Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDuarte Torres, Silvia Cristina
dc.contributor.advisorBolívar Nieto, Edgar A
dc.contributor.authorPatiño Gutiérrez, Shelly Nathalya
dc.date.accessioned2022-09-29T17:55:25Z
dc.date.available2022-09-29T17:55:25Z
dc.date.issued2022-09-27
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82342
dc.descriptionfotografías a color, gráficas, ilustraciones, tablas
dc.description.abstractEste trabajo presenta el diseño de un dispositivo mecánico, antropomórfico y antropométrico flexible (soft-robotics) de rehabilitación del movimiento pinza trípode estático de la mano, para aquellos individuos que presentan ausencia de movilidad en los dedos, pero conservan movimiento en la muñeca. La metodología se basó en el estudio de exoesqueletos soft-robotics para rehabilitación de los movimientos de la mano, además teniendo en cuenta el estudio de la biomecánica y anatomía de la mano se tomaron muestras antropométricas a 50 personas entre 18 a 50 años de edad; de esta muestra se tomó los valores más comunes de la talla, el género y mano dominante, siendo estos la talla S del género femenino diestras. El diseño del dispositivo se realizó en AutoCAD, los componentes se imprimieron en 3D y luego se ensamblaron. Este dispositivo incorpora un mecanismo biomecánico de accionamiento por variación de longitud simulando tendones, emulando así una dinámica de tenodesis; donde el accionamiento es generado a partir de la extensión y flexión de la muñeca, permitiendo al usuario un movimiento natural de flexión y extensión de los dedos II y III; como resultado del uso del dispositivo se tiene un engrama cerebral, permitiendo al usuario la posibilidad de realizar actividades básicas con su mano tales como el agarre de un lápiz y objetos pequeños, además el diseño es ergonómico, cómodo, liviano, de fácil adaptación y limpieza, siguiendo los protocolos de sanidad requeridos para Sars-cov-2. (Texto tomado de la fuente)
dc.description.abstractThis work presents the design of a flexible anthropomorphic and anthropometric mechanic device (soft-robotics) for rehabilitation of the static tripod movement of the hand, for those people who have no mobility in their fingers, but they still have full movement of the wrist. The methodology was based on the study of soft-robotic exoskeletons for the rehabilitation of hand’s movements; also taking into a count previous biomechanics and anatomic studies of the hand, were taking anthropometric samples of 50 people between 18 and 50 years of age; from this sample were taken the modal values for the size, the gender and hand, were chosen size S and right hand for female people. The design was done in AutoCAD, the components were 3D printed and then assembled. This mechanical device incorporates a biomechanical mechanism of actuation by variation of length simulating tendons, thus emulating a dynamic of tenodesis, where the actuation is generated from the extension and bending of the wrist, allowing the user a natural movement of flexion and extension of the fingers II and III; as a result of the use of this mechanical device generate brain engram, allowing the user the possibility to perform basic activities with their hands such as the grip of a pencil and small objects, in addition the design is ergonomic, comfortable, lightweight, easy to adapt and clean, following the required sanitation protocols for Sars-cov-2.
dc.format.extentxiii, 82 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc610 - Medicina y salud
dc.titleDiseño del modelo de un dispositivo soft-robotics para rehabilitación del movimiento de pinza trípode estático de la mano humana
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Mecánica
dc.description.researchareaBiomecánica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesI. B. Abdallah and Y. Bouteraa, \DESIGN AND DEVELOPMENT OF 3D PRINTED MYOELECTRIC ROBOTIC EXOSKELETON FOR HAND," no. June, 2017.
dc.relation.referencesK. S. C. &. S. U. Saladin, Anatom a siolog a. M exico D.F: Mc Graw Hill Education, 6 ed., 2013
dc.relation.referencesL. Amparo, A. López, M. Segundo, S. Maestría, and H. Departamento, \ARTÍCULO ORIGINAL Biomecánica y patrones funcionales de la mano," vol. 4, no. 1, pp. 14{24, 2012.
dc.relation.referencesK. H. A. David A. Morton, K. Bo Foreman, Anatomía macroscópica: Un panorama general. Mc Graw Hill Education, 2018.
dc.relation.referencesB. Mundial, \Informe mundial la discapacidad," Organización Mundial De La Salud, pp. 4 - 27, 2011.
dc.relation.referencesH. Collado, \Situación Mundial De Discapacidad," vol. 1, pp. 1-17, 2013.
dc.relation.referencesJ. C. Yeo, H. K. Yap, W. Xi, Z. Wang, C.-H. Yeow, and C. T. Lim, \Soft Robotics: Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications (Adv. Mater. Technol. 3/2016)," Advanced Materials Technologies, vol. 1, no. 3, 2016.
dc.relation.referencesS. Masiero, A. Celia, G. Rosati, and M. Armani, \Robotic-assisted rehabilitation of the upper limb after acute stroke," Archives of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 142{149, 2007.
dc.relation.referencesG. Arriagada and N. Macchiavello, \Traumatismo raquimedular (trm). revisión bibliográfica," Revista Médica Clínica Las Condes, vol. 31, no. 5, pp. 423{429, 2020. Tema central: Columna
dc.relation.referencesT. D. E. Alta, R. Policloruro, and D. E. V. P. V. C. Para, \DISEÑO Y ELABORACI ÓN DE UNA FERULA TIPO TENODESIS FABRICADA EN RAQUIMEDULAR DESIGN AND DEVELOPMENT OF A TENODESIS-TYPE SPLINT MADE IN HIGH RESISTANCE THERMOPLASTIC POLYVINYL CHLORIDE ( PVC ) TO PROMOTE TRIPOD CLAMP GRIP IN PEOPLE WITH SPINAL CORD TRAUMA AFTERMATH Jorge Enrique Mayor B . 1 Resumen," 2012.
dc.relation.referencesColprensa, \Estudiantes crean máquina que apoya la rehabilitación de miembros superiores." url = https://www.larepublica.co/economia/estudiantes-crean-maquina-queapoya- la-rehabilitacion-de-miembros-superiores-2585059, 2017.
dc.relation.referencesE. K. Jian and D. Gouwanda, \Wearable Hand Exoskeleton for Activities of Daily Living," 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IEC- BES), pp. 221-225, 2018.
dc.relation.referencesJ. W.-h. Gudiño, J. Gudiño, F. Chávez, S. Charre, and J. Alcalá, \Robótica suave: diseño y construcción," vol. 7, pp. 42-49, 2019.
dc.relation.referencesT. Martineau and R. Vaidyanathan, \Studying the implementation of iterative impedance control for assistive hand rehabilitation using an exoskeleton," IEEE International Conference on Rehabilitation Robotics, pp. 1500-1505, 2017.
dc.relation.referencesM. A. Chávez Cardona, F. Rodríguez Spitia, and A. Baradica López, \EXOESQUELETOS PARA POTENCIAR LAS CAPACIDADES HUMANAS Y APOYAR LA REHABILITACION," Revista Ingeniería Biomédica, vol. 4, pp. 63 - 73, 06 2010.
dc.relation.referencesY. Liu, W. Chen, and C. Xiong, \Simulation and fabrication of a pneumatic network actuator with capability of bending in multi-planes," 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 313-317, 2019.
dc.relation.referencesC. Link, D. Rus, and M. T. Tolley, \Design , fabrication and control of soft robots," 2018
dc.relation.referencesD. Rus and M. T. Tolley, \Design, fabrication and control of soft robots Terms of Use Design, fabrication and control of soft robots," Nature, vol. 521, no. 7553, pp. 467-475, 2015.
dc.relation.referencesC. Feast, \The applications and bene ts of soft robotics," 2016.
dc.relation.referencesP. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O'Donnell, and C. J. Walsh, \Soft robotic glove for hand rehabilitation and task speci c training," Proceedings - IEEE International Conference on Robotics and Automation, vol. 2015-June, no. June, pp. 2913-2919, 2015.
dc.relation.referencesA. Hadi, \SMASIS2016-9166 DESIGN AND PROTOTYPING OF A WEARABLE ASSISTIVE TOOL FOR HAND," pp. 1-7, 2017.
dc.relation.referencesS. Toochinda and W. Wannasuphoprasit, \Design and development of an assistive hand device for enhancing compatibility and comfortability," pp. 1-6, 2018
dc.relation.referencesM. A. D. Ii, S. A. Fischer, P. W. Gauthier, C. H. M. Luna, E. A. Clancy, and G. S. Fischer, \A soft robotic exomusculature glove with integrated semg sensing for hand rehabilitation," pp. 24-26, 2013.
dc.relation.referencesK. O. Thielbar, K. M. Trianda lou, H. C. Fischer, J. M. O. Toole, M. L. Corrigan, J. M. Ochoa, M. E. Stoykov, and D. G. Kamper, \Bene ts of Using a Voice and EMG-Driven Actuated Glove to Support Occupational Therapy for Stroke Survivors," vol. 25, no. 3, pp. 297-305, 2017.
dc.relation.referencesP. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, \Soft robotic glove for combined assistance and at-home rehabilitation," Robotics and Autonomous Systems, vol. 73, pp. 135-143, 2015.
dc.relation.references\Ninja flex 3d printing lament." url=https://ninjatek.com/wpcontent/ uploads/2019/10/NinjaFlex-TDS.pdf, Sep 2021.
dc.relation.referencesH. In, B. B. Kang, M. Sin, and K.-j. Cho, \Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System," no. march 2015, pp. 97-105.
dc.relation.referencesD. H. Kim and H.-s. Park, \Cable Actuated Dexterous ( CADEX ) Glove for Effective Rehabilitation of the Hand for Patients with Neurological diseases," pp. 2305-2310, 2018.
dc.relation.referencesB. B. Kang, H. Lee, H. In, U. Jeong, J. Chung, and K.-j. Cho, \Development of a Polymer-Based Tendon-Driven Wearable Robotic Hand," pp. 3750-3755, 2016.
dc.relation.referencesS. Uetsuji, \Hand Exoskeleton for Continuous Passive Motion Postoperative Rehabilitation," 2017.
dc.relation.referencesA. Mohammadi, J. Lavranos, P. Choong, and D. Oetomo, \Flexo-glove : A 3d printed soft exoskeleton robotic glove for impaired hand rehabilitation and assistance," pp. 2120-2123, 2018.
dc.relation.references\Filamento tpe - aprenda todo sobre el material tpe para la impresión 3d." url=https://tractus3d.com/es/materials/tpe/, Oct 2020.
dc.relation.referencesJ. L. Morse, M.-c. Jung, G. R. Bashford, and M. S. Hallbeck, \Maximal dynamic grip force and wrist torque : The e ects of gender , exertion direction , angular velocity , and wrist angle," vol. 37, pp. 737-742, 2006.
dc.relation.referencesH. In, B. B. Kang, M. Sin, and K.-j. Cho, \Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System," IEEE Robotics & Automation Magazine, vol. 22, no. March 2015, pp. 97-105.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPersonas con discapacidades físicas - rehabilitación
dc.subject.lembPhysically handicapped - rehabilitation
dc.subject.lembRehabilitación médica
dc.subject.lembMedical rehabilitation
dc.subject.proposalRobótica blanda
dc.subject.proposalFérula flexible
dc.subject.proposalAgarre de tenodesis
dc.subject.proposalRehabilitación de la mano
dc.subject.proposalPortable
dc.subject.proposalHáptica
dc.subject.proposalHigiénico
dc.subject.proposalPinza trípode
dc.subject.proposalSof-robotics
dc.subject.proposalFlexible splint
dc.subject.proposalTenodesis grasp
dc.subject.proposalSoft glove,
dc.subject.proposalHand rehabilitation
dc.subject.proposalPortable
dc.subject.proposalHaptics
dc.subject.proposalHygienic
dc.subject.proposalTripod grip
dc.title.translatedModel design of a soft-robotics device for rehabilitating the movement of the human hand’s static tripod gripper
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito