Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorChaparro Garzón, Orlando
dc.contributor.authorVargas Carreño, Elga Johanna
dc.date.accessioned2022-09-16T12:34:39Z
dc.date.available2022-09-16T12:34:39Z
dc.date.issued2022-04
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82294
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractIntroducción Las células madre mesenquimales derivadas de tejido adiposo (A-MSC) ejercen su acción regenerativa-reparativa mediante un mecanismo de acción paracrino producido por cientos de factores tróficos, componentes de la matriz extracelular, vesículas extracelulares, etc., que son secretados al medio extracelular. Este secretoma puede recolectarse desde los medios de cultivo como medios condicionados (MC). Los MC de A-MSC poseen un efecto tisular similar al trasplante celular, lo cual permite su uso como alternativa terapéutica. Hasta el momento, los MC de A-MSC son obtenidos esencialmente en cultivos de dos dimensiones (2D) estáticos en normoxia, sin embargo, para escalar su producción es necesario realizar el cultivo en sistemas dinámicos garantizando la conservación de su potencial regenerativo-reparativo. El objetivo principal de este trabajo fue evaluar si al escalar la producción de los MC introduciendo dos cambios en el sistema de cultivo (un sistema tridimensional dinámico e hipoxia) se mantiene la capacidad angiogénica y funcional como una medida indirecta de la conservación de su potencial terapéutico. Materiales y Métodos Se obtuvieron MC de A-MSC de células cultivadas en un sistema 2D estático y un sistema tridimensional (3D) dinámico que emplea spinners flasks acoplados a microtrasportadores, tanto en condiciones de normoxia como de hipoxia. Posteriormente se realizó la cuantificación y la caracterización de su composición proteica y se evaluó su potencial de angiogénesis in vitro y su capacidad funcional mediante un ensayo in vivo de curación de heridas cutáneas agudas en ratas. Resultados Los A-MSC cultivadas en el sistema 3D dinámico conservan su inmunofenotipo y su capacidad de diferenciación multilinaje. Los MC obtenidos de estas A-MSC presentan un perfil proteico único dependiente del donante y modificado por las nuevas variables introducidas al cultivo. Los MC obtenidos en el sistema 3D dinámico conservan su potencial angiogénico y su capacidad funcional demostrado mediante 3 ensayos in vitro de angiogénesis y un modelo in vivo de curación de heridas excisionales agudas en la piel de ratas. Conclusiones Es posible escalar la producción de los MC de A-MSC garantizando la conservación de su potencial angiogénico y su capacidad funcional. La obtención de los MC en condiciones 3D dinámicas en hipoxia puede potenciar su efecto terapéutico en el cierre de heridas cutáneas agudas. (Texto tomado de la fuente).
dc.description.abstractIntroduction Mesenchymal stem cells derived from adipose tissue (A-MSC) perform their regenerative-reparative process through a paracrine action mechanism exerted by hundreds of trophic factors, components of the extracellular matrix, extracellular vesicles, etc., which are secreted into the extracellular medium. This secretome can be gathered from culture media as conditioned media (CM). MC of A-MSC have a tissue effect similar to cell transplantation, which allows their use as a therapeutic alternative. Until now, the MC of A-MSC is essentially obtained in static two-dimensional cultures in normoxia, however, to scale the production of MC, it´s necessary to proceed with the culture A-MSC in dynamic systems guaranteeing the conservation of their regenerative-reparative potential. The main objective of this work was to evaluate if when scaling the production of MC of A-MSC, introducing two changes in the culture system (a dynamic three-dimensional system and hypoxia), the angiogenic and functional capacity keeps up as an indirect measure of its therapeutic conservation potential. Materials and methods MC of A-MSC were obtained from cells that were cultured in the traditional static two-dimensional system and a dynamic three-dimensional system employing spinner flasks coupled to microcarriers, under both normoxic and hypoxic conditions. Subsequently, the quantification and characterization of the protein composition of the MC was performed and their in vitro angiogenesis potential and functional capacity were evaluated by means of an in vivo acute cutaneous wound healing assay. Results A-MSCs cultured in the dynamic three-dimensional system retains their immunophenotype and multilineage differentiation capacity. The MC obtained from these A-MSC shows a unique protein profile dependent on the donor and modified by the new variables introduced into the culture. The CM obtained in the dynamic three-dimensional system retain their angiogenic potential and their functional capacity demonstrated by 3 in vitro angiogenesis assays and an in vivo model of acute excisional wound healing in rat skin. Conclusions It’s possible to scale the production of MCs from A-MSC, guaranteeing the conservation of their angiogenic potential and their functional capacity, using a dynamic three-dimensional system (spinner flasks coupled to microcarriers). Obtaining MC under dynamic hypoxic conditions can enhance their therapeutic effect in the closure of acute skin wounds.
dc.format.extentxiii, 257 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleEvaluación del potencial angiogénico de medios condicionados obtenidos de células madre mesenquimales derivadas de tejido adiposo cultivadas en un sistema dinámico en la curación de heridas cutáneas
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicas
dc.description.notesIncluye anexos
dc.contributor.researchgroupBiología de Células Madre
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Biomédicas
dc.description.researchareaMesenchymal Stem Cells
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.references1. Núñez D. Núñez Ríos, DL Evaluación del efecto de células madre mesenquimales derivadas de tejido adiposo y de medios condicionados en la recuperación motora de ratas con lesión medular. [Internet]. 2010 [citado: 2022, abril] Universidad Nacional de Colombia Sede B [Internet]. UNAL; 2010. Disponible en: https://repositorio.unal.edu.co/handle/unal/11304
dc.relation.references2. Sánchez R. Comparación del efecto de medios condicionados de cultivos de 2 tipos de células madre mesenquimales sobre la cicatrización de heridas en ratones. [Tesis de maestría]. Bogotá: Universidad Nacional de Colombia; 2011. Recuperado a partir de: https://repositorio.unal.edu.co/handle/unal/7573
dc.relation.references3. Linero IM. Regeneración ósea por implante de células madre mesenquimales derivadas de tejido humano adiposo en un modelo animal. [Tesis doctoral]. Bogotá: Universidad Nacional de Colombia UNAL; 2012.
dc.relation.references4. Linero IM, Doncel A, Chaparro O. Proliferación y diferenciación osteogénica de células madre mesenquimales en hidrogeles de plasma sanguíneo humano. Biomédica. 2014;34(1):67-78. doi.org/10.7705/biomedica.v34i1.1465
dc.relation.references5. Fletscher GF. Modificación experimental de la técnica de membrana inducida (Masquelet) mediante uso de medios condicionados producidos por células madre mesenquimales. [Tesis de maestría]. Bogotá: Universidad Nacional de Colombia; 2014. Recuperado a partir de: https://repositorio.unal.edu.co/handle/unal/50370
dc.relation.references6. Henao L. Evaluación de la capacidad de medios condicionados producidos por células madre mesenquimales humanas para inducir la regeneración ósea en alveolos de pacientes con exodoncia de terceros molares inferiores. [Tesis de pregrado].Bogotá: Universidad Nacional de Colombia;2016.
dc.relation.references7. Labusca LS. Scaffold free 3D culture of mesenchymal stem cells; implications for regenerative redicine. J transplant Stem Cel Biol. 2015;2(1):1–8.
dc.relation.references8. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1859. doi: 10.3390/ijms18091852.
dc.relation.references9. Caplan A. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50. https://doi.org/10.1002/jor.1100090504
dc.relation.references10. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, et al. A Perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13. doi: 10.1016/j.stem.2008.07.003.
dc.relation.references11. Caplan AI. All MSCs are pericytes?. Cell Stem Cell. 2008;3(3):229–30.
dc.relation.references12. Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties and applications. Tissue Eng Part B Rev. 2014;20(5):365–80. doi: 10.1089/ten.TEB.2013.0537.
dc.relation.references13. Panchalingam KM, Jung S, Rosenberg L, Behie LA. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res Ther. 2015;6(1):225. doi.org/10.1186/s13287-015-0228-5.
dc.relation.references14. Wankhade UD, Shen M, Kolhe R, Fulzele S. Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells International. 2016:3206807. doi: 10.1155/2016/3206807.
dc.relation.references15. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue : implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28. doi: 10.1089/107632701300062859.
dc.relation.references16. Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J Stem Cells. 2014;6(3):256-65. doi: 10.4252/wjsc.v6.i3.256.
dc.relation.references17. Marfia G, Navone SE, Di Vito C, Ughi N, Tabano S, Miozzo M, et al. Mesenchymal stem cells: Potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis. 2015;11(4):183–206. doi:10.1080/15476278.2015.1126018.
dc.relation.references18. Johal KS, Lees VC, Reid AJ. Adipose-derived stem cells: selecting for translational success. Regenerative Medicine. 2015;10(1):79–96. doi: 10.2217/rme.14.72.
dc.relation.references19. Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning.2015;8:149–62. doi: 10.2147/SCCAA.S64373
dc.relation.references20. Carceller MC, Guillen MI, Ferrandiz ML, Alcaraz MJ. Paracrine in vivo inhibitory effects of adipose tissue-derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy. 2015;17(9):1230–9.
dc.relation.references21. Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp (Warsz). 2016;64(6):443-454. doi: 10.1007/s00005-016-0394-x.
dc.relation.references22. Singer NG, Caplan AI. Mesenchymal Stem Cells: Mechanisms of Inflammation. Annu Rev Pathol. 2011;6(1):457–78. doi: 10.1146/annurev-pathol-011110-130230.
dc.relation.references23. Caplan AI. Adult mesenchymal stem cells: When, where, and how. Stem Cells Int. 2015;2015:628767. doi: 10.1155/2015/628767.
dc.relation.references24. Caplan AI. New MSC: MSCs as pericytes are Sentinels and gatekeepers. Journal of Orthopaedic Research. 2017;35(6):1151-9. doi: 10.1002/jor.23560.
dc.relation.references25. Caplan AI. Mesenchymal stem cells: Time to change the name! Stem Cells Transl Med. 2017;6(6):1445–51. oi: 10.1002/sctm.17-0051.
dc.relation.references26. Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6(1):55. doi: 10.1186/s13287-015-0066-5.
dc.relation.references27. Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim BS. Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther. 2014;22(4):862–72. doi: 10.1038/mt.2013.301.
dc.relation.references28. Kober J, Gugerell A, Schmid M, Zeyda M, Buchberger E, Nickl S, et al. Wound healing effect of conditioned media obtained from adipose tissue on human skin cells: A comparative in vitro study. Ann Plast Surg. 2016;77(2):156–63. doi: 10.1097/SAP.0000000000000358.
dc.relation.references29. Rathinasabapathy A, Bruce E, Espejo A, Horowitz A, Sudhan DR, Nair A, et al. Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis. Br J Pharmacol. 2016;173(19):2859–79. doi: 10.1111/bph.13562.
dc.relation.references30. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transpl. 2014;23(9):1045–59. doi: 10.3727/096368913X667709.
dc.relation.references31. Chang W, Kim R, Park SI, Jung YJ, Ham O, Lee J, et al. Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221. Mol Cells. 2015;38(7):643–50.
dc.relation.references32. Lee SK, Lee SC, Kim SJ. A novel cell-free strategy for promoting mouse liver regeneration: utilization of a conditioned medium from adipose-derived stem cells. Hepatol Int. 2015;9(2):310–20. doi: 10.1007/s12072-014-9599-4.
dc.relation.references33. He J, Cai Y, Luo LM, Liu HB. Hypoxic adipose mesenchymal stem cells derived conditioned medium protects myocardial infarct in rat. Eur Rev Med Pharmacol Sci 2015;19(22):4397–406. PMID: 26636529.
dc.relation.references34. Lee SC, Jeong HJ, Lee SK, Kim S-J. Hypoxic conditioned medium from human adipose-derived stem cells promotes mouse liver regeneration through JAK/STAT3 signaling. Stem Cells Transl Med. 2016;5(6):816–25. doi: 10.5966/sctm.2015-0191.
dc.relation.references35. Shin H, Ryu HH, Kwon O, Park BS, Jo SJ. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: a retrospective case series study. Int J Dermatol. 2015;54(6):730-5. doi: 10.1111/ijd.12650.
dc.relation.references36. Collawn SS, Mobley JA, Banerjee NS, Chow LT. conditioned media from adipose-derived stromal cells accelerates healing in 3-dimensional skin cultures. Ann Plast Surg. 2016;76(4):446–52. doi: 10.1097/SAP.0000000000000754.
dc.relation.references37. Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim B-S. Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther. 2014;22(4):862–72. doi: 10.1038/mt.2013.301.
dc.relation.references38. Seo G, Oh E, Yun M, Lee JY, Bae JS, Joo K, et al. Adipose-derived stem cell conditioned medium accelerates keratinocyte differentiation via the upregulation of miR-24. Exp Dermatol. 2015;24(10):792–3. doi: 10.1111/exd.12754.
dc.relation.references39. Tamari M, Nishino Y, Yamamoto N, Ueda M. Acceleration of wound healing with stem cell–derived growth factors. Int J Oral Maxillofac Implants. 2013;28(6):e369–75. doi: 10.11607/jomi.te17.
dc.relation.references40. Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014;9(9):1–12. e107001. https://doi.org/10.1371/journal.pone.0107001
dc.relation.references41. de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JM. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol. 2016;236:88–109. doi: 10.1016/j.jbiotec.2016.08.007.
dc.relation.references42. Santos JM, Camões SP, Filipe E, Cipriano M, Barcia RN, Filipe M, et al. 3D spheroid cell culture of umbilical cord tissue-derived MSCs (UCX®) leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther. 2015;6(1):90.
dc.relation.references43. Santos Fd, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, et al. Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods. 2011;17(12):1201–10. doi: 10.1089/ten.tec.2011.0255.
dc.relation.references44. Rafiq QA, Coopman K, Hewitt CJ. Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Curr Opin Chem Eng. 2013;2(1):8–16. doi: 10.1016/j.coche.2013.01.005
dc.relation.references45. Rafiq QA, Brosnan KM, Coopman K, Nienow AW, Hewitt CJ. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol Lett. 2013;35(8):1233–45. doi: 10.1007/s10529-013-1211-9
dc.relation.references46. Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, et al. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem Eng J. 2016;108:3–13. https://doi.org/10.1016/j.bej.2015.08.014
dc.relation.references47. Tsai AC, Jeske R, Chen X, Yuan X, Li Y. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Front Bioeng Biotechnol. 2020;8:640. doi: 10.3389/fbioe.2020.00640.
dc.relation.references48. Schop D, Van Dijkhuizen-Radersma R, Borgart E, Janssen FW, Rozemuller H, Prins HJ, et al. Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism. 2010:4(2):131–40. doi: 10.1002/term.224.
dc.relation.references49. Caruso SR, Orellana MD, Mizukami A, Fernandes TR, Fontes AM, Suazo CAT, et al. Growth and functional harvesting of human mesenchymal stromal cells cultured on a microcarrier-based system. Biotechnol Prog. 2014;30(4):889–95. Available from: http://doi.wiley.com/10.1002/btpr.1886
dc.relation.references50. Rafiq QA, Coopman K, Nienow AW, Hewitt CJ. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J. 2016;11(4):473–86. doi: 10.1002/biot.201400862.
dc.relation.references51. Tavassoli H, Alhosseini SN, Tay A, Chan PPY, Weng Oh SK, Warkiani ME. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials. 2018;181:333-346. doi: 10.1016/j.biomaterials.2018.07.016.2018.
dc.relation.references52. Fernandes-Platzgummer A; Carmelo JG; da Silva CL; Cabral J. Clinical-grade manufacturing of therapeutic human mesenchymal stem/stromal cells in microcarrier-based culture systems. Methods Mol Biol. 2016;1416:375-88.
dc.relation.references53. Heathman TR, Glyn VAM, Picken A, Rafiq QA, Coopman K, Nienow AW, et al. Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnol Bioeng. 2015;112(8):1696–707. doi: 10.1002/bit.25582.
dc.relation.references54. Merten O-W. Advances in cell culture: anchorage dependence. Philos Trans R Soc Lond B Biol Sci. 2015;370(1661):20140040. doi: 10.1098/rstb.2014.0040.
dc.relation.references55. Dos Santos FF, Andrade PZ, Da Silva CL, Cabral JM. Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J. 2013;8(6):644–54.
dc.relation.references56. Dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, et al. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng. 2014;111(6):1116–27. https://doi.org/10.1002/bit.25187.
dc.relation.references58.
dc.relation.references57. de Almeida Fuzeta M, Bernardes N, Oliveira FD, Costa AC, Fernandes-Platzgummer A, Farinha JP, et al. Scalable production of human mesenchymal stromal cell-derived extracellular vesicles under serum-/xeno-free conditions in a microcarrier-based bioreactor culture system. Front Cell Dev Biol. 2020; 3;8:553444. doi: 10.3389/fcell.2020.553444.
dc.relation.references58. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JM. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J. 2015;10(8):1235–47. doi: 10.1002/biot.201400586.
dc.relation.references59. Tan KY, Teo KL, Lim JFY, Chen AK, Choolani M, Reuveny S, et al. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Cytotherapy.2015;17(8):1152–65. doi: 10.1016/j.jcyt.2015.05.001.
dc.relation.references60. Chen AK, Chew YK, Tan HY, Reuveny S, Weng Oh SK. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Cytotherapy. 2015;17(2):163–73. doi: 10.1016/j.jcyt.2014.08.011.
dc.relation.references61. Nienow AW, Hewitt CJ, Heathman TRJ, Glyn VAM, Fonte GN, Hanga MP, et al. Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochem Eng J. 2016;108:24–9. doi: 10.1016/j.bej.2015.08.003
dc.relation.references62. Estrada JC, Albo C, Benguría A, Dopazo A, López-Romero P, Carrera-Quintanar L, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ. 2012;19(5):743–55. doi: 10.1038/cdd.2011.172.
dc.relation.references63. Mas-Bargues C, Sanz-Ros J, Román-Domínguez A, Inglés M, Gimeno-Mallench L, El Alami M, et al. Relevance of oxygen concentration in stem cell culture for regenerative medicine. Inter J Mol Sci. 2019; 20(5):1195. doi: 10.3390/ijms20051195.
dc.relation.references64. Zheng W, Gu X, Sun X, Hu D. Effects of hypoxia‑inducible factor‑1α on the proliferation and apoptosis of human synovial mesenchymal stem cells. Mol Med Rep. 2019;20(5):4315–22. doi: 10.3892/mmr.2019.10656.
dc.relation.references65. Dos Santos F, Andrade PZ, Boura JS, Abecasis MM, Da Silva CL, Cabral JM. Ex vivo expansion of human mesenchymal stem cells: A more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol. 2010;223(1):27–35. doi: 10.1002/jcp.21987.
dc.relation.references66. Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cellular and Molecular Life Sciences. 2017;74(14):2587-2600. doi: 10.1007/s00018-017-2484-2.
dc.relation.references67. Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell. 2007;6(6):745–57. doi: 10.1111/j.1474-9726.2007.00336.x.
dc.relation.references68. Hung S-P, Ho JH, Shih YR, Lo T, Lee OK. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res. 2012;30(2):260–6. doi: 10.1002/jor.21517.
dc.relation.references69. Mathew SA, Chandravanshi B, Bhonde R. Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci. 2017;182:85–92.
dc.relation.references70. Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog. 2009;25(1):32-42. doi: 10.1002/btpr.128.
dc.relation.references71. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal. 2013;2013:632972. doi: 10.1155/2013/632972.
dc.relation.references72. Liu G-S, Peshavariya HM, Higuchi M, Chan EC, Dusting GJ, Jiang F. Pharmacological priming of adipose-derived stem cells for paracrine VEGF production with deferoxamine. J Tissue Eng Regen Med. 2016;10(3):E167-76. doi: 10.1002/term.1796
dc.relation.references73. Lee JH, Kemp DM. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun. 2006;341(3):882–8. doi: 10.1016/j.bbrc.2006.01.038.
dc.relation.references74. Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JMS. Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res. 2012;9(3):225–36. doi: 10.1016/j.scr.2012.07.001.
dc.relation.references75. Makrantonaki E, Wlaschek M, Scharffetter-Kochanek K. Pathogenesis of wound healing disorders in the elderly. J Dtsch Dermatol Ges. 2017;15(3):255–75. doi: 10.1111/ddg.13199.
dc.relation.references76. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. Int Exp Pathol. 2020;101(1-2):21-37. doi: 10.1111/iep.12346.
dc.relation.references77. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes: Cellular Mechanisms of Wound Repair.Open Biology.2020:10(9). https://doi.org/10.1098/rsob.200223
dc.relation.references78. Lasocka I, Jastrzebska E, Szulc-Dabrowska L, Skibniewski M, Pasternak I, Kalbacova MH, et al. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism. Inter J Nanomedicine. 2019;14:2281–99. doi: 10.2147/IJN.S190928
dc.relation.references79. Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther. 2019;11(1):447. PMID: 31358069
dc.relation.references80. Stoica AE, Grumezescu AM, Hermenean AO, Andronescu E, Vasile BS. Scar-free healing: current concepts and future perspectives. Vol. 10, Nanomaterials. 2020;10(11):2179. doi: 10.3390/nano10112179.
dc.relation.references81. Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater. 2018;69:42–62. doi: 10.1016/j.actbio.2018.01.017
dc.relation.references82. Traore MA, George SC. Tissue Engineering the Vascular Tree. Tissue Eng Part B Rev. 2017;23(6):505-14. doi: 10.1089/ten.teb.2017.0010.
dc.relation.references83. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells. 2018;36(2):161–71.
dc.relation.references84. Bronckaers, A; Lambrichts I. The role of mesenchymal stem/stromal cells in angiogenesis. In: Atkinson K, editor. The biology and therapeutic applications of mesenchymal cells. first. New Jersey: Wyley Blackwell; 2017. p. 347–65.
dc.relation.references85. Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15(9):1285–92.
dc.relation.references86. Motegi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci. 2017;86(2):83–9.
dc.relation.references87. Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells Int. 2018:6901983. doi: 10.1155/2018/6901983.
dc.relation.references88. Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther. 2016;7(1):37. https://doi.org/10.1186/s13287-016-0303-6
dc.relation.references89. Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Vol. 22, Wound Repair Regen. 2014;22(3):313–25. doi: 10.1111/wrr.12173.
dc.relation.references90. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, LeRoux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1(2):142–9.
dc.relation.references91. Chen D, Hao H, Fu X, Han W. Insight into reepithelialization: How do mesenchymal stem cells perform? Stem Cells Inter. 2016:9. https://doi.org/10.1155/2016/6120173
dc.relation.references92. Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther. 2010;1(4):30. doi: 10.1186/scrt30.
dc.relation.references93. Miranda JP, Filipe E, Fernandes AS, Almeida JM, Martins JP, De la Fuente A, et al. The Human Umbilical Cord Tissue-Derived MSC Population UCX(®) promotes early motogenic effects on keratinocytes and fibroblasts and G-CSF-mediated mobilization of bm-mscs when transplanted in vivo. Cell Transplant. 2015;24(5):865–77.
dc.relation.references94. arcía-Olmo D, García-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.
dc.relation.references95. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1404–9.
dc.relation.references96. Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula. Dis Colon Rectum. 2009;52(1):79–86.
dc.relation.references97. Panés J, García-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet. 2016;388(10051):1281–90. doi: 10.1016/S0140-6736(16)31203-X.
dc.relation.references98. Hocking A. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316(14):2213–9.
dc.relation.references99. Chung HM, Won CH, Sung JH. Responses of adipose-derived stem cells during hypoxia: Enhanced skin-regenerative potential. Expert Opin Biol Ther. 2009;9(12):1499–508.
dc.relation.references100. Deǧim Z. Use of microparticulate systems to accelerate skin wound healing. J Drug Target. 2008;16(6):437–48. doi: 10.1080/10611860802088572.
dc.relation.references101. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019;99(1):665-706. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30475656
dc.relation.references102. Stegensek-mejía EM. Características epidemiológicas y costos de la atención de las heridas en unidades médicas de la Secretaría de Salud. Rev Enferm IMSS. 2018;26(2):105-14. Disponible en: https://www.medigraphic.com/pdfs/enfermeriaimss/eim-2018/eim182g.pdf
dc.relation.references103. Lavery LA, Davis KE, Berriman SJ, Braun L, Nichols A, Kim PJ, et al. WHS guidelines update: Diabetic foot ulcer treatment guidelines. Wound Repair Regen. 2016;24(1):112-26.
dc.relation.references104. Doncel A. Comparación in vitro del efecto angiogénico de medios condicionados de células madre mesenquimales humanas obtenidas a partir de tejido adiposo y médula ósea en condiciones de normoxia e hipoxia. [Tesis de maestría]. Bogotá: Universidad Nacional de Colombia; 2010.
dc.relation.references105. Aranda E, Owen GI. A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009;42(3):377–89.
dc.relation.references106. Aplin A.C. Nicosia RF. The rat aortic ring model of angiogenesis. Methods Mol Biol. 2015;1214:255-64. doi: 10.1007/978-1-4939-1462-3_16.
dc.relation.references107. Heathman TRJ, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, et al. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy. 2016;18(4):523–35. Available from: http://dx.doi.org/10.1016/j.jcyt.2016.01.007
dc.relation.references108. Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, et al. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol Bioeng. 2017;114(10):2253–66.
dc.relation.references109. Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JM, et al. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol J. 2016;11(8):1048–59.
dc.relation.references110. Carmelo JG, Fernandes-Platzgummer A, Cabral J, da SIlva CL. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. In: Methods Mol Biol. 2015. 1283:147-59. doi: 10.1007/7651_2014_100.
dc.relation.references111. de Soure AM, Fernandes-Plautzgummer A, Moreira, F, Lilaia, C, Liu S-H, et al. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells. J Tissue Eng Regen Med. 2017;11:1630–40. doi: 10.1002/term.2200.
dc.relation.references112. Escobar CH, Chaparro O. Xeno-free extraction, culture, and cryopreservation of human adipose-derived mesenchymal stem cells. Stem Cells Transl Med. 2016; 5(3):358-65. doi: 10.5966/sctm.2015-0094.
dc.relation.references113. de Sousa Pinto D, Bandeiras C, de Almeida Fuzeta M, Rodrigues CAV, Jung S, Hashimura Y, et al. Scalable manufacturing of human mesenchymal stromal cells in the vertical-wheel bioreactor system: an experimental and economic approach. Biotechnol J. 2019;14(8): e1800716. doi: 10.1002/biot.201800716.
dc.relation.references114. Rafiq QA, Coopman K, Nienow AW, Hewitt CJ. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J. 2016 Mar;11(4):473–86.
dc.relation.references115. Bassaneze V, Barauna VG, Lavini-Ramos C, Kalil J, Schettert IT, Miyakawa AA, et al. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in Human adipose tissue mesenchymal stem cells. Stem Cells Dev. 2010;19(3):371–8.
dc.relation.references116. Yourek G, McCormick SM, Mao JJ, Reilly GC. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med. 2010;5(5):713–24.
dc.relation.references117. Lin YM, Lim JFY, Lee J, Choolani M, Chan JKY, Reuveny S, et al. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Cytotherapy. 2016;18(6):740–53.
dc.relation.references118. Mark P, Kleinsorge M, Gaebel R, Lux CA, Toelk A, Pittermann E, et al. Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int. 2013;2013:698076.
dc.relation.references119. Wang D, Liu N, Xie Y, Song B, Kong S, Sun X. Different culture method changing CD105 expression in amniotic fluid MSCs without affecting differentiation ability or immune function. J Cell Mol Med. 2020;24(7):4212–22.
dc.relation.references120. Pham LH, Vu NB, Pham P Van. The subpopulation of CD105 negative mesenchymal stem cells show strong immunomodulation capacity compared to CD105 positive mesenchymal stem cells. Biomed Res Ther. 2019;6(4):3131-40.
dc.relation.references121. Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopatho. 2013;28(9):1109–16.
dc.relation.references122. Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y, et al. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One. 2014;9(3): e92120. doi: 10.1371/journal.pone.0092120.
dc.relation.references123. Rasmussen JG, Frobert O, Pilgaard L, Kastrup J, Simonsen U, Zachar V, et al. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy. 2011;13(3):318–28.
dc.relation.references124. Mehrad B, Keane MP, Strieter RM. Chemokines as mediators of angiogenesis. Thromb Haemost. 2007;97(5):755–62.
dc.relation.references125. Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol. 2008;28(11):1928–36.
dc.relation.references126. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170(6):3369-76.
dc.relation.references127. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581-7.
dc.relation.references128. Watkins HR, Lapp CA, Hanes PJ, Dickinson DP, Volkmann KR, Newman CL, et al. CCL28 effects on periodontal pathogens. J Periodontol.2007;78(12):2356–63.
dc.relation.references129. Chen Z, Haus JM, Chen L, Wu SC, Urao N, Koh TJ, et al. CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J. 2020;34(4):5838–50.
dc.relation.references130. Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003;14(5):409–26.
dc.relation.references131. Cho HH, Kim YJ, Kim JT, Song JS, Shin KK, Bae YC, et al. The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia. Cell Physiol Biochem. 2009;24(5–6):511–8.
dc.relation.references132. Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T. Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med. 2002;195(12):1549–63.
dc.relation.references133. Darvishi B, Boroumandieh S, Majidzadeh-A K, Salehi M, Jafari F, Farahmand L. The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker. Exp Mol Pathol. 2020;115:104443.
dc.relation.references134. Simões IT, Aranda F, Casadó-Llombart S, Velasco-de Andrés M, Català C, Álvarez P, et al. Multifaceted effects of soluble human CD6 in experimental cancer models. J Immunother cancer. 2020;8(1):e000172.
dc.relation.references135. Lai H, Sun Z, Yang J, Wu P, Guo Y, Sun J. B7-H3 modulates endothelial cell angiogenesis through the VEGF cytokine. Immunol Res. 2019;67(2):202–11.
dc.relation.references136. Kingsbury GA, Feeney LA, Nong Y, Calandra SA, Murphy CJ, Corcoran JM, et al. Cloning, expression, and function of BLAME, a novel member of the cd2 family. J Immunol. 2001;166(9):5675-80.
dc.relation.references137. Cui C, Su M, Lin Y, Lai L. A CD300c-Fc Fusion Protein Inhibits T Cell Immunity. Front Immunol. 2018;9:2657. doi: 10.3389/fimmu.2018.02657.
dc.relation.references138. Rostamzadeh D, Kazemi T, Amirghofran Z, Shabani M. Update on Fc receptor-like (FCRL) family: new immunoregulatory players in health and diseases. Expert Opin Ther Targets. 2018;22(6):487–502.
dc.relation.references139. Murphy M, Brown G, Wallin C et al. Murphy M, Brown G, Wallin C, et al. Gene help: integrated access to genes of genomes in the reference sequence collection. 2006 Sep 13 [Updated 2021 Feb 1]. In: Gene Help [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005.
dc.relation.references140. Carrette F, Surh CD. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol. 2012;24(3):209–17.
dc.relation.references141. Fan G, Li Q, Qian J. C1q contributes to post-stroke angiogenesis via LAIR1-HIF1α-VEGF pathway. Front Biosci. 2019;24(6):1050–9. doi: 10.2741/4767.
dc.relation.references142. Maheshwari RK, Srikantan V, Bhartiya D, Kleinman HK, Grant DS. Differential effects of interferon gamma and alpha on in vitro model of angiogenesis. J Cell Physiol. 1991;146(1):164–9.
dc.relation.references143. Laato M, Heino J, Gerdin B, Kähäri VM, Niinikoski J. Interferon-gamma-induced inhibition of wound healing in vivo and in vitro. Ann Chir Gynaecol. 2001;90 Suppl 215:19–23. PMID: 12041922.
dc.relation.references144. Wichaiyo S, Lax S, Montague SJ, Li Z, Grygielska B, Pike JA, et al. Platelet glycoprotein VI and C-type lectin-like receptor 2 deficiency accelerates wound healing by impairing vascular integrity in mice. Haematologica. 2019;104(8):1648–60. doi: 10.3324/haematol.2018.208363.
dc.relation.references145. Takeuchi M, Takeuchi K, Takai T, Yamaguchi R, Furukawa T, Akagi KI, et al. Subcellular localization of glypican-5 is associated with dynamic motility of the human mesenchymal stem cell line U3DT. PLoS One. 2021;16(2):1–21.
dc.relation.references146. Sedighi M, Namdari M, Mahmoudi P, Khani A, Manouchehri A, Anvari M. An overview of angiogenesis and chemical and physiological angiogenic factors : short review. J Chemical Health Risks. 2022. doi: 10.22034/JCHR.2022.1932834.1326.
dc.relation.references147. Delgado VMC, Nugnes LG, Colombo LL, Troncoso MF, Fernández MM, Malchiodi EL, et al. Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. FASEB J. 2011;25(1):242–54.
dc.relation.references148. Méndez-Huergo SP, Blidner AG, Rabinovich GA. Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr Opin Immunol. 2017;45:8–15.
dc.relation.references149. Mishima M, Maesaki R, Kasa M, Watanabe T, Fukata M, Kaibuchi K, et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc Natl Acad Sci USA. 2007;104(25):10346–51.
dc.relation.references150. Letsiou S, Félix RC, Cardoso JCR, Anjos L, Mestre AL, Gomes HL, et al. Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts. Biochimie. 2020;171–172:72–8.
dc.relation.references151. Félix RC, Anjos L, Costa RA, Letsiou S, Power DM. Cartilage Acidic Protein a Novel Therapeutic Factor to Improve Skin Damage Repair?. Mar Drugs. 2021;19(10):541. doi: 10.3390/md19100541.
dc.relation.references152. Verdino P, Witherden DA, Havran WL, Wilson IA. The molecular interaction of CAR and JAML recruits the central cell signal transducer PI3K. Science. 2010;329(5996):1210–4.
dc.relation.references153. Chen WJ, Chen HW, Yu SL, Huang CH, Wang TD, Chen JJW, et al. Gene expression profiles in hypoxic preconditioning using cDNA microarray analysis: Altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock. 2005;24(2):124–31.
dc.relation.references154. Bramswig KH, Poettler M, Unseld M, Wrba F, Uhrin P, Zimmermann W, et al. Soluble carcinoembryonic antigen activates endothelial cells and tumor angiogenesis. Cancer Res. 2013;73(22):6584–96.
dc.relation.references155. Li N, Zhang W, Wan T, Zhang J, Chen T, Yu Y, et al. Cloning and Characterization of Siglec-10, a Novel Sialic Acid Binding Member of the Ig Superfamily, from Human Dendritic Cells. J Biol Chem. 2001;276(30):28106–12.
dc.relation.references156. Chen G-Y, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009 Mar;323(5922):1722–5.
dc.relation.references157. Bandala-Sanchez E, Bediaga NG, Naselli G, Neale AM, Harrison LC. Siglec-10 expression is up-regulated in activated human CD4(+) T cells. Hum Immunol. 2020;81(2–3):101–4.
dc.relation.references158. Kummer D, Ebnet K. Junctional Adhesion Molecules (JAMs): The JAM-Integrin Connection. Cells. 2018;7(4):25. doi: 10.3390/cells7040025.
dc.relation.references159. Pang X, Dong N, Zheng Z. Small leucine-rich proteoglycans in skin wound healing. Front Pharmacol. 2020;1649. doi: 10.3389/fphar.2019.01649.
dc.relation.references160. Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T. Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler Thromb Vasc Biol. 2004;24(1):34–40.
dc.relation.references161. Fu Z, Wang S, Li J, Zhang Y, Li H, Li G, et al. Biological role of GITR/GITRL in attributes and immune responses of macrophage. J Leu
dc.relation.references162. Kirchhofer D, Peek M, Lipari MT, Billeci K, Fan B, Moran P. Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett. 2005;579(9):1945–50.
dc.relation.references163. Coffman LG, Parsonage D, D'Agostino R Jr, Torti FM, Torti SV. Regulatory effects of ferritin on angiogenesis. Proc Natl Acad Sci USA. 2009;106(2):570–5. doi: 10.1073/pnas.0812010106.
dc.relation.references164. Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, et al. Notch Signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol. 2019;189(8):1495–500.
dc.relation.references165. Chigurupati S, Arumugam T V, Son TG, Lathia JD, Jameel S, Mughal MR, et al. Involvement of notch signaling in wound healing. PLoS One. 2007;2(11):e1167.
dc.relation.references166. Zheng L, Amano K, Iohara K, Ito M, Imabayashi K, Into T, et al. Matrix metalloproteinase-3 accelerates wound healing following dental pulp injury. Am J Pathol. 2009;175(5):1905–14.
dc.relation.references167. Krampert M, Bloch W, Sasaki T, Bugnon P, Rülicke T, Wolf E, et al. Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell. 2004;15(12):5242–54.
dc.relation.references168. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins, Database (Oxford). 2016 Jul 3;2016:baw100. doi: 10.1093/database/baw100.
dc.relation.references169. Bethesda (MD): National Center for Biotechnology Information (US); 2010. Bookshelf Copyright Notice. 2011 Mar 28 [Updated 2016 Apr 18]. Disponible en: https://www.ncbi.nlm.nih.gov/books/about/copyright/.
dc.relation.references170. Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in angiogenesis and autoimmune diseases: therapeutic targets?. Front Immunol. 2020;11:346. doi: 10.3389/fimmu.2020.00346.
dc.relation.references171. Zygmunt T, Gay CM, Blondelle J, Singh MK, Flaherty KM, Means PC, et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev Cell. 2011;21(2):301–14.
dc.relation.references172. Vadivel K, Ponnuraj S-M, Kumar Y, Zaiss AK, Bunce MW, Camire RM, et al. Platelets contain tissue factor pathway inhibitor-2 derived from megakaryocytes and inhibits fibrinolysis. J Biol Chem. 2014;289(45):31647–61.
dc.relation.references173. Riese DJ, Cullum RL. Epiregulin: Roles in normal physiology and cancer. Semin Cell Dev Biol. 2014;28:49–56.
dc.relation.references174. Tian H, Huang JJ, Golzio C, Gao X, Hector-Greene M, Katsanis N, et al. Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB J. 2018;32(6):2934–49.
dc.relation.references175. Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development. 2017;144(22):4047–60.
dc.relation.references176. Song SH, Kim K, Jo EK, Kim YW, Kwon JS, Bae SS, et al. Fibroblast Growth Factor 12 is a novel regulator of vascular smooth muscle cell plasticity and fate. Arterioscler Thromb Vasc Biol. 2016;36(9):1928–36.
dc.relation.references177. Van Meeteren LA, Ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347(1):177–86.
dc.relation.references178. Zavala G, Prieto CP, Villanueva AA, Palma V. Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton’s jelly-derived mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther. 2017;8(1):1–17.
dc.relation.references179. Salybekov AA, Salybekova AK, Pola R, Asahara T. Sonic Hedgehog signaling pathway in endothelial progenitor cell biology for vascular medicine. Inter J Mol Sci. 2018;19, 3040. doi: 10.3390/ijms19103040
dc.relation.references180. Duan S, Zhang Y, Yuan F, Jiang A, Sang Y, Huang G. Corneal endothelial expansion using human umbilical cord mesenchymal stem cell-derived conditioned medium. J Cell Physiol. 2021;236(4):2606–15.
dc.relation.references181. Wobma HM, Tamargo MA, Goeta S, Brown LM, Duran-Struuck R, Vunjak-Novakovic G. The influence of hypoxia and IFN-γ on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials. 2018;167:226–34.
dc.relation.references182. Kim H-K, Lee S-G, Lee S-W, Oh BJ, Kim JH, Kim JA, et al. A subset of paracrine factors as efficient biomarkers for predicting vascular regenerative efficacy of mesenchymal stromal/stem cells. Stem Cells. 2019;37(1):77–88.
dc.relation.references183. Huss MK, Felt SA, Pacharinsak C. Influence of pain and analgesia on orthopedic and wound-healing models in rats and mice. Comp Med. 2019;69(6):535-545. doi: 10.30802/AALAS-CM-19-000013.
dc.relation.references184. Sun B, Guo S, Xu F, Wang B, Liu X, Zhang Y, et al. Concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium improves wounds healing in full-thickness skin defect model. Int Sch Res Noticies. 2014: 652713. doi: 10.1155/2014/652713.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsCicatrización de Heridas
dc.subject.decsWound Healing
dc.subject.decsCélulas Madre Mesenquimatosas
dc.subject.decsMesenchymal Stem Cells
dc.subject.decsNeovascularization, Physiologic
dc.subject.decsNeovascularización Fisiológica
dc.subject.proposalCélulas madre
dc.subject.proposalMesenchymal stem cells
dc.subject.proposalStromal cells
dc.subject.proposalExvivo expansion
dc.subject.proposalScale-up
dc.subject.proposalConditioned media
dc.subject.proposalMicrocarriers
dc.subject.proposalWound healing
dc.subject.proposalCélulas madre mesenquimales
dc.subject.proposalMedio condicionado
dc.subject.proposalAngiogénesis
dc.subject.proposalReparación de heridas
dc.title.translatedEvaluation of the angiogenic potential of conditioned media from mesenquimal stem cells derived from adipose tissue cultivated in a dynamic system in the healing of cutaneous wounds
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinCiencias
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes
dcterms.audience.professionaldevelopmentResponsables políticos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito