Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSanchez Torres, German
dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorBallesteros Parra, John Robert
dc.date.accessioned2022-10-28T15:36:56Z
dc.date.available2022-10-28T15:36:56Z
dc.date.issued2022-10-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82529
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractThis thesis presents a three methods pipeline for extraction of point, line, and polygon vector objects from orthomosaics using a deep generative model as an alternative to the default semantic segmentation approach. The first method consists of two workflows, the vector ground truth is acquired by manual digitalization of certain objects or from Open Street Maps. Raster layers input are spectral and geometrically augmented, both inputs are then tessellated and paired into image-masks that pass through an imbalance checking step. Balanced dataset is then random split into a final dataset. Conditional and unpaired generative models are compared and pix2pix is chosen by its better results on image to mask translation. Results of the chosen model on different datasets and configurations are reported on the mIoU metric. A batch size of 10 and datasets of 1000 image-masks pairs of 512x512 pixels, with overlapping augmentation showed the best quantitative results. Height of objects from the DSM, and VARI index contribute to decrease variance of discriminator and generator losses. Producing synthetic data is the horsepower of generative models, so a double image to mask translation is used to improve resultant masks in terms of continuity and uniform width. Double image to mask translation model is trained with a dataset of equal size masks of 1 meter called primitive masks, that are obtained by a buffer distance parameter. This cleaning procedure showed to improve resultant masks, that are then converted to vector and measured by quantity, length, or area against vector ground truth, using a proposed metric for map creation called “The average geometry similarity (AGS)”.
dc.description.abstractEsta tesis presenta una metodología basada en tres métodos para la extracción de puntos, lineas, y polígonos de objetos vectoriales presentes en ortomosaicos usando un modelo generativo basado en aprendizaje profundo como una alternativa al enfoque de segmentación semántica usado por defecto. El primer método consiste en dos líneas de trabajo, las capas vector de entrenamiento son adquiridas bien sea por digitalización manual de los objetos de interés o directamente desde Open Street Maps (OSM). Las capas raster de entrada son aumentadas spectral y geométricamente, teseladas y emparejadas en pares imagen-mascara que se chequean ante el imbalance. El conjunto de datos balanceado es luego partido al azar para obtener el conjunto final. Los modelos generativos, condicionales y no emparejados son comparados y el mejor es escogido para realizar las traducciones entre imagen y mascara. Los resultados de la comparación y los obtenidos por el mejor modelo sobre diferentes conjuntos de datos, y su configuración son reportados usando la metrica mIoU. Un lote de tamaño diez para un conjunto de 1000 image-mascaras de 512x512 pixeles, con augmentación por solapamiento mostró los mejores resultados cuantitativos. La altura de los objetos obtenida del DSM, y el índice VARI contribuyen a disminuir la varianza del discriminador y del generador. La producción de datos sintéticos es el caballo de batalla de los modelos generativos, así que una doble traducción de imagen a mascara (DCIT) es empleada para mejorar las mascaras resultantes en términos de su continuidad y uniformidad. Un modelo para realizar DCIT es entrenado con un conjunto de datos de igual tamaño de mascara de 1 metro llamado mascaras primitivas, que son obtenidas usando una distancia buffer como parametro. Este procedimiento de limpieza mostró que mejora las mascaras resultantes, que son luego convertidas a vector y medidas en cantidad, distancia, o area vs la realidad vectorial, usando una métrica propuesta para la creación de mapas llamada “Similaridad geomética promedia (AGS)" (Texto tomado de la fuente)
dc.format.extent138 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.titleAutomatic generation of GIS vector Layers from orthomosaics using deep learning
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.contributor.researchgroupGidia: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaInteligencia Artificial y Mapas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de la Computación y la Decisión
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbdollahi, A., Pradhan, B., & Alamri, A. (2021). RoadVecNet: A new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up. GIScience & Remote Sensing, 58(7), 1151–1174. https://doi.org/10.1080/15481603.2021.1972713
dc.relation.referencesAbdollahi, A., Pradhan, B., & Shukla, N. (2019). Extraction of road features from UAV images using a novel level set segmentation approach. International Journal of Urban Sciences. https://doi.org/10.1080/12265934.2019.1596040
dc.relation.referencesAbdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S., & Alamri, A. (2020). Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sensing, 12(9), 1444. https://doi.org/10.3390/rs12091444
dc.relation.referencesAldana Rodriguez, D., Ávila Granados, D. L., & Villalba-Vidales, J. A. (2021). Use of Unmanned Aircraft Systems for Bridge Inspection: A Review. DYNA, 88(217), 32–41. https://doi.org/10.15446/dyna.v88n217.91879
dc.relation.referencesAl-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019). Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461
dc.relation.referencesAvola, D., & Pannone, D. (2021). MAGI: Multistream Aerial Segmentation of Ground Images with Small-Scale Drones. Drones, 5(4), 111. https://doi.org/10.3390/drones5040111
dc.relation.referencesBadrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
dc.relation.referencesBallesteros, J. R., Sanchez-Torres, G., & Branch, J. W. (2021). Automatic road extraction in small urban areas of developing countries using drone imagery and Image Translation. 2021 2nd Sustainable Cities Latin America Conference (SCLA), 1–6. https://doi.org/10.1109/SCLA53004.2021.9540111
dc.relation.referencesBallesteros, J. R., Sanchez-Torres, G., & Branch-Bedoya, J. W. (2022). HAGDAVS: Height-Augmented Geo-Located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial Orthomosaics. Data, 7(4), 50. https://doi.org/10.3390/data7040050
dc.relation.referencesBallesteros, John R., German Sanchez-Torres, and John W. Branch-Bedoya. 2022. "A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery" ISPRS International Journal of Geo-Information 11, no. 10: 508. https://doi.org/10.3390/ijgi11100508
dc.relation.referencesBatra, A., Singh, S., Pang, G., Basu, S., Jawahar, C. V., & Paluri, M. (2019). Improved Road Connectivity by Joint Learning of Orientation and Segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10377–10385. https://doi.org/10.1109/CVPR.2019.01063
dc.relation.referencesBhatnagar, S., Gill, L., & Ghosh, B. (2020). Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities. Remote Sensing, 12(16), 2602. https://doi.org/10.3390/rs12162602
dc.relation.referencesBisio, I., Haleem, H., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2021). Performance Evaluation and Analysis of Drone-based Vehicle Detection Techniques From Deep Learning Perspective. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2021.3128065
dc.relation.referencesBlaga, B.-C.-Z., & Nedevschi, S. (2020). A Critical Evaluation of Aerial Datasets for Semantic Segmentation. 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 353–360. https://doi.org/10.1109/ICCP51029.2020.9266169
dc.relation.referencesBolstad, P. (2016). GIS fundamentals: A first text on geographic information systems : 5th ed. Eider (PressMinnesota). http://repository.ntt.edu.vn/jspui/handle/298300331/2885
dc.relation.referencesBrooks, C. (2017). Drone-Enabled Remote Sensing for Transportation Infrastructure Assessment. INSPIRE-University Transportation Center Webinars. https://scholarsmine.mst.edu/inspire_webinars/2
dc.relation.referencesBulatov, D., Häufel, G., & Pohl, M. (2016). VECTORIZATION OF ROAD DATA EXTRACTED FROM AERIAL AND UAV IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 567–574. https://doi.org/10.5194/isprsarchives-XLI-B3-567- 2016
dc.relation.referencesBuslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and Flexible Image Augmentations. Information, 11(2), 125. https://doi.org/10.3390/info11020125
dc.relation.referencesCheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., & Chen, L.-C. (2020). Panoptic DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation. 12475–12485. https://openaccess.thecvf.com/content_CVPR_2020/html/Cheng_Panoptic DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.html
dc.relation.referencesChiangYao-Yi, LeykStefan, & A, K. (2014). A Survey of Digital Map Processing Techniques. ACM Computing Surveys (CSUR). https://doi.org/10.1145/2557423
dc.relation.referencesCordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. 3213–3223. https://openaccess.thecvf.com/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_ 2016_paper.html
dc.relation.referencesCrommelinck, S., Bennett, R., Gerke, M., Koeva, M. N., Yang, M. Y., & Vosselman, G. (2017). SLIC SUPERPIXELS FOR OBJECT DELINEATION FROM UAV DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W3, 9–16. https://doi.org/10.5194/isprs annals-IV-2-W3-9-2017
dc.relation.referencesCrommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., & Vosselman, G. (2016). Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral Mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689
dc.relation.referencesDeigele, W., Brandmeier, M., & Straub, C. (2020). A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing, 12(13), 2121. https://doi.org/10.3390/rs12132121
dc.relation.referencesDemir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., & Raskar, R. (2018). DeepGlobe 2018: A Challenge to Parse the Earth Through Satellite Images. 172–181. https://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Demir_DeepGlobe_201 8_A_CVPR_2018_paper.html
dc.relation.referencesDrivenData. Open Cities AI Challenge: Segmenting Buildings for Disaster Resilience. DrivenData. Retrieved June 22, 2022, from https://www.drivendata.org/competitions/60/building segmentation-disaster-resilience/
dc.relation.referencesEng, L. S., Ismail, R., Hashim, W., & Baharum, A. (2019). The Use of VARI, GLI, and VIgreen Formulas in Detecting Vegetation In aerial Images. International Journal of Technology, 10(7), 1385. https://doi.org/10.14716/ijtech.v10i7.3275
dc.relation.referencesFan, Q., Brown, L., & Smith, J. (2016). A closer look at Faster R-CNN for vehicle detection. 2016 IEEE Intelligent Vehicles Symposium (IV), 124–129. https://doi.org/10.1109/IVS.2016.7535375
dc.relation.referencesFilin, O., Zapara, A., & Panchenko, S. (2018). Road Detection with EOSResUNet and Post Vectorizing Algorithm. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 201–2014. https://doi.org/10.1109/CVPRW.2018.00036
dc.relation.referencesGao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., Jiao, J., & Fu, K. (2018). An End-to-End Neural Network for Road Extraction From Remote Sensing Imagery by Multiple Feature Pyramid Network. IEEE Access, 6, 39401–39414. https://doi.org/10.1109/ACCESS.2018.2856088
dc.relation.referencesGerke, M., Rottensteiner, F., Wegner, J., & Sohn, G. (2014). ISPRS Semantic Labeling Contest. https://doi.org/10.13140/2.1.3570.9445
dc.relation.referencesGirard, N., & Tarabalka, Y. (2018). End-to-End Learning of Polygons for Remote Sensing Image Classification. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2083–2086. https://doi.org/10.1109/IGARSS.2018.8518116
dc.relation.referencesGitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., & Derry, D. (2002). Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23(13), 2537–2562. https://doi.org/10.1080/01431160110107806
dc.relation.referencesGong, Z., Xu, L., Tian, Z., Bao, J., & Ming, D. (2020). Road network extraction and vectorization of remote sensing images based on deep learning. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 303–307. https://doi.org/10.1109/ITOEC49072.2020.9141903
dc.relation.referencesGoodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3- Abstract.html
dc.relation.referencesHartmann, S., Weinmann, M., Wessel, R., & Klein, R. (2017, May 30). StreetGAN: Towards Road Network Synthesis with Generative Adversarial Networks.
dc.relation.referencessola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967–5976. https://doi.org/10.1109/CVPR.2017.632
dc.relation.referencesKameyama, S., & Sugiura, K. (2021). Effects of Differences in Structure from Motion Software on Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree Height in Forests. Remote Sensing, 13(4), 626. https://doi.org/10.3390/rs13040626
dc.relation.referencesKearney, S. P., Coops, N. C., Sethi, S., & Stenhouse, G. B. (2020). Maintaining accurate, current, rural road network data: An extraction and updating routine using RapidEye, participatory GIS and deep learning. International Journal of Applied Earth Observation and Geoinformation, 87, 102031. https://doi.org/10.1016/j.jag.2019.102031
dc.relation.referencesLi, Z., Xin, Q., Sun, Y., & Cao, M. (2021). A Deep Learning-Based Framework for Automated Extraction of Building Footprint Polygons from Very High-Resolution Aerial Imagery. Remote Sensing, 13(18), 3630. https://doi.org/10.3390/rs13183630
dc.relation.referencesLong, Y., Xia, G.-S., Li, S., Yang, W., Yang, M. Y., Zhu, X. X., Zhang, L., & Li, D. (2021). On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances, and Million-AID. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4205–4230. https://doi.org/10.1109/JSTARS.2021.3070368
dc.relation.referencesLópez-Tapia, S., Ruiz, P., Smith, M., Matthews, J., Zercher, B., Sydorenko, L., Varia, N., Jin, Y., Wang, M., Dunn, J. B., & Katsaggelos, A. K. (2021). Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands. International Journal of Applied Earth Observation and Geoinformation, 105, 102581. https://doi.org/10.1016/j.jag.2021.102581
dc.relation.referencesMaggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3226–3229. https://doi.org/10.1109/IGARSS.2017.8127684
dc.relation.referencesMarmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., & Stilla, U. (n.d.). SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS. 8.
dc.relation.referencesMnih, V., & Hinton, G. E. (2010). Learning to Detect Roads in High-Resolution Aerial Images. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer Vision – ECCV 2010 (pp. 210–223). Springer. https://doi.org/10.1007/978-3-642-15567-3_16
dc.relation.referencesMurtiyoso, A., Veriandi, M., Suwardhi, D., Soeksmantono, B., & Harto, A. B. (2020). Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image Derived Point Clouds. ISPRS International Journal of Geo-Information, 9(12), 743. https://doi.org/10.3390/ijgi9120743
dc.relation.referencesNg, V., & Hofmann, D. (2018). Scalable Feature Extraction with Aerial and Satellite Imagery. 145– 151. https://doi.org/10.25080/Majora-4af1f417-015
dc.relation.referencesOsco, L. P., Marcato Junior, J., Marques Ramos, A. P., de Castro Jorge, L. A., Fatholahi, S. N., de Andrade Silva, J., Matsubara, E. T., Pistori, H., Gonçalves, W. N., & Li, J. (2021). A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102, 102456. https://doi.org/10.1016/j.jag.2021.102456
dc.relation.referencesPan, X., Yang, F., Gao, L., Chen, Z., Zhang, B., Fan, H., & Ren, J. (2019). Building Extraction from High Resolution Aerial Imagery Using a Generative Adversarial Network with Spatial and Channel Attention Mechanisms. Remote Sensing, 11(8), 917. https://doi.org/10.3390/rs11080917
dc.relation.referencesPashaei, M., Kamangir, H., Starek, M. J., & Tissot, P. (2020). Review and Evaluation of Deep Learning Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study Over a Wetland. Remote Sensing, 12(6), 959. https://doi.org/10.3390/rs12060959
dc.relation.referencesPinto, L., Bianchini, F., Nova, V., & Passoni, D. (2020). LOW-COST UAS PHOTOGRAMMETRY FOR ROAD INFRASTRUCTURES’ INSPECTION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1145–1150. https://doi.org/10.5194/isprs archives-XLIII-B2-2020-1145-202
dc.relation.referencesPote, R. (2021, August). Polygonal delineation of greenhouses using a deep learning strategy [Info:eu-repo/semantics/masterThesis]. University of Twente. http://essay.utwente.nl/89006/
dc.relation.referencesRadford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv. https://doi.org/10.48550/arXiv.1511.06434
dc.relation.referencesRen, J., & Xu, L. (2015). On Vectorization of Deep Convolutional Neural Networks for Vision Tasks. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Article 1. https://ojs.aaai.org/index.php/AAAI/article/view/9488
dc.relation.referencesRonneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
dc.relation.referencesSaeedimoghaddam, M., & Stepinski, T. F. (2020). Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks. International Journal of Geographical Information Science, 34(5), 947–968. https://doi.org/10.1080/13658816.2019.1696968
dc.relation.referencesSahu, M., & Ohri, A. (2019a). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5, 157–162. https://doi.org/10.5194/isprs-annals-IV-2-W5-157-2019
dc.relation.referencesSahu, M., & Ohri, A. (2019b). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP LEARNING. http://localhost:8080/xmlui/handle/123456789/520
dc.relation.referencesSalimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., & Chen, X. (2016). Improved Techniques for Training GANs. Advances in Neural Information Processing Systems, 29. https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7- Abstract.html
dc.relation.referencesSester, M., Feng, Y., & Thiemann, F. (2018). Building generalization using deep learning. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4 (2018), XLII–4, 565–572. https://doi.org/10.15488/5169
dc.relation.referencesShermeyer, J., & Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184
dc.relation.referencesShermeyer, J., & Van Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184
dc.relation.referencesSong, A., & Kim, Y. (2020). Semantic Segmentation of Remote-Sensing Imagery Using Heterogeneous Big Data: International Society for Photogrammetry and Remote Sensing Potsdam and Cityscape Datasets. ISPRS International Journal of Geo-Information, 9(10), 601. https://doi.org/10.3390/ijgi9100601
dc.relation.referencesSun, W., & Wang, R. (2018). Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM. IEEE Geoscience and Remote Sensing Letters, 15(3), 474–478. https://doi.org/10.1109/LGRS.2018.2795531
dc.relation.referencesTouya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization? International Journal of Cartography, 5(2–3), 142–157. https://doi.org/10.1080/23729333.2019.1613071
dc.relation.referencesVan Etten, A. (2019). Satellite Imagery Multiscale Rapid Detection with Windowed Networks. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 735–743. https://doi.org/10.1109/WACV.2019.00083
dc.relation.referencesVan Etten, A., Lindenbaum, D., & Bacastow, T. M. (2019). SpaceNet: A Remote Sensing Dataset and Challenge Series (arXiv:1807.01232). arXiv. http://arxiv.org/abs/1807.01232
dc.relation.referencesVinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and Tell: A Neural Image Caption Generator. 3156–3164. https://www.cv foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper. html
dc.relation.referencesWang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., & Urtasun, R. (2017). TorontoCity: Seeing the World with a Million Eyes. 2017 IEEE International Conference on Computer Vision (ICCV), 3028–3036. https://doi.org/10.1109/ICCV.2017.327
dc.relation.referencesWang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. (2016). Training deep neural networks on imbalanced data sets. 2016 International Joint Conference on Neural Networks (IJCNN), 4368– 4374. https://doi.org/10.1109/IJCNN.2016.7727770
dc.relation.referencesWang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., & Eklund, P. (2016). A review of road extraction from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition), 3(3), 271–282. https://doi.org/10.1016/j.jtte.2016.05.005
dc.relation.referencesWeir, N., Lindenbaum, D., Bastidas, A., Etten, A., Kumar, V., Mcpherson, S., Shermeyer, J., & Tang, H. (2019). SpaceNet MVOI: A Multi-View Overhead Imagery Dataset. 992–1001. https://doi.org/10.1109/ICCV.2019.0010
dc.relation.referencesWu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing Convolutions to Vision Transformers. 22–31. https://openaccess.thecvf.com/content/ICCV2021/html/Wu_CvT_Introducing_Convolutions_to_V ision_Transformers_ICCV_2021_paper.html
dc.relation.referencesXie, Y., Zhu, J., Cao, Y., Feng, D., Hu, M., Li, W., Zhang, Y., & Fu, L. (2020). Refined Extraction Of Building Outlines From High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1842–1855. https://doi.org/10.1109/JSTARS.2020.2991391
dc.relation.referencesXu, Y., Wu, L., Xie, Z., & Chen, Z. (2018). Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote Sensing, 10(1), 144. https://doi.org/10.3390/rs10010144
dc.relation.referencesYan, H. (2019). Description Approaches and Automated Generalization Algorithms for Groups of Map Objects. Springer Singapore. https://doi.org/10.1007/978-981-13-3678-2
dc.relation.referencesYang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., & Bhaduri, B. (2018). Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2835377
dc.relation.referencesYang, W., Gao, X., Zhang, C., Tong, F., Chen, G., & Xiao, Z. (2021). Bridge Extraction Algorithm Based on Deep Learning and High-Resolution Satellite Image. Scientific Programming, 2021, e9961963. https://doi.org/10.1155/2021/9961963
dc.relation.referencesZhang, Q., Qin, R., Huang, X., Fang, Y., & Liu, L. (2015). Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile. Remote Sensing, 7(12), 16422–16440. https://doi.org/10.3390/rs71215840
dc.relation.referencesZhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network. 2881–2890. https://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_20 17_paper.html
dc.relation.referencesZhao, S., Liu, Z., Lin, J., Zhu, J.-Y., & Han, S. (2020). Differentiable Augmentation for Data-Efficient GAN Training. Advances in Neural Information Processing Systems, 33, 7559–7570. https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388- Abstract.html
dc.relation.referencesZhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), 2242–2251. https://doi.org/10.1109/ICCV.2017.244
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAnálisis vectorial
dc.subject.lembVector analysis
dc.subject.lembCampos vectoriales
dc.subject.lembVector fields
dc.subject.proposalGIS
dc.subject.proposalVectorization
dc.subject.proposalGAN
dc.subject.proposalSemantic Segmentation
dc.subject.proposalOrthomosaics
dc.subject.proposalDeep Learning
dc.subject.proposalImage Translation
dc.subject.proposalImage Caption
dc.subject.proposalVectorización
dc.subject.proposalRedes Antagónicas
dc.subject.proposalSegmentación Semántica
dc.subject.proposalOrtomosaicos
dc.subject.proposalAprendizaje Profundo
dc.subject.proposalTraducción de Imagen
dc.title.translatedGeneración automatica de capas vectoriales SIG de ortomosaicos usando aprendizaje profundo
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informática


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito