Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOsorio Vega, Nelson Walter
dc.contributor.advisorRamirez Pisco, Ramiro
dc.contributor.authorNoreña Grisales, Jorge Mario
dc.date.accessioned2022-11-02T20:26:17Z
dc.date.available2022-11-02T20:26:17Z
dc.date.issued2022-08-29
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82599
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractEl manejo inadecuado de las praderas ha conllevado a la degradación de extensas áreas y a la pérdida de productividad y de sostenibilidad de muchas de ellas, convirtiéndose, en una realidad a la que se enfrentan comúnmente los ganaderos del Colombia. Por ello, en la Estación Agraria Paysandú de la Universidad Nacional de Colombia, Sede Medellín, localizada en el corregimiento de Santa Elena, se desarrolló una investigación que permitió determinar un índice de calidad de suelo, al evaluar los indicadores físicos y químicos que más se relacionaron con la degradación y producción de materia seca del pasto kikuyu (Cenchrus clandestinus). Se estableció el set mínimo de datos (SMD) para los indicadores más sensibles, elegidos mediante el análisis de componentes principales PCA, y se utilizó una función de puntuación no lineal para desarrollar el índice de calidad del suelo (SQI). Se encontró diferencia estadística entre todos los tratamientos y la producción de materia seca (p<0,05: 1,911372e-32). Los indicadores más sensibles fueron: densidad aparente BD > porosidad total OP > macroporos MAC > microporos MIC > resistencia a la penetración PR > capacidad efectiva de intercambio catiónico CECE > pH. Como resultado se obtuvo el índice de calidad del suelo y la ecuación fue = (0,225×BD) + (0,224×OP) + (0,220×MAC) + (0,218×MIC) + (0,113×PR) + (0,0879×CECE) + (0,0877×pH). Es necesario probar el índice a escala regional en sistemas de lechería bajo pastoreo ubicados en el trópico alto andino colombiano, especialmente en praderas con dominio de pasto kikuyu. (Texto tomado de la fuente)
dc.description.abstractThe inadequate management of pastures has led to the degradation of extensive areas and to the loss of productivity and sustainability of many of them, becoming a reality commonly faced by cattle ranchers in Colombia. For this reason, at the Paysandú Agricultural Station of the National University of Colombia, Medellín, located in the town of Santa Elena, an investigation was carried out to determine a soil quality index by evaluating the physical and chemical indicators that were most related to the degradation and dry matter production of kikuyu grass (Cenchrus clandestinus). The minimum data set (MDS) was established for the most sensitive indicators, chosen by principal component analysis PCA, and a nonlinear scoring function was used to develop the soil quality index (InCS). Statistical difference was found between all treatments and dry matter production (p total porosity OP > macropores MAC > micropores MIC > penetration resistance PR > effective cation exchange capacity CECE > pH. As a result, the soil quality index was obtained and the equation was = (0.225×BD) + (0.224×OP) + (0.220×MAC) + (0.218×MIC) + (0.113×PR) + (0.0879×CECE) + (0.0877×pH). It is necessary to test the index at a regional scale in grazing dairy systems located in the Colombian high Andean tropics, especially in Kikuyu grass-dominated pastures.
dc.format.extentxvi, 73 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.titleIndicadores de calidad del suelo relacionados con la degradación de la pastura y el rendimiento forrajero del pasto Kikuyo Cenchrus clandestinus (Hochst. ex Chiov.) Morrone
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.coverage.cityMedellín, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.researchareaFísica y química de suelos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Agronómicas
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAlvarado-Hernández, A., Bertsch-Hernández, F., Bornemisza-Steiner, E., Cabalceta-Aguilar, G., Forsythe-Hudson, W., Henríquez-Henríquez, C., Mata-Chinchilla, R., Molina-Rojas, E., & Salas-Camacho, R. (2001). Suelos derivados de cenizas volcánicas (Andisoles) de Costa Rica. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=oet.xis&method=post&formato=2&cantidad=1&expresion=mfn=022226
dc.relation.referencesAndriulo, A., & Irizar, A. (2017). La materia orgánica como indicador base de calidad del suelo. In M. Wilson (Ed.), Manual de indicadores de calidad del suelo para las ecorregiones de Argentina. https://inta.gob.ar/documentos/manual-de-indicadores-de-calidad-del-suelo-para-las-ecorregiones-de-argentina
dc.relation.referencesArmas-Espinel, S., Hernández-Moreno, J. M., Muñoz-Carpena, R., & Regalado, C. M. (2003). Physical properties of “sorriba”-cultivated volcanic soils from Tenerife in relation to andic diagnostic parameters. Geoderma, 117(3–4). https://doi.org/10.1016/S0016-7061(03)00130-7
dc.relation.referencesArnalds, O., & Stahr, K. (2004). Volcanic soil resources: Occurrence, development, and properties. Catena, 56(1–3). https://doi.org/10.1016/j.catena.2003.10.001
dc.relation.referencesArshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment, 88, 153–160. https://doi.org/10.1016/S0167-8809(01)00252-3
dc.relation.referencesAstier-Calderón, M., Maass-Moreno, M., & Etchevers-Barra, J. (2002). Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia.
dc.relation.referencesÁvila-Pedraza, E. (2005). Los suelos de Colombia y sus estadísticas más recientes.
dc.relation.referencesBarbecho, J., & Calle, J. (2012). Caracterización de la conductividad hidráulica de los suelos de la subcuenca del Río Tarqui.
dc.relation.referencesBarrios, E., Delve, R. J., Bekunda, M., Mowo, J., Agunda, J., Ramisch, J., Trejo, M. T., & Thomas, R. J. (2006). Indicators of soil quality: A South-South development of a methodological guide for linking local and technical knowledge. Geoderma, 135, 248–259. https://doi.org/10.1016/j.geoderma.2005.12.007
dc.relation.referencesBarrios, E., Delve, R. J., Bekunda, M., Mowo, J., Agunda, J., Ramisch, J., Trejo, M. T., & Thomas, R. J. (2006). Indicators of soil quality: A South-South development of a methodological guide for linking local and technical knowledge. Geoderma, 135, 248–259. https://doi.org/10.1016/j.geoderma.2005.12.007
dc.relation.referencesBarry, A. N. (1999). Soil biological, chemical, and physical dynamics during transition to non-thermal residue grass-seed management systems. https://ir.library.oregonstate.edu/concern/honors_college_theses/8s45qf76m
dc.relation.referencesBastida, F., Zsolnay, A., Hernández, T., & García, C. (2008). Past, present and future of soil quality indices: A biological perspective. In Geoderma (Vol. 147, Issues 3–4, pp. 159–171). https://doi.org/10.1016/j.geoderma.2008.08.007
dc.relation.referencesBaver, L. D., Gardner, W. H., & Gardner, W. R. (1973). Física de Suelos.
dc.relation.referencesBerlin/Heidelberg/New York, 1980. 159 pp. (cloth.), DM 39.50/US$21.80, ISBN 3-540-09457-1. Agricultural Water Management, 5(3), 272–273. https://doi.org/10.1016/0378-3774(82)90050-6
dc.relation.referencesBengough. (1991). The penetrometer in relation to mechanical resistance to root growth. Soil Analysis. Physical Methods, 431–445.
dc.relation.referencesBernal, J. (2008). Pastos y Forrajes Tropicales (5th ed.).
dc.relation.referencesBernoux, M., Arrouays, D., Cerri, C., Volkoff, B., & Jolivet, C. (1998). Bulk densities of crazilian amazon soils related to other soil properties. Soil Science Society of America Journal, 62(3), 743. https://doi.org/10.2136/sssaj1998.03615995006200030029x
dc.relation.referencesBertol, Ciprandi, Gomes, & Batistela. (2000). Propriedades físicas e químicas e produtividade de milho afetadas pelo manejo do solo com tração animal, numa terra bruna estruturada. Ciência Rural, 6, 971–976. https://doi.org/10.1590/s0103-84782000000600008
dc.relation.referencesBesoain, E. (1985). Mineralogía de arcillas de suelos.
dc.relation.referencesBienes, R. (2006). Procesos degradativos del suelo. In R. Bienes & M. Marqués (Eds.), Conservación del medio ambiente: revegetación, recuperación del suelo y empleo de residuos en el control de la erosión. https://www.researchgate.net/profile/Ramon-Bienes/publication/236023005_Conservacion_del_medio_ambiente_revegetacion_recuperacion_del_suelo_y_empleo_de_residuos_en_el_control_de_la_erosion/links/02e7e516b375b335d8000000/Conservacion-del-medio-ambiente-revegetacion-recuperacion-del-suelo-y-empleo-de-residuos-en-el-control-de-la-erosion.pdf
dc.relation.referencesBlum, W. E. H. (2005). Functions of soil for society and the environment. In Reviews in Environmental Science and Biotechnology (Vol. 4, Issue 3, pp. 75–79). https://doi.org/10.1007/s11157-005-2236-x
dc.relation.referencesBogdan, A. (1977). Tropical pasture and fodder plants. https://www.cabi.org/isc/abstract/19771339526
dc.relation.referencesBoucneau, G. (1998). Geographical information science applied to soils of West-Flanders.
dc.relation.referencesBowman, M., Wallander, S., & Lynch, L. (2016). An economic perspective on soil health. https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=An+economic+perspective+on+soil+health&btnG=
dc.relation.referencesBrady, N. C., & Weil, R. R. (2004). Elements of the Nature and Properties of Soils. Journal of Chemical Information and Modeling, 53(9).
dc.relation.referencesBünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., de Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. In Soil Biology and Biochemistry (Vol. 120, pp. 105–125). https://doi.org/10.1016/j.soilbio.2018.01.030
dc.relation.referencesBusscher, & Sojka. (1987). Enhancement of Subsoiling Effect on Soil Strength by Conservation Tillage. Transactions of the ASAE, 30(4). https://doi.org/10.13031/2013.30493
dc.relation.referencesCandan, F., & Broquen, P. (2009). Aggregate stability and related properties in NW Patagonian Andisols. Geoderma, 154(1–2). https://doi.org/10.1016/j.geoderma.2009.09.010
dc.relation.referencesCantú, M., Becker, A. R., Bedano, J. C., & Schiavo, H. (2007). Soil quality evaluation using indicators and indices Land-use effects on groundwater invertebrates View project Evaluación del impacto del cambio de uso y manejo de tierras" View project. In Ciencia del Suelo. https://www.researchgate.net/publication/288381285
dc.relation.referencesCHEN, Y.-D., WANG, H.-Y., ZHOU, J.-M., XING, L., ZHU, B.-S., ZHAO, Y.-C., & CHEN, X.-Q. (2013). Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China. Pedosphere, 23(5), 564–576. https://doi.org/10.1016/s1002-0160(13)60050-8
dc.relation.referencesChristensen, B. T. (1996). Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: Revision of model structure. In Evaluation of Soil Organic Matter Models. https://doi.org/10.1007/978-3-642-61094-3_11
dc.relation.referencesCornelis, W. M., Ronsyn, J., Meirvenne, M. van, & Hartmann, R. (2001). Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Science Society of America Journal, 65(3), 638. https://doi.org/10.2136/sssaj2001.653638x
dc.relation.referencesDahlgren, R., Shoji, S., & Nanzyo, M. (1993). Chapter 5 Mineralogical Characteristics of Volcanic Ash Soils. Developments in Soil Science, 21(C), 101–143. https://doi.org/10.1016/S0166-2481(08)70266-6
dc.relation.referencesDevillers, J., Pandard, P., & Charissou, A.-M. (2009). Sélection multicritère de bioindicateurs de la qualité des sols. Étude et Gestion Des Sols, 16, 242.
dc.relation.referencesDexter, A. R. (2004). Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3–4). https://doi.org/10.1016/j.geoderma.2003.09.004
dc.relation.referencesDi, H. J., Cameron, K. C., Milne, J., Drewry, J. J., Smith, N. P., Hendry, T., Moore, S., & Reijnen, B. (2001). A mechanical hoof for simulating animal treading under controlled conditions. New Zealand Journal of Agricultural Research, 44(1). https://doi.org/10.1080/00288233.2001.9513465
dc.relation.referencesDoran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In Defining soil quality for a sustainable environment. Proc. symposium, Minneapolis, MN, 1992. https://doi.org/10.2136/sssaspecpub35.c1
dc.relation.referencesDoran, J. W., Sarrantonio, M., & Liebig, M. A. (1996). Soil Health and sustainability. Advances in Agronomy, 1(54). https://doi.org/10.1016/S0065-2113(08)60178-9
dc.relation.referencesDoran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15(1), 3–11. https://doi.org/10.1016/S0929-1393(00)00067-6
dc.relation.referencesDörner, J., Dec, D., Zúñiga, F., Sandoval, P., & Horn, R. (2011). Effect of land use change on Andosol’s pore functions and their functional resilience after mechanical and hydraulic stresses. Soil and Tillage Research, 115–116. https://doi.org/10.1016/j.still.2011.07.002
dc.relation.referencesDrewry, J. J. (2006). Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. In Agriculture, Ecosystems and Environment (Vol. 114, Issues 2–4). https://doi.org/10.1016/j.agee.2005.11.028
dc.relation.referencesDrewry, J. J., Cameron, K. C., & Buchan, G. D. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing - A review. In Australian Journal of Soil Research (Vol. 46, Issue 3). https://doi.org/10.1071/SR07125
dc.relation.referencesDrobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators, 94, 151–169. https://doi.org/10.1016/j.ecolind.2018.06.052
dc.relation.referencesDuchaufour, P. (1984). Edafología, edafogénesis y clasificación.
dc.relation.referencesDudal, R., & Deckers, J. (1993). Soil organic matter in relation to soil productivity.
dc.relation.referencesEksteen, L. (1969). The determination of the lime requirement of soils for various crops in the Winter Rainfall Region. Fertilizer Society of South Africa, 2, 13–14.
dc.relation.referencesEllies Sch., A., Grez, R., & Ramírez, C. (1997). La conductividad hidraúlica en fase saturada como herramienta para el diagnóstico de la estructura del suelo. Agro Sur, 25(1). https://doi.org/10.4206/agrosur.1997.v25n1-06
dc.relation.referencesEswaran, H., Lal, R., & Reich, P. (2001). Land degradation: An overview. In Response to land degradation. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429187957-4/land-degradation-overview-eswaran-lal-reich
dc.relation.referencesFAO. (2016). Propiedades Físicas del Suelo. https://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-fisicas/es/
dc.relation.referencesFAO. (2021). Soil Degradation. https://www.fao.org/soils-portal/soil-degradation-restoration/en/
dc.relation.referencesFAO, BM, PNUMA, & PNUD. (2001). Indicadores de la calidadde la tierra y su uso para laagricultura sostenibley el desarrollo rural (Vol. 5). Boletín de tierras y aguas de la FAO.
dc.relation.referencesFerrero, A., & Lipiec, J. (2000). Determining the effect of trampling on soils in hillslope-woodlands. International Agrophysics, 14(1).
dc.relation.referencesGallopín, G., Hammond, A., Raskin, P., & Swart, R. (1997). Branch Points: Global Scenarios and Human Choice A Resource Paper of the Global Scenario Group.
dc.relation.referencesGarcía-Ruiz, R., Ochoa, V., Hinojosa, M. B., & Carreira, J. A. (2008). Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40(9), 2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023
dc.relation.referencesGlab, T. (2013). Impact of soil compaction on root development and yield of meadow-grass. International Agrophysics, 27(1). https://doi.org/10.2478/v10247-012-0062-2
dc.relation.referencesGómez, A., Silva, A., Salazar, J., & Andrade, J. (2011). Producción de materia seca y calidad del pasto Kikuyo P. clandestinum en diferentes niveles de fertilización nitrogenada y en asocio con aliso Alnus acuminata en el trópico alto colombiano. In Anais do 1o Simpósio Internacional de Arborização de Pastagens em Regiões Subtropicais. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123660/1/p32-41-Doc.-268-Anais.pdf
dc.relation.referencesGreacen, E. (1987). Root response to soil mechanical properties. Transactions of the 13th Congress of International Society of Soil Science. http://hdl.handle.net/102.100.100/269910?index=1
dc.relation.referencesGreenwood, K. L., & McKenzie, B. M. (2001). Grazing effects on soil physical properties and the consequences for pastures: A review. In Australian Journal of Experimental Agriculture (Vol. 41, Issue 8). https://doi.org/10.1071/EA00102
dc.relation.referencesGutiérrez, J. S., Cardona, W. A., & Monsalve C., O. I. (2017). Potencial en el uso de las propiedades químicas como indicadores de calidad de suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas, 11(2), 450–458. https://doi.org/10.17584/rcch.2017v11i2.5719
dc.relation.referencesHaddad, N. (2004). Using GLOBE Data to Study the Earth System. https://serc.carleton.edu/eet/globe/index.html
dc.relation.referencesHarrison, A. F., & Bocock, K. L. (1981). Estimation of Soil Bulk-Density from Loss-on-Ignition Values. The Journal of Applied Ecology, 18(3). https://doi.org/10.2307/2402382
dc.relation.referencesHaynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 85, 221–268. https://doi.org/10.1016/S0065-2113(04)85005-3
dc.relation.referencesHernández. (1992). Renovación de praderas improductivas. Suplemento Ganadero (Colombia)., 1(4), 47–52. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=catalco.xis&method=post&formato=2&cantidad=1&expresion=mfn=035331
dc.relation.referencesHernández, E. A., Mejía De T., M. S., & Durán C., C. v. (2012). Respuesta fotosintética del pasto Kikuyo (Pennisetum clandestinum) en pisos térmicos contrastantes. Acta Agronomica, 61(SPL.ISS.).
dc.relation.referencesHillel, D. (1980). Introduction to Soil Physics.
dc.relation.referencesHoyos, N., & Comerford, N. B. (2005). Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes. Geoderma, 129(3–4). https://doi.org/10.1016/j.geoderma.2005.01.002
dc.relation.referencesHünnemeyer, de Camino, & Müller. (1997). Análisis del desarrollo sostenible en Centroamérica. Indicadores para la agricultura y los recursos naturales. IICA, BMZ, GTZ.
dc.relation.referencesHurni, H., Giger, M., Liniger, H., Mekdaschi Studer, R., Messerli, P., Portner, B., Schwilch, G., Wolfgramm, B., & Breu, T. (2015). Soils, agriculture and food security: The interplay between ecosystem functioning and human well-being. In Current Opinion in Environmental Sustainability (Vol. 15, pp. 25–34). Elsevier. https://doi.org/10.1016/j.cosust.2015.07.009
dc.relation.referencesICA. (1992). Fertilización en diversos cultivos: quinta aproximación. https://repository.agrosavia.co/handle/20.500.12324/14124
dc.relation.referencesIGAC. (1995). Conceptos básicos sobre sistemas de información geográfica y aplicaciones en Latinoamérica. https://www.igac.gov.co/es/catalogo/conceptos-basicos-sobre-sig-y-aplicaciones-en-latinoamerica
dc.relation.referencesIGAC. (2007). Estudio general de suelos y zonificación de tierras. Departamento de Antioquia. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=6777&shelfbrowse_itemnumber=7087
dc.relation.referencesIshiguro, M., & Nakajima, T. (2000). Hydraulic conductivity of an allophanic Andisol leached with dilute acid solutions. Soil Science Society of America Journal, 64(3). https://doi.org/10.2136/sssaj2000.643813x
dc.relation.referencesIslam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Ecosystems and Environment, 79(1), 9–16. https://doi.org/10.1016/S0167-8809(99)00145-0
dc.relation.referencesJaramillo, D. (2002). Introducción a la ciencia del suelo.
dc.relation.referencesJaramillo, D. (2009). Variabilidad espacial de las propiedades ándicas de un Andisol hidromórfico del oriente antioqueño (Colombia). Nacional de Agronomía-Medellín, 62(1), 4907–4921. http://www.redalyc.org/articulo.oa?id=179915377017
dc.relation.referencesJohnson, & Wichern. (2014). Applied multivariate statistical analysis.
dc.relation.referencesKarlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: Why and how? Geoderma, 114(3–4). https://doi.org/10.1016/S0016-7061(03)00039-9
dc.relation.referencesKarlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal , 61(1), 4. https://doi.org/10.2136/sssaj1997.03615995006100010001x
dc.relation.referencesKaurichev. (1984). Prácticas de edafología. http://181.176.223.4/opac_css/index.php?lvl=notice_display&id=9575
dc.relation.referencesL., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016a). The significance of soils and soil science towards realization of the United Nations sustainable development goals. SOIL, 2(2). https://doi.org/10.5194/soil-2-111-2016
dc.relation.referencesKeesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016b). The significance of soils and soil science towards realization of the United Nations sustainable development goals. SOIL, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016
dc.relation.referencesKemper, W. D., & Rosenau, R. C. (1986). Aggregate Stability and Size Dlstributlon’. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 9(9).
dc.relation.referencesKibblewhite, M. G., Ritz, K., & Swift, M. J. (2008). Soil health in agricultural systems. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 363, Issue 1492, pp. 685–701). Royal Society. https://doi.org/10.1098/rstb.2007.2178
dc.relation.referencesKumutha, Vijai, Naga, Rajapriya, & Sindhusri. (2016). Effect of Textile Effluent on Geotechnical Properties of Expansive Soil for Flexible Pavements. World Journal of Research and Review, 3(2), 38–42.
dc.relation.referencesLacasta. (2005). Evolución de las producciones y de los parámetros químicos y bioquímicos del suelo, en agrosistemas de cereales, sometidos a diferentes manejos de suelo durante 21 años. https://core.ac.uk/download/pdf/36029988.pdf
dc.relation.referencesLal, R., & Stewart, B. (1990). Soil degradation: A global threat. In Soil degradation. https://books.google.com.co/books?hl=es&lr=&id=KL7kBwAAQBAJ&oi=fnd&pg=PR13&dq=Soil+degradation:+A+global+threat&ots=H8HNDIAM_P&sig=-Bxf5ZCsH--5A1_LBVbd4xfzMYQ&redir_esc=y#v=onepage&q=Soil%20degradation%3A%20A%20global%20threat&f=false
dc.relation.referencesLarson, W., & Pierce, F. (1991). Conservation and enhancement of soil quality. International Board Soil Research Management.
dc.relation.referencesLarson, W., & Pierce, F. (1994). The dynamics of soil quality as a measure of sustainable management. In Doran, Coleman, Bezdicek, Stewart, Larson, & Pierce (Eds.), Defining Soil Quality for a Sustainable Environment. https://doi.org/10.2136/sssaspecpub35.c3
dc.relation.referencesLaycock, & Conrad. (1967). Laycock DENSIDAD APARENTE.
dc.relation.referencesLeamy. (1984). International Committee on the Classification of Andisols.
dc.relation.referencesLewandowski, A. (2000). Organic matter management 4. The Soil Management Series. https://conservancy.umn.edu/bitstream/handle/11299/51896/1/BU-7402-S.pdf
dc.relation.referencesMacewan, R., & Carter, M. (1996). Soil quality is in the hands of the land manager. Advances in Soil Quality for Land Management: Science, Practice and Policy, 151.
dc.relation.referencesMalagón, D., Pulido, R., & Llinas, R. (1992). Génesis y taxonomía de los andisoles colombianos. Suelos Ecuatoriales, 22(1), 50–68.
dc.relation.referencesManrique, L. A., & Jones, C. A. (1991). Bulk density of soils in relation to soil physical and chemical properties. Soil Science Society of America Journal, 55(2), 476. https://doi.org/10.2136/sssaj1991.03615995005500020030x
dc.relation.referencesMesquita, M. da G. B. de F., & Moraes, S. O. (2004). A dependência entre a condutividade hidráulica saturada e atributos físicos do solo. Ciência Rural, 34(3). https://doi.org/10.1590/s0103-84782004000300052
dc.relation.referencesMickey, R. M., & Sharma, S. (1997). Applied Multivariate Techniques. Journal of the American Statistical Association, 92(437). https://doi.org/10.2307/2291485
dc.relation.referencesMiralles-Mellado, I. (2007). Calidad de suelos en ambientes calizos mediterráneos Parque Natural de Sierra María - Los Vélez.
dc.relation.referencesMoebius-Clune, B. N. (2016). Comprehensive assessment of soil health : the Cornell framework manual.
dc.relation.referencesMontenegro, H., & Malagón, D. (1990). Propiedades Físicas de los suelos.
dc.relation.referencesNanzyo, M. (2002). Unique properties of volcanic ash soils. Global Journal of Environmental Research.
dc.relation.referencesNanzyo, M., Dahlgren, R., & Shoji, S. (1993). Chapter 6 Chemical Characteristics of Volcanic Ash Soils. Developments in Soil Science, 21(C). https://doi.org/10.1016/S0166-2481(08)70267-8
dc.relation.referencesNawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2). https://doi.org/10.1007/s13593-011-0071-8
dc.relation.referencesNogueira, E., Figueiredo, Bini, Horta, Alcantara, Lopes, Monteiro, Shigueyoshi, de Moraes, & Nogueira, M. (2013). Soil health: looking for suitable indicators Scientia Agricola. Scientia Agricola .
dc.relation.referencesNoreña, J., Osorio, N., & Gómez, J. (2016). Manual de uso de la porcinaza en la agricultura. De la granja al cultivo. (p. 135).
dc.relation.referencesOchoa, R. (1941). Anotaciones sobre pastos. Revista Facultad Nacional de Agronomía Medellín, 4(11), 1144–1149.
dc.relation.referencesOldeman. (1994). The global extent of land degradation. In Land Resilience and Sustainable Land Use : ISRIC Bi-Annual Report 1991-1992.
dc.relation.referencesOldeman, L., Hakkeling, R., & Sombroek, W. (1990). World map of the status of human-induced soil degradation: an explanatory note. https://www.cabdirect.org/cabdirect/abstract/19911957800
dc.relation.referencesOsorio, N. W. (2012). pH del suelo y disponibilidad de nutrientes. In Manejo Integral del Suelo y Nutrición Vegetal (Vol. 1, Issue 4). https://www.bioedafologia.com/sites/default/files/documentos/pdf/pH-del-suelo-y-nutrientes.pdf
dc.relation.referencesPankhurst, Doube, & Goupta. (1997). Biological indicators of soil health. In Biological Indicators of Soil Health. https://doi.org/10.2134/jeq1998.00472425002700050038x
dc.relation.referencesParkin, T. B. (1993). Spatial variability of microbial processes in soil - A review. Journal of Environmental Quality , 22(3), 409. https://doi.org/10.2134/jeq1993.00472425002200030004x
dc.relation.referencesPatzel, N., Sticher, H., & Karlen, D. L. (2000). Soil fertility - Phenomenon and concept. Journal of Plant Nutrition and Soil Science, 163(2), 129–142. https://doi.org/10.1002/(SICI)1522-2624(200004)163:2<129::AID-JPLN129>3.0.CO;2-D
dc.relation.referencesPereira, G. G., Detoni, C. B., da Silva, T. L., Colomé, L. M., Pohlmann, A. R., & Guterres, S. S. (2015). α-Tocopherol acetate-loaded chitosan microparticles: Stability during spray drying process, photostability and swelling evaluation. Journal of Drug Delivery Science and Technology, 30. https://doi.org/10.1016/j.jddst.2015.10.018
dc.relation.referencesPerevochtchikova, M., de la Mora-De la Mora, G., Hernández Flores, J. Á., Marín, W., Langle Flores, A., Ramos Bueno, A., & Rojo Negrete, I. A. (2019). Systematic review of integrated studies on functional and thematic ecosystem services in Latin America, 1992–2017. Ecosystem Services, 36. https://doi.org/10.1016/j.ecoser.2019.100900
dc.relation.referencesPulido. (2014). Indicadores de calidad del suelo en áreas de pastoreo.
dc.relation.referencesPulido, M., Schnabel, S., Contador, J. F. L., Lozano-Parra, J., & Gómez-Gutiérrez, Á. (2017). Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecological Indicators, 74, 49–61. https://doi.org/10.1016/j.ecolind.2016.11.016
dc.relation.referencesRaiesi, F., & Kabiri, V. (2016). Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators, 71, 198–207. https://doi.org/10.1016/j.ecolind.2016.06.061
dc.relation.referencesRatcliffe, S., Bosman, B., & Carnol, M. (2018). Spatial and temporal variability of biological indicators of soil quality in two forest catchments in Belgium. Applied Soil Ecology, 126, 148–159. https://doi.org/10.1016/j.apsoil.2018.02.020
dc.relation.referencesRawls. (1983). Densidad aparente.
dc.relation.referencesReeves, M., Fulkerson, W. J., & Kellaway, R. C. (1996). Forage quality of kikuyu (Pennisetum clandestinum): The effect of time of defoliation and nitrogen fertiliser application and in comparison with perennial ryegrass (Lolium perenne). Australian Journal of Agricultural Research, 47(8). https://doi.org/10.1071/AR9961349
dc.relation.referencesRossiter, D. G., & Bouma, J. (2018). A new look at soil phenoforms – Definition, identification, mapping. Geoderma, 314, 113–121. https://doi.org/10.1016/j.geoderma.2017.11.002
dc.relation.referencesRutgers, M., van Wijnen, H. J., Schouten, A. J., Mulder, C., Kuiten, A. M. P., Brussaard, L., & Breure, A. M. (2012). A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of the Total Environment, 415, 39–48. https://doi.org/10.1016/j.scitotenv.2011.04.041
dc.relation.referencesSaito, M. (1990). Nitrogen Mineralization Parameters and Its Availability Indices of Soils in Tohoku District, Japan : Their Relationship’. Journal of the Science of Soil and Manure, Japan, 61(3). https://doi.org/10.20710/dojo.61.3_265
dc.relation.referencesSánchez, J., & Rubiano, Y. (2015). Procesos específicos de formación en Andisoles, alfisoles y ultisoles en Colombia. Revista EIA, SPE2, 85–97. https://doi.org/10.14508/reia.2015.11.E2.85-97
dc.relation.referencesSerrão. (1988). Pasturas mejoradas en areas de bosque húmedo brasileño: Conocimientos actuales. Sexto Encuentro Nacional de Zootecnia y Segunda Conferencia Nacional de Producción y Utilización de Pastos y Forrajes, 43–85.
dc.relation.referencesSerrão, & Toledo. (1990). The Search for Sustainability in Amazonian Pastures. In Alternatives to Deforestation: Steps towards sustainable use of the Amazon rain forest.
dc.relation.referencesSeybold, C. A., Herrick, J. E., & Brejda, J. J. (1999). Soil resilience: a fundamental component of soil quality. Soil Science, 164, 224–234. https://doi.org/10.1097/00010694-199904000-00002
dc.relation.referencesShah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24(11). https://doi.org/10.1007/s11356-017-8421-y
dc.relation.referencesSimonson, R. W. (1979). Origin of the name “Ando soils.” Geoderma, 22(4). https://doi.org/10.1016/0016-7061(79)90029-6
dc.relation.referencesSinger, & Ewing. (2000). Singer.
dc.relation.referencesSoane, B. D., & van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. In Soane & van Ouwerkerk (Eds.), Soil compaction in crop production (pp. 1–21). https://doi.org/10.1016/B978-0-444-88286-8.50009-X
dc.relation.referencesSoil Science Society of America. (2008). Glossary of Soil Science Terms 2008. In Soil Science Society of America Journal (Issue 2001).
dc.relation.referencesSoil Survey Staff. (1999). Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. Geological Magazine, 114(06). https://doi.org/10.18920/pedologist.43.2_116
dc.relation.referencesSoil Survey Staff. (2014). Keys to Soil Taxonomy, 12th ed. Change.
dc.relation.referencesSojka, R. E., & Upchurch, D. R. (1999). Reservations regarding the soil quality concept. Soil Science Society of America Journal, 63(5), 1039. https://doi.org/10.2136/sssaj1999.6351039x
dc.relation.referencesSpain, J., Gualdrón, R., Franco, L. H., Valencia, C., & Bejarano, L. (1988). Establecimiento de praderas por el método de siembra rala. http://books.google.com.co/books?id=mMofcMFJc9EC&printsec=frontcover&source=gbs_atb#v=onepage&q&f=false
dc.relation.referencesStaff, S. S. (2010). Keys to Soil Taxonomy, 2010. SSS.
dc.relation.referencesSteinfeld, Gerber, wassenaar, Castel, Rosales, & Haad. (2006). Livestock’s long shadow: Environmental issues and options.
dc.relation.referencesStine, M., & Weil, R. (2009). The relationship between soil quality and crop productivity across three tillage systems in south central Honduras. American Journal of Alternative Agriculture, 17, 2–8. https://doi.org/10.1079/AJAA20011
dc.relation.referencesStocking, M., & Murnaghan, N. (2003). Manual para la evaluación de campo de la degradación de la tierra.
dc.relation.referencesSwanepoel, P. A., du Preez, C. C., Botha, P. R., Snyman, H. A., & Habig, J. (2014). Soil quality characteristics of kikuyu-ryegrass pastures in South Africa. Geoderma, 232–234. https://doi.org/10.1016/j.geoderma.2014.06.018
dc.relation.referencesTakahashi, T. (2020). The diversity of volcanic soils: focusing on the function of aluminum–humus complexes. In Soil Science and Plant Nutrition (Vol. 66, Issue 5, pp. 666–672). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2020.1769453
dc.relation.referencesTakahashi, T., & Dahlgren, R. A. (2016). Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma, 263, 110–121. https://doi.org/10.1016/J.GEODERMA.2015.08.032
dc.relation.referencesTakahashi, T., & Shoji, S. (2002a). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2).
dc.relation.referencesTakahashi, T., & Shoji, S. (2002b). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2).
dc.relation.referencesTate, P. (1995). Soil microbiology. Soil Use and Management, 11(4). https://doi.org/10.1111/j.1475-2743.1995.tb00958.x
dc.relation.referencesTaylor, H. M., Roberson, G. M., & Parker, J. J. (1966). Soil strength-root penetration relations for medium- to coarse-textured soil materials. Soil Science, 102(1). https://doi.org/10.1097/00010694-196607000-00002
dc.relation.referencesTuohy, P., Holden, N., Fenton, F., & Humphreys, J. (2013). The effect of cow live-weight and stocking-density on soil quality (Enda Cummins and Tom Curran, Ed.).
dc.relation.referencesUgolini, F. C., Dahlgren, R., Shoji, S., & Ito, T. (1988). An example of andosolization and podzolization as revealed by soil solution studies, southern Hakkoda, northeastern Japan. Soil Science, 145(2). https://doi.org/10.1097/00010694-198802000-00005
dc.relation.referencesUPRA. (2020). Inventario bovino.
dc.relation.referencesUSDA. (1999). Guía para la Evaluación de la Calidad y Salud del Suelo.
dc.relation.referencesUSDA. (2011). Soil Quality Indicators Soil.
dc.relation.referencesUSDA. (2021). U.S. National Plant Germplasm System. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=464260
dc.relation.referencesValle, S. R., & Carrasco, J. (2018). Soil quality indicator selection in Chilean volcanic soils formed under temperate and humid conditions. Catena, 162, 386–395. https://doi.org/10.1016/j.catena.2017.10.024
dc.relation.referencesVasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010
dc.relation.referencesVeldkamp, E. (1994). Organic Carbon Turnover in Three Tropical Soils under Pasture after Deforestation. In Soil Science Society of America Journal (Vol. 58, Issue 1, p. 175). https://doi.org/10.2136/sssaj1994.03615995005800010025x
dc.relation.referencesVillalobos, L., Arce, J., & WingChing, R. (2013). Producción de biomasa y costos de producción de pastos estrella africana (Cynodon nlemfuensis), Kikuyo (Kikuyuocloa clandestina) y ryegrass perenne (Lolium perenne) en lecherías de Costa Rica. Agronomía Costarricense, 37(2).
dc.relation.referencesVillaneda, E., & Sánchez, L. (2018). Renovación y manejo de praderas en sistemas de producción de leche especializada en el trópico alto colombiano. https://agris.fao.org/agris-search/search.do?recordID=CO2019001324
dc.relation.referencesVoorhees, P. W. (1992). Ostwald ripening of two-phase mixtures. Annual Review of Materials Science, 22(1), 197–215. https://doi.org/10.1146/annurev.ms.22.080192.001213
dc.relation.referencesWander, M. (2004). Soil organic matter fractions and their relevance to soil function. In Soil Organic Matter in Sustainable Agriculture. https://doi.org/10.1201/9780203496374.ch3
dc.relation.referencesWarkentin, B. P. (1995). The changing concept of soil quality. Journal of Soil and Water Conservation, 50(3).
dc.relation.referencesWhalley, W. R., Watts, C. W., Gregory, A. S., Mooney, S. J., Clark, L. J., & Whitmore, A. P. (2008). The effect of soil strength on the yield of wheat. Plant and Soil, 306(1–2). https://doi.org/10.1007/s11104-008-9577-5
dc.relation.referencesWhite, R. E. (2006). Principles and practice of soil science: The soil as a natural resource. In Blackwell Publishing.
dc.relation.referencesWilen, C. A., & Holt, J. S. (1996). Physiological mechanisms for the rapid growth of Pennisetum clandestinum in Mediterranean climates. Weed Research, 36(3). https://doi.org/10.1111/j.1365-3180.1996.tb01651.x
dc.relation.referencesWillatt, S. T., & Pullar, D. M. (1984). Changes in soil physical properties under grazed pastures. Australian Journal of Soil Research, 22(3). https://doi.org/10.1071/SR9840343
dc.relation.referencesWilson, G. v, Periketi, R. K., Fox, G. A., Dabney, S. M., Shields, F. D., & Cullum, R. F. (2007). Earth surface processes and landforms earth surf. Earth Surf. Process. Landforms, 32, 447–459. https://doi.org/10.1002/esp
dc.relation.referencesWolf, & Snyder. (2003). Sustainable soils; the place of organic matter in sustainable soils and their productivity.
dc.relation.referencesWorldstat. (2021). Uso de la tierra en el mundo. http://es.worldstat.info/World
dc.relation.referencesYermiyahu, U., Keren, R., & Chen, Y. (1995). Boron sorption by soil in the presence of composted organic matter. Soil Science Society of America Journal, 59(2), 405. https://doi.org/10.2136/sssaj1995.03615995005900020019x
dc.relation.referencesZapata, R. (2006). Química de los procesos pedogenéticos. In 2006.
dc.relation.referencesZornoza, R., Acosta, J. A., Bastida, F., Domínguez, S. G., Toledo, D. M., & Faz, A. (2015). Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. SOIL, 1(1), 173–185. https://doi.org/10.5194/soil-1-173-2015
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCalidad de los suelos
dc.subject.lembSoils - Quality
dc.subject.proposalIndicadores físicos
dc.subject.proposalIndicadores químicos
dc.subject.proposalIndice de calidad del suelo
dc.subject.proposalPastizales degradados
dc.subject.proposalTrópico alto andino
dc.subject.proposalComponentes principales
dc.subject.proposalPhysical indicators
dc.subject.proposalChemical indicators
dc.subject.proposalSoil quality index
dc.subject.proposalDegraded grassland
dc.subject.proposalHigh andean tropics
dc.subject.proposalPrincipal components
dc.title.translatedSoil quality indicators related to pasture degradation and forage yield of kikuyu grass Cenchrus clandestinus (Hochst. ex Chiov.) Morrone
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular en Producción Agraria Sostenible
dc.contributor.orcidRamirez Pisco, Ramiro [0000-0002-8639-8173]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito