Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorDiaz Vargas, Carlos Andrés
dc.contributor.authorPineda Hernández, Daniel Alejandro
dc.date.accessioned2022-09-13T22:19:18Z
dc.date.available2022-09-13T22:19:18Z
dc.date.issued2021-01-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82288
dc.descriptiongráficos, ilustraciones, tablas
dc.description.abstractEn el presente trabajo se desarrolló una novedosa metodología para la detección preliminar de cocaína en matrices poliméricas por medio de espectroscopia de impedancia electroquímica (EIS). Para esto, se realizó un análisis sistemático de polímeros con y sin cocaína incrustada a fin de determinar la respuesta eléctrica de estas matrices e identificar una señal característica que indique la presencia del alcaloide. Con el fin de soportar este estudio, se realizaron caracterizaciones fisicoquímicas y composicionales que validaran los resultados obtenidos por medio de EIS. Los datos obtenidos por EIS fueron analizados mediante circuitos equivalentes a fin de realizar una descripción detallada del comportamiento eléctrico de los polímeros, mediante este análisis se encontró que los polímeros sin dopaje presentan un circuito equivalente compuesto de una resistencia y un elemento de fase constante demostrando el carácter dieléctrico de estas muestras, mientras que los polímeros dopados presentan una capacitancia adicional que sugiere una doble polarización debido a la presencia de cocaína en la matriz . Adicionalmente, se validó que existe una relación entre la presencia de la cocaína incrustada en las matrices poliméricas con la resistencia eléctrica del material. La presencia del alcaloide disminuye significativamente la resistencia eléctrica del material debido a un aumento en la conductividad de la muestra producto de la estructura del dopaje. (Texto tomado de la fuente)
dc.description.abstractIn the present work, a novel methodology was developed for the preliminary detection of cocaine of cocaine embedded in polymeric matrices by electrochemical impedance spectroscopy (EIS). A systematic analysis of polymers with and without embedded cocaine was carried out to determine the electrical response of these matrices and identify a characteristic signal that indicates the presence of the alkaloid. To support this study, physicochemical and compositional characterizations were carried out to validate the results obtained through EIS. The data obtained by EIS were analyzed by means of equivalent circuits in order to carry out a detailed description of the electrical behavior of the polymers, through this analysis it was found that the polymers without doping present an equivalent circuit composed of a resistance and a constant phase element, demonstrating the dielectric character of these samples, while the doped polymers present an additional capacitance that suggests a double polarization due to the presence of cocaine in the matrix. Additionally, it was validated that there is a relationship between the presence of cocaine embedded in the polymeric matrices with the electrical resistance of the material. The presence of the alkaloid significantly decreases the electrical resistance of the material due to an increase in the conductivity of the sample because of the doping structure.
dc.format.extent54 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleMetodología para la detección de cocaína en matrices poliméricas mediante técnicas electroquímicas
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.researchgroupLaboratorio de física del plasma
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesUnited Nations, World Drug Report 2019: Executive Summary. 2019.
dc.relation.referencesUnited Nations, World Drug Report 2019: Global overview of drug demand and supply. 2019.
dc.relation.referencesE. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, “In situ detection of cocaine hydrochloride in clothing impregnated with the drug using benchtop and portable Raman spectroscopy,” J. Raman Spectrosc., vol. 41, no. 9, pp. 938–943, 2010, doi: 10.1002/jrs.2518.
dc.relation.referencesT. M. Bedward, L. Xiao, and S. Fu, “Application of Raman spectroscopy in the detection of cocaine in food matrices,” Aust. J. Forensic Sci., vol. 51, no. 2, pp. 209–219, 2019, doi: 10.1080/00450618.2017.1356867.
dc.relation.referencesS. Grabherr et al., “Detection of smuggled cocaine in cargo using MDCT,” Am. J. Roentgenol., vol. 190, no. 5, pp. 1390–1395, 2008, doi: 10.2214/AJR.07.3048.
dc.relation.referencesV. K. Wankhade and B. G. Chikhalkar, “Body packing and intra-vaginal body pushing of cocaine: A case report,” Leg. Med., vol. 31, no. November 2017, pp. 10–13, 2018, doi: 10.1016/j.legalmed.2017.12.004.
dc.relation.referencesA. Elkbuli, J. D. Ehrhardt, S. Hai, M. McKenney, and D. Boneva, “Surgical care for ingested cocaine packets: Case report and literature review,” Int. J. Surg. Case Rep., vol. 55, pp. 84–87, 2019, doi: 10.1016/j.ijscr.2019.01.013.
dc.relation.referencesS. Stinson, “Cocaine smuggled as ingredient in plastic,” Chem. Eng. News, vol. 69, no. 27, p. 58, 1991.
dc.relation.referencesP. Gruter and D. Van De Mheen, “Dutch cocaine trade: The perspective of Rotterdam cocaine retail dealers,” Crime, Law Soc. Chang., vol. 44, no. 1, pp. 19–33, 2006, doi: 10.1007/s10611-005-9001-5.
dc.relation.referencesS. George, “Has the cocaine epidemic arrived in the UK?,” Forensic Sci. Int., vol. 143, no. 2–3, pp. 187–190, 2004, doi: 10.1016/j.forsciint.2004.03.028.
dc.relation.referencesA. L. N. Van Nuijs et al., “Dancing on Coke: Smuggling Cocaine Dispersed in Polyvinyl Alcohol,” J. Forensic Sci., vol. 57, no. 1, pp. 234–238, 2012, doi: 10.1111/j.1556-4029.2011.01947.x.
dc.relation.referencesK. Rodríguez, “Las tácticas de los carteles para camuflar la cocaína,” El Espectador, 2018.
dc.relation.referencesT. Gostič and S. Klemenc, “Evidence on unusual way of cocaine smuggling: Cocaine-polymethyl methacrylate (PMMA) solid solution-study of clandestine laboratory samples,” Forensic Sci. Int., vol. 169, no. 2–3, pp. 210–219, 2007, doi: 10.1016/j.forsciint.2006.02.048.
dc.relation.referencesUNODC, “Recommended methods for the Identification and Analysis of Cocaine in Seized Materials.,” 2012. [Online]. Available: http://www.unodc.org/documents/scientific/Cocaine_Manual_Rev_1.pdf.
dc.relation.referencesY. Tsumura, T. Mitome, and S. Kimoto, “False positives and false negatives with a cocaine-specific field test and modification of test protocol to reduce false decision,” Forensic Sci. Int., vol. 155, no. 2–3, pp. 158–164, 2005, doi: 10.1016/j.forsciint.2004.11.011.
dc.relation.referencesUnited Nations, DRUG MARKET TRENDS : COCAINE AMPHETAMINE- TYPE STIMULANTS. 2021.
dc.relation.referencesONU, “Executive sumary World drug report,” 2019.
dc.relation.referencesUnited Nations, World Drug Report 2019: Stimulants. 2019.
dc.relation.referencesNaciones Unidas, Global Overview: Drug Demand Drug Supply. 2021.
dc.relation.referencesUNODC, Drug Market Trends : Cannabis. 2021.
dc.relation.referencesUnited Nations, Analysis of drug markets. 2018.
dc.relation.referencesA. Schaper, R. Hofmann, M. Ebbecke, H. Desel, and C. Langer, “Kokain-body-packingCocaine-body-packing. Infrequent indication for laparotomy,” Der Chir., vol. 74, no. 7, pp. 626–631, 2003, doi: 10.1007/s00104-002-0603-5.
dc.relation.referencesT. Gostič, S. Klemenc, and B. Štefane, “A study of the thermal decomposition of adulterated cocaine samples under optimized aerobic pyrolytic conditions,” Forensic Sci. Int., vol. 187, no. 1–3, pp. 19–28, 2009, doi: 10.1016/j.forsciint.2009.02.009.
dc.relation.referencesS. Armenta and M. de la Guardia, “Analytical methods to determine cocaine contamination of banknotes from around the world,” TrAC - Trends Anal. Chem., vol. 27, no. 4, pp. 344–351, 2008, doi: 10.1016/j.trac.2008.01.012.
dc.relation.referencesUnited Nations International Drugs Control Programma Vienna, Rapid testing methods of drugs of abuse. 1994.
dc.relation.referencesUNODC, Rapid testing methods of drugs of abuse. 1994.
dc.relation.referencesF. W. GRANT, W. C. MARTIN, and R. W. QUACKENBUSH, “A simple sensitive specific field test for cocaine based on the recognition of the odour of methyl benzoate as a test product,” 1975. [Online]. Available: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1975-01-01_2_page005.html.
dc.relation.referencesJ. Swiatko, P. R. De Forest, and M. S. Zedeck, “Further studies on spot tests and microcrystal tests for identification of cocaine.,” J. Forensic Sci., vol. 48, no. 3, pp. 581–585, 2003.
dc.relation.referencesZ. P. GUMUS, V. U. Celenk, E. Guler, B. Demir, H. Coskunol, and S. Timur, “Determination of Cocaine and Benzoylecgonine in Biological Matrices By Hplc and Lc-Ms/Ms.,” J. Turkish Chem. Soc. Sect. A Chem., vol. 3, no. 3, p. 535, 2016, doi: 10.18596/jotcsa.82665.
dc.relation.referencesS. Suzen and S. A. Ozkan, “Combination of Electrochemical, Spectrometric and Other Analytical Techniques for High Throughput Screening of Pharmaceutically Active Compounds,” Comb. Chem. High Throughput Screen., vol. 13, no. 7, pp. 658–664, 2012, doi: 10.2174/1386207311004070658.
dc.relation.referencesR. Bujak et al., “Selective determination of cocaine and its metabolite benzoylecgonine in environmental samples by newly developed sorbent materials,” Talanta, vol. 146, pp. 401–409, 2016, doi: 10.1016/j.talanta.2015.08.066.
dc.relation.referencesE. Al-Hetlani, “Forensic drug analysis and microfluidics,” Electrophoresis, vol. 34, no. 9–10, pp. 1262–1272, 2013, doi: 10.1002/elps.201200637.
dc.relation.referencesC. Pérez-Alfonso, N. Galipienso, S. Garrigues, and M. de la Guardia, “Preliminary results on direct quantitative determination of cocaine in impregnated materials by infrared spectroscopy,” Microchem. J., vol. 143, no. May, pp. 110–117, 2018, doi: 10.1016/j.microc.2018.07.026.
dc.relation.referencesE. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, “In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy,” Anal. Chim. Acta, vol. 615, no. 1, pp. 63–72, 2008, doi: 10.1016/j.aca.2008.03.051.
dc.relation.referencesE. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, “In situ detection of cocaine hydrochloride in clothing impregnated with the drug using benchtop and portable Raman spectroscopy,” J. Raman Spectrosc., vol. 41, no. 9, pp. 938–943, 2010, doi: 10.1002/jrs.2518.
dc.relation.referencesC. A. Diaz V., W. F. Garzon M., J. C. H. V, and E. Restrepo-Parra, “Characterization by TGA, SEM, and EDX of Polymeric Matrices Used as Cocaine Camouflages,” Mod. Appl. Sci., vol. 12, no. 12, p. 119, Nov. 2018, doi: 10.5539/mas.v12n12p119.
dc.relation.referencesE. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, vol. 20, no. 3. 2005.
dc.relation.referencesM. Roushani and F. Shahdost-Fard, “Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite,” Mikrochim. Acta, vol. 185, no. 4, p. 214, 2018, doi: 10.1007/s00604-018-2709-6.
dc.relation.referencesS. A. Indians, “The Role of Coca in the History , Religion , and Medicine of South American Indians,” Econ. Bot., pp. 422–438, 1884.
dc.relation.referencesV. B. Stolberg, “The use of coca: Prehistory, history, and ethnography,” J. Ethn. Subst. Abuse, vol. 10, no. 2, pp. 126–146, 2011, doi: 10.1080/15332640.2011.573310.
dc.relation.referencesR. A. Goldstein, C. DesLauriers, A. Burda, and K. Johnson-Arbor, “Cocaine: history, social implications, and toxicity: a review,” Semin. Diagn. Pathol., vol. 26, no. 1, pp. 10–17, 2009, doi: 10.1053/j.semdp.2008.12.001.
dc.relation.referencesJ. de Acosta, Historia Natural y Moral de las Indias. España, 1589.
dc.relation.referencesP. J. de Arriaga, La Extirpación de la idolatría en el Perú. 1621.
dc.relation.referencesJ. A. Duke, D. Aulick, and T. Plowman, “Nutritional Value of Coca,” Bot. Mus. Lealf. Harv. Univ., vol. 24, no. 6, pp. 113–119, 1975, [Online]. Available: https://www.jstor.org/stable/41762296?seq=1#page_scan_tab_contents.
dc.relation.referencesR. De La Peña Bengué, “El uso de la coca entre los incas,” Rev. Española Antropol. Am., vol. 7, no. 1, p. 277, 1977.
dc.relation.references“Freepng.” https://www.freepng.es/png-dqrhtp/.
dc.relation.referencesA. Escohatado, Historia General de las drogras. 1989.
dc.relation.referencesJ. del Centro Mexicano de Estudios en Salud Mental. et al., “La cocaína: consumo y consecuencias,” Salud Ment., vol. 37, no. 5, pp. 381–389, 2014, [Online]. Available: http://www.scielo.org.mx/scielo.php?pid=S0185-33252014000500004&script=sci_arttext&tlng=en.
dc.relation.referencesF. F. Russo, “Cocaine: The complementarity between legal and illegal trade,” World Econ., vol. 37, no. 9, pp. 1290–1314, 2014, doi: 10.1111/twec.12107.
dc.relation.referencesN. C. L. Oliveira et al., “A holographic sensor based on a biomimetic affinity ligand for the detection of cocaine,” Sensors Actuators, B Chem., vol. 270, pp. 216–222, 2018, doi: 10.1016/j.snb.2018.05.009.
dc.relation.referencesD. R. Cordero, C. Medina, and A. Helfgott, “Cocaine Body Packing in Pregnancy,” Ann. Emerg. Med., vol. 48, no. 3, pp. 323–325, 2006, doi: 10.1016/j.annemergmed.2006.02.019.
dc.relation.referencesN. Drug and A. Laboratories, Guidelines on Representative Drug Sampling.
dc.relation.referencesS. W. G. F. T. A. O. S. D. (SWGDRUG), “SWGDRUG Recomendations - version 7.1,” p. 79, 2016.
dc.relation.referencesH. Throughput et al., “Trease and Ev PHMCOGO.”
dc.relation.referencesJ. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” TrAC - Trends Anal. Chem., vol. 29, no. 7, pp. 578–591, 2010, doi: 10.1016/j.trac.2009.12.012.
dc.relation.referencesT. Yilmaz Sengel et al., “‘Biomimetic-electrochemical-sensory-platform’ for biomolecule free cocaine testing,” Mater. Sci. Eng. C, vol. 90, pp. 211–218, 2018, doi: 10.1016/j.msec.2018.04.043.
dc.relation.referencesF. R. Simões and M. G. Xavier, “Electrochemical Sensors,” Nanosci. its Appl., pp. 155–178, 2017, doi: 10.1016/B978-0-323-49780-0.00006-5.
dc.relation.referencesM. Sluyters-Rehbach, J. H. O. J. Wijenberg, E. Bosco, and J. H. Sluyters, “The theory of chronoamperometry for the investigation of electrocrystallization,” J. Electroanal. Chem. Interfacial Electrochem., vol. 236, pp. 1–20, 1987, doi: 10.1016/0022-0728(87)88014-2.
dc.relation.referencesG. Denuault, “Electrochemical techniques and sensors for ocean research,” Ocean Sci., vol. 5, no. 4, pp. 697–710, 2009, doi: 10.5194/os-5-697-2009.
dc.relation.referencesS. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics (Biomedical Engineering). 2000.
dc.relation.referencesS. Koltzenburg, M. Maskos, and O. Nuyken, Polymer Chemistry. 2017.
dc.relation.referencesS. Demirezen and S. A. Yerişkin, “Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures,” J. Mater. Sci. Mater. Electron., vol. 32, no. 20, pp. 25339–25349, 2021, doi: 10.1007/s10854-021-06993-1.
dc.relation.referencesA. F. da Silva, T. S. Grobério, J. J. Zacca, A. O. Maldaner, and J. W. B. Braga, “Cocaine and adulterants analysis in seized drug samples by infrared spectroscopy and MCR-ALS,” Forensic Sci. Int., vol. 290, pp. 169–177, 2018, doi: 10.1016/j.forsciint.2018.07.006.
dc.relation.referencesM. Ferus et al., “Thermal Decomposition of Cocaine and Methamphetamine Investigated by Infrared Spectroscopy and Quantum Chemical Simulations,” ACS Omega, vol. 6, no. 22, pp. 14447–14457, 2021, doi: 10.1021/acsomega.1c01325.
dc.relation.referencesT. S. Grobério, J. J. Zacca, M. Talhavini, and J. W. B. Braga, “Quantification of cocaine hydrochloride in seized drug samples by infrared spectroscopy and PLSR,” J. Braz. Chem. Soc., vol. 25, no. 9, pp. 1696–1703, 2014, doi: 10.5935/0103-5053.20140164.
dc.relation.referencesBruker, “OPUS Package: Database.” https://www.bruker.com/en/products-and-solutions/infrared-and-raman/opus-spectroscopy-software/database.html.
dc.relation.referencesD. Lieblein, M. E. McMahon, P. E. Leary, P. Massey, and B. W. Kammrath, “A comparison of portable infrared spectrometers, portable Raman spectrometers, and color-based field tests for the on-scene analysis of cocaine,” Spectrosc. (Santa Monica), vol. 33, no. 12, pp. 5–11, 2018.
dc.relation.referencesS. Materazzi, A. Gregori, L. Ripani, A. Apriceno, and R. Risoluti, “Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry,” Talanta, vol. 166, pp. 328–335, 2017, doi: 10.1016/j.talanta.2017.01.045.
dc.relation.referencesNaciones Unidas, “Métodos recomendados para la identificación y el análisis de cocaína en materiales incautados,” Nac. Unidas, 2012, [Online]. Available: https://www.unodc.org/documents/scientific/Cocaine_S.pdf.
dc.relation.referencesY. Altin and A. Celik Bedeloglu, “Polyacrylonitrile/polyvinyl alcohol-based porous carbon nanofiber electrodes for supercapacitor applications,” Int. J. Energy Res., vol. 45, no. 11, pp. 16497–16510, 2021, doi: 10.1002/er.6896.
dc.relation.referencesE. L. G. Denardin, D. Samios, P. R. Janissek, and G. P. De Souza, “Thermal degradation of aged chloroprene rubber studied by thermogravimetric analysis,” Rubber Chem. Technol., vol. 74, no. 4, pp. 622–629, 2001, doi: 10.5254/1.3544962.
dc.relation.referencesJ. R. M. Barsoukov, Evgenij, Impedance Spectroscopy Theory, Experiment, and Applications. 2010.
dc.relation.referencesL. Eberson, “Electron-Transfer Reactions in Organic Chemistry,” vol. 5, no. 1.
dc.relation.referencesM. J. West and M. J. Went, “Detection of drugs of abuse by Raman spectroscopy,” Drug Test. Anal., vol. 3, no. 9, pp. 532–538, 2011, doi: 10.1002/dta.217.
dc.relation.referencesA. M. Abdullah, S. B. Aziz, and S. R. Saeed, “Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt,” Arab. J. Chem., vol. 14, no. 11, p. 103388, Nov. 2021, doi: 10.1016/j.arabjc.2021.103388.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEIS
dc.subject.proposalCocaína
dc.subject.proposalDetección
dc.subject.proposalCamuflaje de cocaína
dc.subject.proposalMatrices poliméricas
dc.subject.proposalCocaine
dc.subject.proposalDetection
dc.subject.proposalCocaine smuggling
dc.subject.proposalPolymeric matrices
dc.subject.unescoEstupefaciente
dc.subject.unescoNarcotic drugs
dc.title.translatedMethodology for the detection of cocaine in polymeric matrices using electrochemical techniques
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleMetodología para la detección de cocaína en matrices poliméricas mediante técnicas electroquímicas
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaCiencias Naturales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito