Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorArango Mejía, Jacobo
dc.contributor.authorVillegas Salazar, Daniel Mauricio
dc.date.accessioned2022-10-26T15:39:50Z
dc.date.available2022-10-26T15:39:50Z
dc.date.issued2022-10-19
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82499
dc.descriptionTablas, ilustraciones
dc.description.abstractLa producción de ganado bovino en el trópico se realiza principalmente en pastos en monocultivo, y está caracterizada por escaza adopción de tecnología y una alta ocupación de tierra. Con el objetivo de evaluar diferencias en el uso del nitrógeno en pasturas asociadas con la leguminosa Leucaena diversifolia en el Valle del Cauca, Colombia, se evaluaron cuatro tratamientos de pasturas incluyendo Urochloa híbrido cv. Cayman y U. brizantha cv. Toledo solas y asociadas con L. diversifolia. Se midieron las variables de producción de biomasa, absorción de N en el forraje, fijación de N de L. diversifolia y las emisiones de óxido nitroso del suelo tras la aplicación de parches de orina en las pasturas. Los tratamientos de pasturas asociadas con L. diversifolia produjeron hasta un 165% más biomasa y presentaron hasta 50% mayor concentración de N en el tejido foliar que los tratamientos de Cayman y Toledo solos. Además, la proporción de N derivado de la atmósfera en L. diversifolia se estimó alrededor del 90%. Las emisiones de óxido nitroso absolutas tras la aplicación de parches de orina fueron mayores en las pasturas asociadas con L. diversifolia. No obstante, debido al aumento en la producción de forraje por unidad de área la intensidad de emisiones resultó hasta un 18% más baja que en las pasturas de gramínea sola. La integración de pastos de Urochloa con leguminosas como L. diversifolia constituyen una importante alternativa para intensificar sosteniblemente la producción animal de la mano con provisión de diferentes servicios ecosistémicos. (Texto tomado de la fuente)
dc.description.abstractCattle production in the tropics is carried out mainly on monoculture pastures, and is characterized by low adoption of technology and high land occupation. In order to evaluate differences in nitrogen use in pastures associated with the legume Leucaena diversifolia in Valle del Cauca, Colombia we evaluated four pasture treatments including Urochloa hybrid cv. Cayman and U. brizantha cv. Toledo both alone and associated with L. diversifolia. To that purpose we measured plant biomass production, forage N uptake, N fixation of L. diversifolia, and nitrous oxide emissions from soil after the application of urine patches in the pastures. Pasture treatments associated with L. diversifolia produced up to 165% more plant biomass and showed up to 50% higher N concentration in leaf tissue than the Cayman and Toledo alone pastures. Furthermore, the proportion of N derived from the atmosphere in L. diversifolia was estimated around 90%. Absolute nitrous oxide emissions after the application of urine patches were higher in pastures associated with L. diversifolia, however, due to the increase in forage production per unit area, the intensity of emissions was up to 18% lower than in grass alone pastures. The integration of Urochloa grasses with legumes such as L. diversifolia constitutes an important alternative to sustainably intensify animal production hand in hand with the provision of different ecosystem services
dc.format.extentxv, 61 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.subject.otherCultivos forrajeros
dc.subject.otherForage crops
dc.subject.otherPastura y forraje
dc.subject.otherPasture and forage
dc.titleUso del nitrógeno en pasturas asociadas con Leucaena diversifolia en un Molisol del Valle del Cauca, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.contributor.educationalvalidatorVelásquez Ibáñez, Elena
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.methodsCon el objetivo de evaluar diferencias en el uso del nitrógeno en pasturas asociadas con la leguminosa Leucaena diversifolia en el Valle del Cauca, Colombia, se evaluaron cuatro tratamientos de pasturas incluyendo Urochloa híbrido cv. Cayman y U. brizantha cv. Toledo solas y asociadas con L. diversifolia. Se midieron las variables de producción de biomasa, absorción de N en el forraje, fijación de N de L. diversifolia y las emisiones de óxido nitroso del suelo tras la aplicación de parches de orina en las pasturas
dc.description.researchareaSuelos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAdeniyi, I. (2006). Nitrogen inputs by precipitation in the Nigerian Savanna. West African Journal of Applied Ecology, 9(1).
dc.relation.referencesArango, J., Sotelo, M., Gutierrez, J. F., Hincapie, B., Vazquez, E., Teutscherova, N., . . . Peters, M. (2019, September 18-20 2019). Integral assessment of productive and environmental parameters of a forage-based silvopastoral system Tropentag 2019,
dc.relation.referencesArshad, M. A. C., Lowery, B., & Grossman, B. (2015). Physical Tests for Monitoring Soil Quality [book part]. Soil Science Society of America. https://doi.org/10.2136/sssaspecpub49.c7
dc.relation.referencesBoddey, R. M., Casagrande, D. R., Homem, B. G. C., & Alves, B. J. R. (2020). Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass and Forage Science. https://doi.org/10.1111/gfs.12498
dc.relation.referencesBorrero Tamayo, G., Jiménez, J., Ricaurte Oyola, J. J., Rivera, M., Polanía Perdomo, J. A., Núñez, J., . . . Rao, I. M. (2017). Manual de protocolos. Nutrición y fisiología de plantas-Forrajes y fríjol. In: Centro Internacional de Agricultura Tropical (CIAT).
dc.relation.referencesCadisch, G., Schunke, R. M., & Giller, K. E. (1994). Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. Tropical Grasslands, 28, 43-43.
dc.relation.referencesCadisch, G., Sylvester-Bradley, R., & Nösberger, J. (1989). 15N-based estimation of nitrogen fixation by eight tropical forage-legumes at two levels of P:K supply. Field Crops Research, 22, 181-194.
dc.relation.referencesCantarutti, R. B., Tarre, R., Macedo, R., Cadisch, G., Rezende, C. D., Pereira, J. M., . . . Boddey, R. M. (2002). The effect of grazing intensity and the presence of a forage legume on nitrogen dynamics in Brachiaria pastures in the Atlantic forest region of the south of Bahia, Brazil. Nutrient Cycling in Agroecosystems, 64(3), 257-271. https://doi.org/10.1023/a:1021415915804
dc.relation.referencesChará, J., Rivera, J., Barahona, R., Murgueitio, E., Calle, Z., & Giraldo, C. (2019). Intensive silvopastoral systems with Leucaena leucocephala in Latin America [article]. Tropical Grasslands-Forrajes Tropicales, 7(4), 259-266. https://doi.org/10.17138/tgft(7)259-266
dc.relation.referencesConrad, K. A., Dalal, R. C., Dalzell, S. A., Allen, D. E., Fujinuma, R., & Menzies, N. W. (2018). Soil nitrogen status and turnover in subtropical leucaena-grass pastures as quantified by δ15N natural abundance. Geoderma, 313, 126-134.
dc.relation.referencesCook, B. G., Pengelly, B. C., Schultze-Kraft, R., Taylor, M., Burkart, S., Cardoso, J., . . . Peters, M. (2020). Tropical Forages: an interactive selection tool. 2nd and revised Edn. http://www.tropicalforages.info/
dc.relation.referencesCooper, J. E., & Scherer, H. W. (2012). Nitrogen Fixation. In Marschner's Mineral Nutrition of Higher Plants (pp. 389-408). https://doi.org/10.1016/B978-0-12-384905-2.00016-9
dc.relation.referencesCorporación autónoma regional del Valle del Cauca, & Instituto Geográfico Agustín Codazzi. (2021). Geoportal CVC. Retrieved 23/08/2022 from https://geo.cvc.gov.co/visores/suelos/16/
dc.relation.referencesCoskun, D., Britto, D. T., Shi, W., & Kronzucker, H. J. (2017). Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 3(6). https://doi.org/10.1038/nplants.2017.74
dc.relation.referencesDANE. (2016). 3er Censo nacional agropecuario. DANE.
dc.relation.referencesDANE. (2020). Encuesta nacional agropecuaria - ENA 2012 - 2019. DANE.
dc.relation.referencesDavidson, E. A., Savage, K., Verchot, L. V., & Navarro, R. (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113(1), 21-37. https://doi.org/https://doi.org/10.1016/S0168-1923(02)00100-4
dc.relation.referencesEnciso, K., Sotelo, M., Peters, M., & Burkart, S. (2019). The inclusion of Leucaena diversifolia in a Colombian beef cattle production system: An economic perspective. Tropical Grasslands-Forrajes Tropicales, 7(4), 359-369.
dc.relation.referencesFederacion Nacional de Ganaderos. (2021). Cifras de referencia del sector ganadero Colombiano. FEDEGAN.
dc.relation.referencesFisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., & Vera, R. R. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature, 371(6494), 236-238. https://doi.org/10.1038/371236a0
dc.relation.referencesGalindo, V., Murgueitio, M., Zapata, A., Naranjo, J., Cuartas, C., & Murgueitio, E. (2011). Interceptación de la luz por leguminosas arbóreas en sistemas silvopastoriles intensivos de Leucaena leucocephala (Lam) de Wit y su efecto en la producción de biomasa en pastos mejorados de Cynodon plectostachyus (K.Schum.) Pilg. y C, en el bosque seco tropical de la Terraza de Ibagué. Pastos y sistemas de silvopastoreo
dc.relation.referencesGalloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., . . . Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889-892.
dc.relation.referencesGaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R., & Arango, J. (2020). Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations With Two Leucaena Shrub Legumes [Original Research]. Frontiers in Veterinary Science, 7(764). https://doi.org/10.3389/fvets.2020.579189
dc.relation.referencesHoweler, R. H. (1986). Los suelos del Centro Internacional de Agricultura Tropical en Palmira, Colombia. Centro Internacional de Agricultura Tropical (CIAT).
dc.relation.referencesIDEAM, PNUD, MADS, DNP, & Cancillería. (2016). Inventario nacional y departamental de Gases Efecto Invernadero – Colombia. Tercera Comunicación Nacional de Cambio Climático. P. IDEAM, MADS, DNP, CANCILLERÍA, FMAM.
dc.relation.referencesJalonen, R., Nygren, P., & Sierra, J. (2009). Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant, cell & environment, 32(10), 1366-1376.
dc.relation.referencesKarwat, H., Egenolf, K., Nuñez, J., Rao, I., Rasche, F., Arango, J., . . . Cadisch, G. (2018). Low 15N natural abundance in shoot tissue of Brachiaria humidicola is an indicator of reduced N losses due to biological nitrification inhibition (BNI). Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02383
dc.relation.referencesKemen, E., Van Deynze, A., Zamora, P., Delaux, P.-M., Heitmann, C., Jayaraman, D., . . . Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLOS Biology, 16(8), e2006352. https://doi.org/10.1371/journal.pbio.2006352
dc.relation.referencesLedgard, S., & Giller, K. (1995). Atmospheric N2 fixation as an alternative N source. In P. E. Bacon (Ed.), Nitrogen fertilization in the environment. (pp. 443-486). Marcel Dekker Inc.
dc.relation.referencesMalagón Castro, D., Pulido Roa, C., Llinas Rivera, R. D., Chamorro Bello, C., & Fernández Lamus, J. (1995). Suelos de Colombia: origen, evolución, clasificación, distribución y uso. Instituto Geográfico Agustín Codazzi (IGAC).
dc.relation.referencesMonsalve, O. I., Gutiérrez, J. S., & Cardona, W. A. (2017). Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas, 11(1), 200-209. https://doi.org/10.17584/rcch.2017v11i1.5663
dc.relation.referencesMorales-Vallecilla, F., & Ortiz-Grisales, S. (2018). Productividad y eficiencia de ganaderías lecheras especializadas en el Valle del Cauca (Colombia). Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 65(3), 252-268.
dc.relation.referencesMrówczyńska-Kamińska, A., Bajan, B., Pawłowski, K. P., Genstwa, N., & Zmyślona, J. (2021). Greenhouse gas emissions intensity of food production systems and its determinants. Plos One, 16(4), e0250995. https://doi.org/10.1371/journal.pone.0250995
dc.relation.referencesMunroe, J. W., & Isaac, M. E. (2014). N 2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agronomy for Sustainable Development, 34(2), 417-427.
dc.relation.referencesNyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., & Lüscher, A. (2011). Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources [Article]. Agriculture, Ecosystems and Environment, 140(1-2), 155-163. https://doi.org/10.1016/j.agee.2010.11.022
dc.relation.referencesPeters, M., Franco, T., Schmidt, A., & Hincapié Carvajal, B. (2011). Especies forrajeras multipropósito: Opciones para productores del Trópico Americano. In: Centro Internacional de Agricultura Tropical (CIAT); Bundesministerium für ….
dc.relation.referencesRao, A. V., & Giller, K. E. (1993). Nitrogen fixation and its transfer from Leucaena to grass using 15N. Forest Ecology and Management, 61(3), 221-227. https://doi.org/https://doi.org/10.1016/0378-1127(93)90203-Y
dc.relation.referencesRao, I., Peters, M., Castro, A., Schultze-Kraft, R., White, D., Fisher, M., . . . Rudel, T. (2015). LivestockPlus - The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics [Article]. Tropical Grasslands-Forrajes Tropicales, 3(2), 59-82. https://doi.org/10.17138/TGFT(3)59-82
dc.relation.referencesRao, I. M., Peters, M., Castro, A., Schultze-Kraft, R., White, D., Fisher, M., . . . Rudel, T. (2015). LivestockPlus: The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Tropical Grasslands-Forrajes Tropicales, 3(2), 59-82. https://doi.org/10.17138/TGFT(3)59-82
dc.relation.referencesRivera-Herrera, J. E., Molina-Botero, I., Chará-Orozco, J., Murgueitio-Restrepo, E., & Barahona-Rosales, R. (2017). Intensive silvopastoral systems with Leucaena leucocephala (Lam.) de Wit: productive alternative in the tropic in view of the climate change. Pastos y Forrajes, 40(3), 171-183.
dc.relation.referencesRivera, J. E., Chará, J., Murgueitio, E., Molina, J. J., & Barahona, R. (2019). Feeding leucaena to dairy cows in intensive silvopastoral systems in Colombia and Mexico. Tropical Grasslands-Forrajes Tropicales, 7(4), 370-374.
dc.relation.referencesRobertson, G. P., & Groffman, P. M. (2015). Nitrogen Transformations. In E. A. Paul (Ed.), Soil Microbiology, Ecology and Biochemistry (pp. 421-446). Academic press. https://doi.org/10.1016/b978-0-12-415955-6.00014-1
dc.relation.referencesSalsac, L., Chaillou, S., Morot-Gaudry, J.-F., Lesaint, C., & Jolivet, E. (1987). Nitrate and ammonium nutrition in plants. Plant Physiology and Biochemistry, 25(6), 805-812.
dc.relation.referencesSarabia-Salgado, L., Solorio-Sánchez, F., Ramírez-Avilés, L., Rodrigues Alves, B. J., Ku-Vera, J., Aguilar-Pérez, C., . . . Boddey, R. M. (2020). Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena leucocephala in a Silvopastoral System. Animals, 10(4), 734. https://www.mdpi.com/2076-2615/10/4/734
dc.relation.referencesSchultze-Kraft, R., Rao, I. M., Peters, M., Clements, R. J., Bai, C., & Liu, G. (2018). Tropical forage legumes for environmental benefits: An overview. Tropical Grasslands-Forrajes Tropicales, 6(1), 1-14.
dc.relation.referencesShearer, G., & Kohl, D. H. (1986). N2 fixation in field settings: estimations based on natural abundance. Australian Journal of Plant Physiology, 13, 699-744.
dc.relation.referencesShelton, M., & Dalzell, S. (2007). Production, economic and environmental benefits of leucaena pastures. Tropical Grasslands, 41(3), 174.
dc.relation.referencesSmolander, A., Kanerva, S., Adamczyk, B., & Kitunen, V. (2012). Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations? Plant and Soil, 350(1), 1-26. https://doi.org/10.1007/s11104-011-0895-7
dc.relation.referencesSoil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd edition ed.). US Department of Agriculture.
dc.relation.referencesSubbarao, G. V., Nakahara, K., Hurtado, M. P., Ono, H., Moreta, D. E., Salcedo, A. F., . . . Ito, O. (2009). Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17302-17307. https://doi.org/10.1073/pnas.0903694106
dc.relation.referencesSubbarao, G. V., Rondon, M., Ito, O., Ishikawa, T., Rao, I. M., Nakahara, K., . . . Berry, W. L. (2007). Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant and Soil, 294(1), 5-18. https://doi.org/10.1007/s11104-006-9159-3
dc.relation.referencesSubbarao, G. V., Sahrawat, K. L., Nakahara, K., Rao, I. M., Ishitani, M., Hash, C. T., . . . Lata, J. C. (2012). A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Annals of Botany, 112(2), 297-316. https://doi.org/10.1093/aob/mcs230
dc.relation.referencesUnkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, R., Giller, K., . . . Chalk, P. M. (2008). Measuring plant-associated nitrogen fixation in agricultural systems (Vol. No. 136). ACIAR.
dc.relation.referencesUSDA. (1999). Soil Quality Test Kit Guide.
dc.relation.referencesVazquez, E., Teutscherova, N., Lojka, B., Arango, J., & Pulleman, M. (2020). Pasture diversification affects soil macrofauna and soil biophysical properties in tropical (silvo) pastoral systems. Agriculture, Ecosystems & Environment, 302, 107083.
dc.relation.referencesVillegas, D., Arevalo, A., Nuñez, J., Mazabel, J., Subbarao, G., Rao, I., . . . Arango, J. (2020). Biological Nitrification Inhibition (BNI): Phenotyping of a core germplasm collection of the tropical forage grass Megathyrsus maximus under greenhouse conditions [Original Research]. Frontiers in plant science, 11(820). https://doi.org/10.3389/fpls.2020.00820
dc.relation.referencesVillegas, D. M., Velasquez, J., Arango, J., Obregon, K., Rao, I. M., Rosas, G., & Oberson, A. (2020). Urochloa grasses swap nitrogen source when grown in association with legumes in tropical pastures. Diversity, 12(11), 419. https://www.mdpi.com/1424-2818/12/11/419
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocNitrógeno
dc.subject.agrovocNitrogen
dc.subject.agrovocMolisoles
dc.subject.agrovocMollisols
dc.subject.agrovocSuelo
dc.subject.agrovocSoil
dc.subject.agrovocLeguminosas forrajeras
dc.subject.agrovocFeed legumes
dc.subject.proposalBrachiaria
dc.subject.proposalCambio climático
dc.subject.proposalSilvopastoril
dc.subject.proposalClimate change
dc.subject.proposalSilvopastoral
dc.title.translatedNitrogen use in pastures associated with Leucaena diversifolia in a Molisol of Valle del Cauca, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleCo-For-Life
oaire.fundernameBBSRC
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito