drought-induced xylem cavitation. Botany, 97(11), 627-638.
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2021). Tiempo y clima, recuperado el 6 de noviembre del 2021 de http://www.ideam.gov.co/web/tiempo-y-clima/clima
dc.relation.referencesIzaguirre, M. M., Mazza, C. A., SvatoŠ, A., Baldwin, I. T., & BallarÉ, C. L. (2007). Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Annals of Botany, 99(1), 103-109.
dc.relation.referencesJacobsen, A. L., Pratt, R. B., Davis, S. D., & Ewers, F. W. (2008). Comparative community physiology: nonconvergence in water relations among three semi‐arid shrub communities. New Phytologist, 180(1), 100-113.
dc.relation.referencesJardim, A., Santos, H., Alves, H., Ferreira-Silva, S., de Souza, L., Júnior, G., ... & da Silva, T. (2021). Genotypic differences relative photochemical activity, inorganic and organic solutes and yield performance in clones of the forage cactus under semi-arid environment. Plant Physiology and Biochemistry, 162, 421-430.
dc.relation.referencesJohansen, D. A. 1940. Plant microtechnique. New York: McGraw-Hill. ▪
dc.relation.referencesKalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., ... & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta physiologiae plantarum, 38(4), 102.
dc.relation.referencesKarwowska, K., Brzezicka, E., Kozieradzka-Kiszkurno, M., & Chernetskyy, M. (2015). Anatomical structure of the leaves of Crassula cordata (Crassulaceae). Modern Phytomorphology, (8), 53-54.
dc.relation.referencesKjeldahl, J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius, Zeitschrift f. anal. Chemie 22(1): 366-382. doi: 10.1007/BF01338151.
dc.relation.referencesKim, H. S., Oren, R., & Hinckley, T. M. (2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiology, 28(4), 559-577.
dc.relation.referencesKoźmińska, A., Al Hassan, M., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., & Vicente, O. (2019). Responses of succulents to drought: comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae, 243, 235-242.
dc.relation.referencesKuang, Y.W., Xu, Y.M., Zhang, L.L., Hou, E.Q. & Shen, W.J. (2017). Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Front. Plant Sci, 8 - 802. doi: 10.3389/fpls.2017.00802
dc.relation.referencesKumar, D., Singh, H., Raj, S., & Soni, V. (2020). Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports, 24, 100813. https://doi.org/10.1016/j.bbrep.2020.100813
dc.relation.referencesKumar, M., Nehra, K., & Duhan, J. S. (2013). Phytochemical analysis and antimicrobial efficacy of leaf extracts of Pithecellobium dulce. Asian Journal of Pharmaceutical and Clinical Research, 6(1), 70-76.
dc.relation.referencesLambers, H., & Oliveira, R. S. (2019). Role in Ecosystem and Global Processes: Decomposition. In Plant Physiological Ecology (pp. 665-676). Springer, Cham.
dc.relation.referencesLaxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94.
dc.relation.referencesLeón, E. & Acosta, C. M. (2015). Análisis de vulnerabilidad del territorio por sequía en el departamento de la Guajira, Colombia, a partir de una visión basada en necesidades básicas insatisfechas. Tesis de pregrado no publicada. Universidad Católica de Colombia, Bogotá, Colombia.
dc.relation.referencesLi, R. H., Guo, P. G., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5(10), 751-757.
dc.relation.referencesLi, L., Li, X. Y., Xu, X. W., Lin, L. S., & Zeng, F. J. (2013). Effects of high temperature on the chlorophyll a fluorescence of Alhagi sparsifolia at the southern Taklamakan Desert. Acta physiologiae plantarum, 36(2), 243-249.
dc.relation.referencesLi, Y., Ma, Q., Chen, J. M., Croft, H., Luo, X., Zheng, T., ... & Liu, J. (2021). Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data. Remote Sensing of Environment, 264, 112618.
dc.relation.referencesLichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology 148: 350-382.
dc.relation.referencesLichtenthaler, H. K. (1992). The Kautsky effect: 60 tears of chlorophyll fluorescence induction kinetics. Photosynthetica 27 (1-2): 45-55.
dc.relation.referencesFilho, J. M. P. (2004). Gas exchange of the umbu tree under semi-arid conditions. Revista Brasileira de Fruticultura, 26(2), 206-208.
dc.relation.referencesLima, M., Soares, A., Porto, J., Sá, F., Carvalho, M., & Braga, F. (2020). Leaf anatomy of Rubiaceae species in a semiarid area of Brazil. Rodriguésia, 71.
dc.relation.referencesLiu, C., Li, Y., Xu, L., Chen, Z., & He, N. (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific reports, 9(1), 1-8.
dc.relation.referencesLiu, S., An, S., Yan, Z., Ren, J., Lu, X., Ge, F., & Han, W. (2021). Variation and potential influence factors of foliar pH in land-water ecozones of three small plateau lakes. Journal of Plant Ecology, 14(3), 504-514.
dc.relation.referencesLiu, S., Yan, Z., Chen, Y., Zhang, M., Chen, J., Han, W. (2018). Foliar pH, an emerging plant functional trait: Biogeography and variability across northern China. Global Ecol Biogeogr, 1–12. https://doi.org/10.1111/geb.12860
dc.relation.referencesLiu, Y., Lei, S. G., Chen, X. Y., Chen, M., Zhang, X. Y., & Long, L. L. (2020). Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O–J–I–P chlorophyll a fluorescence analysis. Photosynthetica, 58(5), 1178-1187.
dc.relation.referencesLopez, F. B., & Barclay, G. F. (2017). Plant anatomy and physiology. In Badal, S. & Delgoda, R. (Eds.). Pharmacognosy (pp. 45-60). Academic Press.
dc.relation.referencesLozano, Y. M., Hortal, S., Armas, C., & Pugnaire, F. I. (2020). Complementarity in nurse plant systems: soil drives community composition while microclimate enhances productivity and diversity. Plant and Soil, 1-12.
dc.relation.referencesMadhumitha, G., Fowsiya, J., Gupta, N., Kumar, A., & Singh, M. (2019). Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 127, 43-51.
dc.relation.referencesManimaran, P., Sanjay, M. R., Senthamaraikannan, P., Yogesha, B., Barile, C., & Siengchin, S. (2018). A new study on characterization of Pithecellobium dulce fiber as composite reinforcement for light-weight applications. Journal of Natural Fibers.
dc.relation.referencesMarques, T. V., Mendes, K., Mutti, P., Medeiros, S., Silva, L., Perez-Marin, A. M., ... & Bezerra, B. (2020). Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agricultural and Forest Meteorology, 287, 107957.
dc.relation.referencesMaxwell, K. (2002). Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. Functional Plant Biology, 29(6), 679-687.
dc.relation.referencesMaxwell, K., Badger, M. R., & Osmond, C. B. (1998). A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Functional Plant Biology, 25(1), 45-52.
dc.relation.referencesMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.
dc.relation.referencesMaxwell, K., von Caemmerer, S., & Evans, J. R. (1997). Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism?. Functional Plant Biology, 24(6), 777-786.
dc.relation.referencesMedina, A., Roldán, A., & Azcón, R. (2010). The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of environmental management, 91(12), 2547-2553.
dc.relation.referencesMedina, E., Garcia, V., & Cuevas, E. (1990). Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica, 51-64.
dc.relation.referencesMendes, K., Granja, J. A., Ometto, J. P., Antonino, A. C., Menezes, R. S., Pereira, E. C., & Pompelli, M. F. (2017). Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Functional Plant Biology, 44(10), 1039-1051.
dc.relation.referencesMendes, M., Lacerda, C. F. D., Fernandes, F. É. P., Cavalcante, A. C. R., & Oliveira, T. S. D. (2013). Ecophysiology of deciduous plants grown at different densities in the semiarid region of Brazil. Theoretical and Experimental Plant Physiology, 25(2), 94-105.
dc.relation.referencesMihaljević, I., Viljevac Vuletić, M., Šimić, D., Tomaš, V., Horvat, D., Josipović, M., ... & Vuković, D. (2021). Comparative Study of Drought Stress Effects on Traditional and Modern Apple Cultivars. Plants, 10(3), 561.
dc.relation.referencesMoncayo, M. C., & Gálvez, A. (2018). Islas de fertilidad: una revisión sistemática de su estructura y operación. IDESIA, 36(1), 115-122.
dc.relation.referencesMonroy, R., & Colín, H. (2004). El guamúchil Pithecellobium dulce (Roxb.) Benth, un ejemplo de uso múltiple. Madera y bosques, 10(1), 35-53.
dc.relation.referencesMontesinos‐Navarro, A., Verdú, M., Querejeta, J. I., & Valiente‐Banuet, A. (2017). Nurse plants transfer more nitrogen to distantly related species. Ecology, 98(5), 1300-1310.
dc.relation.referencesMora‐Poblete, F., Ballesta, P., Lobos, G. A., Molina‐Montenegro, M., Gleadow, R., Ahmar, S., & Jiménez‐Aspee, F. (2021). Genome‐wide association study of cyanogenic glycosides, proline, sugars, and pigments in Eucalyptus cladocalyx after 18 consecutive dry summers. Physiologia Plantarum.
dc.relation.referencesMoreno-Galván, A. E., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., & Bonilla, R. R. (2020a). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147, 103367.
dc.relation.referencesMoreno-Galván, A., Romero-Perdomo, F. A., Estrada-Bonilla, G., Meneses, C. H. S. G., & Bonilla, R. R. (2020b). Dry-caribbean Bacillus spp. strains ameliorate drought stress in maize by a strain-specific antioxidant response modulation. Microorganisms, 8(6), 823.
dc.relation.referencesMoreno, L., Crespo, S., Pérez, W. & Melgarejo, L. M. (2010). Capítulo X. Pruebas bioquímicas como herramientas para estudios en fisiología. En Melgarejo, L. M. (Eds.). Experimentos de fisiología vegetal. Bogotá, Colombia. Universidad Nacional de Colombia.
dc.relation.referencesMoreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119-129.
dc.relation.referencesNassar, J. M., Hamrick, J. L., & Fleming, T. H. (2002). Allozyme diversity and genetic structure of the leafy cactus (Pereskia guamacho [Cactaceae]). Journal of Heredity, 93(3), 193-200.
dc.relation.referencesNautiyal, S., Bhaskar, K., & Khan, I. (2015). Biodiversity of Semiarid Landscape: Baseline Study for Understanding the Impact of Human Development on Ecosystems. New York, USA, Springer.
dc.relation.referencesNavarro‐Cano, J. A., Verdú, M., & Goberna, M. (2018). Trait‐based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of applied ecology, 55(3), 1195-1206.
dc.relation.referencesOgburn, R. M., & Edwards, E. J. (2009). Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. American Journal of Botany, 96(2), 391-408.kar
dc.relation.referencesOliveira, D., Medeiros, M., Pereira, S., Oliveira, M., Frosi, G., Arruda, E., & Santos, M. (2016). Ecophysiological leaf traits of native and exotic palm tree species under semi-arid conditions. Bragantia, 75, 128-134.
dc.relation.referencesOliveira, M., Matzek, V., Dias Medeiros, C., Rivas, R., Marinho Falcão, H., & Santos, M. G. (2014). Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest. PloS one, 9(8), e105514.
dc.relation.referencesPabón, J. & Alarcón, C. J. (2016). El efecto del cambio climático sobre las zonas áridas y semiaridas de Colombia. In Материалы Международной конференции «ИнтерКарто/ИнтерГИС», 1 (22): 56-62.
dc.relation.referencesPadilla, F., & Pugnaire, F. (2006). The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4(4): 196–202.
dc.relation.referencesParrotta, J. (1991). Pithecellobium dulce (Roxb.) Benth. Guamúchil, Madras thorn. SO-ITF-SM-40. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 5p.
dc.relation.referencesPerea, R., Cunha, J. S., Spadeto, C., Gomes, V. M., Moura, A. L., Rúbia, B., & Fernandes, G. W. (2019). Nurse shrubs to mitigate plant invasion along roads of montane Neotropics. Ecological Engineering, 136, 193-196.
dc.relation.referencesPérez, L. V., Rojas, Y. & Melgarejo, L. M. (2010). Capítulo IV. Agua. En Melgarejo, L. M. (Eds.). Experimentos de fisiología vegetal. Bogotá, Colombia. Universidad Nacional de Colombia.
dc.relation.referencesPivovaroff, A. L., Pasquini, S. C., De Guzman, M. E., Alstad, K. P., Stemke, J. S., & Santiago, L. S. (2016). Multiple strategies for drought survival among woody plant species. Functional Ecology, 30(4), 517-526.
dc.relation.referencesPizzani, P., Godoy, S., Arias, A., García, D. E., & Linares, Z. (2009). Fósforo total, fósforo fítico y actividad fitásica en los frutos de árboles forrajeros de los Llanos Centrales de Venezuela. Pastos y Forrajes, 32(2), 1-1.
dc.relation.referencesPowers, J. S., & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology, 24(4), 927-936.
dc.relation.referencesR Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria. Descargado de https://www.R-project.org/
dc.relation.referencesRapacz, M., Sasal, M., Kalaji, H. M., & Kościelniak, J. (2015). Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PloS one, 10(7), 1-18.
dc.relation.referencesRedha, A., Al-Mansour, N., Suleman, P., Afzal, M., & Al-Hasan, R. (2011). Leaf traits and histochemistry of trichomes of Conocarpus lancifolius a Combretaceae in semi-arid conditions. American Journal of Plant Sciences, 2(02), 165.
dc.relation.referencesResco, V., Ignace, D. D., Sun, W., Huxman, T. E., Weltzin, J. F., & Williams, D. G. (2008). Chlorophyll fluorescence, predawn water potential and photosynthesis in precipitation pulse‐driven ecosystems–implications for ecological studies. Functional Ecology, 22(3), 479-483.
dc.relation.referencesRey, A., Pegoraro, E., Oyonarte, C., Were, A., Escribano, P. & Raimundo, J. (2011). Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biology & Biochemistry, 43, 393-403.
dc.relation.referencesRivas, R., Barros, V., Falcão, H., Frosi, G., Arruda, E., & Santos, M. (2020). Ecophysiological Traits of Invasive C3 Species Calotropis procera to Maintain High Photosynthetic Performance Under High VPD and Low Soil Water Balance in Semi-Arid and Seacoast Zones. Front. Plant Sci. 11:717. doi: 10.3389/fpls.2020.00717
dc.relation.referencesRobles, A., Raz, L., & Marquínez, X. 2016. Floral anatomy of Peristethium leptostachyum 534 (Loranthaceae). Revista de Biología Tropical, 64: 341-352.
dc.relation.referencesRosado, J. R., & Moreno, M. I. (2015). The role of myths and plant diseases in the Wayuu ethnic group, Guajira, Colombia. Pharmacology Online, 2, 124-130.
dc.relation.referencesSade, N., Gebremedhin, A., & Moshelion, M. (2012). Risk-taking plants: anisohydric behavior as a stress-resistance trait. Plant signaling & behavior, 7(7), 767-770.
dc.relation.referencesSalazar, P. C., Navarro-Cerrillo, R. M., Grados, N., Cruz, G., Barrón, V., & Villar, R. (2019). Tree size and leaf traits determine the fertility island effect in Prosopis pallida dryland forest in Northern Peru. Plant and soil, 437, 117-135.
dc.relation.referencesSalgado-Negret, B., Pulido, E., Cabrera, M., Ruíz, C. & Paz, H. (2015). Protocolo para la medición de rasgos funcionales en plantas. pp 38-81. En: Salgado-Negret, B. (ed). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. Bogotá, D. C. Colombia. 236 pp.
dc.relation.referencesSchlesinger, W. H., & Pilmanis, A. M. (1998). Plant-soil interactions in deserts. Biogeochemistry, 42, 169-187.
dc.relation.referencesSecorun, A. C., & Souza, L. A. D. (2011). Morphology and anatomy of Rhipsalis cereuscula, Rhipsalis floccosa subsp. hohenauensis and Lepismium cruciforme (Cactaceae) seedlings. Revista mexicana de biodiversidad, 82(1), 131-143.
dc.relation.referencesSilva, A. M. L., de Faria Lopes, S., Vitorio, L. A. P., Santiago, R. R., de Mattos, E. A., & Trovao, D. M. D. B. M. (2014). Plant functional groups of species in semiarid ecosystems in Brazil: wood basic density and SLA as an ecological indicator. Brazilian Journal of Botany, 37(3), 229-237.
dc.relation.referencesSitko, K., Rusinowski, S., Kalaji, H. M., Szopiński, M., & Małkowski, E. (2017). Photosynthetic efficiency as bioindicator of environmental pressure in A. halleri. Plant Physiology, 175(1), 290-302.
dc.relation.referencesSiyag, P. (2014). Afforestation, Reforestation and Forest Restoration in Arid and Semi-arid Tropics. A Manual of Technology & Management. Springer Science & Business Media.
dc.relation.referencesSolarte, M. E., Moreno, L., and Melgarejo, L. M. 2010. VI. Fotosíntesis y pigmentos vegetales. In L. M., Melgarejo [eds.]. Experimentos en Fisiología Vegetal, 107-122. Universidad Nacional de Colombia, Bogotá, Colombia.
dc.relation.referencesSotomayor, D. A., & Drezner, T. D. (2019). Dominant plants alter the microclimate along a fog gradient in the Atacama Desert. Plant Ecology, 220(4-5), 417-432.
dc.relation.referencesSouza, B. C. D., Oliveira, R. S., Araújo, F. S. D., Lima, A. L. A. D., & Rodal, M. J. N. (2015). Divergências funcionais e estratégias de resistência à seca entre espécies decíduas e sempre verdes tropicais 1. Rodriguésia, 66, 21-32.
dc.relation.referencesSrinivasarao, C., Shanker, A. K., Kundu, S., & Reddy, S. (2016). Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols. Journal of Photochemistry and Photobiology B: Biology, 160, 86-95.
dc.relation.referencesStirbet, A. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1-2), 236-257.
dc.relation.referencesStrasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation, 445-483.
dc.relation.referencesStrasser, R. J., Tsimilli, M., & Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. Chlorophyll a fluorescence. Springer, Dordrecht. 321-362.
dc.relation.referencesStuart, F., Matson, P., & Vitousek, P. (2011). Principles of Terrestrial Ecosystem Ecology. Second Edition. Springer, New York, USA.
dc.relation.referencesSuárez, J. C., Melgarejo, L. M., Casanoves, F., Di Rienzo, J. A., DaMatta, F. M., & Armas, C. (2018). Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. PloS one, 13(11), e0206149.
dc.relation.referencesSundberg, M. D. (1986). A comparison of stomatal distribution and length in succulent and non-succulent desert plants. Phytomorphology, 36(1-2), 53-66.
dc.relation.referencesTaiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.
dc.relation.referencesTakahashi, S., Bauwe, H., & Badger, M. (2007). Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant physiology, 144(1), 487-494.
dc.relation.referencesTeixeira, L. H., Oliveira, B. F., Krah, F. S., Kollmann, J., & Ganade, G. (2020). Linking plant traits to multiple soil functions in semi-arid ecosystems. Journal of Arid Environments, 172, 104040.
dc.relation.referencesTrofimov, D., & Rohwer, J. G. (2018). Epidermal features allowing identification of evolutionary lineages in the Ocotea complex (Lauraceae). Perspectives in Plant Ecology, Evolution and Systematics, 31, 17-35.
dc.relation.referencesTucker, S. C., & Kantz, K. E. (1997). Comparative floral development and evolution in tribe Caesalpinieae (Leguminosae: Caesalpinioideae). Haematoxylum. American Journal of Botany, 84(8), 1047-1063.
dc.relation.referencesVasellati, V., Oesterheld, M., Medan, D. and Loreti, J. (2001). Efects of Flooding and Drought on the Anatomy of Paspalum dilatatum. Annals of Botany, 88, 355-360.
dc.relation.referencesVendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource‐use strategy in floras with succulent species. New Phytologist, 154(1), 147-157.
dc.relation.referencesVourlitis, G. L., de Souza Nogueira, J., de Almeida Lobo, F., Sendall, K. M., de Paulo, S. R., Antunes Dias, C. A., ... & de Andrade, N. L. R. (2008). Energy balance and canopy conductance of a tropical semi‐deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3).
dc.relation.referencesWada, S., Miyake, C., Makino, A., & Suzuki, Y. (2020). Photorespiration coupled with CO2 assimilation protects Photosystem I From photoinhibition under moderate Poly (Ethylene Glycol)-Induced osmotic stress in Rice. Frontiers in Plant Science, 11.
dc.relation.referencesWarwick, N. W., Hailey, L., Clarke, K. L., & Gasson, P. E. (2017). Climate trends in the wood anatomy of Acacia sensu stricto (Leguminosae: Mimosoideae). Annals of botany, 119(8), 1249-1266.
dc.relation.referencesWhite, R. P., Tunstall, D. B., & Henninger, N. (2002). An ecosystem approach to drylands: building support for new development policies. Washington, DC: World Resources Institute.
dc.relation.referencesXavier, L. D. P., & Arruda, E. C. P. D. (2021). Leaf anatomy of Senna cana (Fabaceae) in a seasonally dry tropical forest. Revista Caatinga, 34, 155-165.
dc.relation.referencesYang, L., Ren, H., Liu, N., & Wang, J. (2013). Can perennial dominant grass Miscanthus sinensis be nurse plant in recovery of degraded hilly land landscape in South China? Landscape and ecological engineering, 9(2), 213-225.
dc.relation.referencesYeats, T. H., & Rose, J. K. (2013). The formation and function of plant cuticles. Plant physiology, 163(1), 5-20.
dc.relation.referencesYücedağ, C., Sanders, J., Musah, M., & Gailing, O. (2019). Stomatal density in Quercus petraea and Q. robur natural populations in Northern Turkey. Dendrobiology, 81, 58-64.
dc.relation.referencesZhang, Y., & Liu, G. J. (2018). Effects of cesium accumulation on chlorophyll content and fluorescence of Brassica juncea L. Journal of environmental radioactivity, 195, 26-32.
dc.relation.referencesZor, T., & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical biochemistry, 236(2), 302-308.
dc.relation.referencesZúñiga-Feest, A., Muñoz, G., Bustos-Salazar, A., Ramírez, F., Delgado, M., Valle, S., & Díaz, L. (2018). The nitrogen fixing specie Sophora cassioides (Fabaceae), is nutritionally favored and their rhizosphere bacteria modified when is co-cultivated with the cluster root forming Embothrium coccineum (Proteaceae). Journal of soil science and plant nutrition, 18(3), 597-616.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembÁrboles - fisiología
dc.subject.lembTrees - physiology
dc.subject.lembÁrboles - análisis
dc.subject.lembTrees - analysis
dc.subject.proposalPigmentos
dc.subject.proposalÁrboles nodriza
dc.subject.proposalFluorescencia de la clorofila a
dc.subject.proposalRasgos fisiológicos foliares
dc.subject.proposalAnatomía foliar
dc.subject.proposalOsmolitos
dc.subject.proposalFoliar physiological traits
dc.subject.proposalChlorophyll a fluorescence
dc.subject.proposalPigments
dc.subject.proposalOsmolytes
dc.subject.proposalFoliar anatomy
dc.title.translatedPhysiological, biochemical and anatomical characterization of nurse tree species that form resource islands in La Guajira, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleCaracterización de microbiota y rasgos funcionales de flora asociada a islas de recursos en un ambiente semiárido de la alta Guajira y su relación con la materia orgánica y la calidad del suelo.
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito