Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHoyos Ortiz, Carlos David
dc.contributor.authorMantilla Quintero, Juan Diego
dc.date.accessioned2022-11-16T15:01:30Z
dc.date.available2022-11-16T15:01:30Z
dc.date.issued2022-11-14
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82703
dc.descriptionilustraciones, diagramas
dc.description.abstractAlthough the major aspects that give rise to El Niño-Southern Oscillation (ENSO), the dominant mode of climate variability on the interannual time scale, are reasonably well understood, predicting the state of ENSO before the preceding boreal spring has proved to be challenging. Recent investigations suggested that interannual SST variability over the Indian Ocean can influence the following year’s ENSO and its phase transition, thus representing a potential additional source of predictability. This research aims to analyze the coupled interaction between the Indian and Pacific oceans that could provide information beyond the spring predictability barrier. Firstly, an empirical approach is used to study the subsurface temperature covariability across the two oceans to assess the role of the Indian Ocean as a precursor of the ENSO. Furthermore, two possible coupling mechanisms are investigated. Then, we assessed the representation of the CMIP6’s historical simulation of the subsurface covariability between the two oceans and compared the performance with the compressive CLIVAR ENSO metrics. Finally, using a simple conceptual model, we investigate the repercussions of the Indian Ocean over ENSO’s dynamical behavior, represented by the addition of an idealized MJO-forcing parameter over the Western Pacific. Overall, the results highlighted the role of the interbasin subsurface coupling in favoring the ENSO phase transitions and support the view that tropical Indo-Pacific climate variability should be studied as a whole rather than as separated basin modes.
dc.description.abstractAunque los aspectos principales que dan lugar a El Niño-Oscilación del Sur (ENSO), el modo dominante de variabilidad climática en la escala de tiempo interanual, se comprenden razonablemente bien, predecir el estado de ENSO antes de la primavera boreal continúa representando un desafío. Investigaciones recientes sugiriere que la variabilidad interanual de la temperature superficial del mar sobre el Océano Índico puede influir en desarrollo del ENSO del año siguiente como también en sus transiciones de fase, representando una posible fuente adicional de predictibilidad. Esta investigación tiene como objetivo analizar la interacción acoplada entre los océanos Índico y Pacífico que podría proporcionar información más allá de la barrera de predictibilidad de primaveral. En primer lugar, se utiliza un enfoque empírico para estudiar la covariabilidad de la temperatura del subsuperficie en los dos océanos para evaluar el papel del Océano Índico como precursor del ENSO. Además, se investigan dos posibles mecanismos acoplados. Luego, evaluamos la representación de las simulaciones históricas del CMIP6 de la covariabilidad entre los dos océanos y comparamos el rendimiento con las métricas compresivas del CLIVAR ENSO. Finalmente, usando un modelo conceptual simple, investigamos las repercusiones del Océano Índico sobre el comportamiento dinámico de ENSO, representado por la adición de un parámetro idealizado del forzamiento de la MJO (Madden-Julian Oscillation) sobre el Pacífico Occidental. Los resultados resaltan el papel del acoplamiento de la subsuperficien entre las dos cuencas para favorer el cambio de fase del ENSO, y respaldan la opinión de que la variabilidad climática del Indo-Pacífico tropical debe estudiarse como un todo en lugar de modos de variabilidad separados. (Texto tomado de la fuente)
dc.format.extent117 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleOn the role of the Indian Ocean as a precursor of ENSO
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.description.researchareaClimatology
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAchuta Rao, K. and Sperber, K. R. (2006). ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Climate Dynamics, 27(1).
dc.relation.referencesAlexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., and Scott, J. D. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air-sea inter- action over the global oceans. Journal of Climate, 15(16):2205–2231.
dc.relation.referencesAn, S. I. and Kim, J. W. (2018). ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity. Geophysical Research Letters, 45(10):5095–5104.
dc.relation.referencesAnnamalai, H., Kida, S., and Hafner, J. (2010). Potential Impact of the Tropical Indian Ocean–Indonesian Seas on El Niño Characteristics*. Journal of Climate, 23(14):3933– 3952.
dc.relation.referencesAnnamalai, H., Murtugudde, R., Potemra, J., Xie, S. P., Liu, P., and Wang, B. (2003). Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(12-13):2305–2330.
dc.relation.referencesAnnamalai, H., Xie, S. P., McCreary, J. P., and Murtugudde, R. (2005). Impact of Indian Ocean Sea Surface Temperature on Developing El Niño*. Journal of Climate, 18(2):302– 319.
dc.relation.referencesAshok, K., Guan, Z., and Yamagata, T. (2003). A look at the relationship between the ENSO and the Indian Ocean Dipole. Journal of the Meteorological Society of Japan, 81(1):41–56.
dc.relation.referencesBak, P. (1986). The Devil’s staircase. Physics Today, 39(12):38–45.
dc.relation.referencesBaquero-Bernal, A., Latif, M., and Legutke, S. (2002). On Dipolelike Variability of Sea Surface Temperature in the Tropical Indian Ocean. Journal of Climate, 15(11):1358–1368.
dc.relation.referencesBarnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S., and Dewitt, D. G. (2012). Skill of real-time seasonal ENSO model predictions during 2002-11: Is our capability increasing? Bulletin of the American Meteorological Society, 93(5):631–651.
dc.relation.referencesBattisti, D. S. and Hirst, A. C. (1989). Interannual variability in a tropical atmosphere- ocean model: influence of the basic state, ocean geometry and nonlinearity. Journal of the Atmospheric Sciences, 46(12):1687–1712.
dc.relation.referencesBehera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata, T. (2006). A CGCM study on the interaction between IOD and ENSO. Journal of Climate, 19(9):1688– 1705.
dc.relation.referencesBellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J. (2014). ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dynamics, 42(7- 8):1999–2018.
dc.relation.referencesBenedict, J. J., Pritchard, M. S., and Collins, W. D. (2015). Sensitivity of MJO propagation to a robust positive Indian Ocean dipole event in the superparameterized CAM. Journal of Advances in Modeling Earth Systems, 7(4):1901–1917.
dc.relation.referencesBjerknes, J. (1969). Atmospheric Teleconnections from the Equatorial Pacific. Monthly Weather Review, 97(3):163–172.
dc.relation.referencesBlanke, B., Neelin, J. D., and Gutzler, D. (1997). Estimating the effect of stochastic wind stress forcing on ENSO irregularity. Journal of Climate, 10(7):1473–1486.
dc.relation.referencesBohr, T., Bak, P., and Jensen, M. H. (1984). Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps. Physical Review A, 30(4):1970–1981.
dc.relation.referencesBoucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Balkanski, Y., Checa-Garcia, R., Hauglustaine, D., Bekki, S., and Marchand, M. (2020). IPSL IPSL-CM5A2-INCA model output prepared for CMIP6 CMIP historical.
dc.relation.referencesBoucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Balkanski, Y., Checa-Garcia, R., Hauglustaine, D., Bekki, S., and Marchand, M. (2021). IPSL IPSL-CM6A-LR-INCA model output prepared for CMIP6 CMIP historical.
dc.relation.referencesBoucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F. (2018). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesBoulanger, J. P., Menkes, C., and Lengaigne, M. (2004). Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997-1998 El Niño. Climate Dynamics, 22(2-3):267–280.
dc.relation.referencesBracco, A., Kucharski, F., Molteni, F., Hazeleger, W., and Severijns, C. (2005). Internal and forced modes of variability in the Indian Ocean. Geophysical Research Letters, 32(12):1–4.
dc.relation.referencesBrown, J. R., Brierley, C. M., An, S. I., Guarino, M. V., Stevenson, S., Williams, C. J., Zhang, Q., Zhao, A., Abe-Ouchi, A., Braconnot, P., Brady, E. C., Chandan, D., D’Agostino, R., Guo, C., Legrande, A. N., Lohmann, G., Morozova, P. A., Ohgaito, R., O’Ishi, R., Otto-Bliesner, B. L., Richard Peltier, W., Shi, X., Sime, L., Volodin, E. M., Zhang, Z., and Zheng, W. (2020). Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 16(5).
dc.relation.referencesCai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J.-S., Yu, J.-Y., Stuecker, M. F., Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N., Lin, X., Luo, J.-J., Martı́n-Rey, M., Ruprich-Robert, Y., Wang, G., Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I., Kim, C.-E., Kim, S., Kim, J.-H., and Chang, P. (2019). Pantropical climate interactions. Science (New York, N.Y.), 363(6430):eaav4236.
dc.relation.referencesCane, M. A. and Patton, R. J. (1984). A Numerical Model for Low-Frequency Equatorial Dynamics. Journal of Physical Oceanography, 14(12):1853–1863.
dc.relation.referencesCane, M. A. and Zebiak, S. E. (1985). A theory for El Niño and the Southern Oscillation. Science, 228(4703):1085–1087.
dc.relation.referencesCane, M. A., Zebiak, S. E., and Dolan, S. C. (1986). Experimental forecasts of El Niño. Nature, 321(6073):827–832.
dc.relation.referencesCao, J. and Wang, B. (2019). NUIST NESMv3 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesCapotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F. F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., and Yeh, S. W. (2015). Understanding enso diversity. Bulletin of the American Meteorological Society, 96(6):921–938.
dc.relation.referencesCashin, P., Mohaddes, K., and Raissi, M. (2017). Fair weather or foul? The macroeconomic effects of El Niño. Journal of International Economics, 106.
dc.relation.referencesChai, Z. (2020). CAS CAS-ESM1.0 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesChang, P., Ji, L., Li, H., and Flügel, M. (1996). Chaotic dynamics versus stochastic pro- cesses in El Niño-Southern Oscillation in coupled ocean-atmosphere models. Physica D: Nonlinear Phenomena, 98(2-4):301–320.
dc.relation.referencesChang, P., Wang, B., Li, T., and Ji, L. (1994). Interactions between the seasonal cycle and the Southern Oscillation - Frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophysical Research Letters, 21(25).
dc.relation.referencesChangnon, S. A. (2000). El Niño 1997-1998: the climate event of the century. Oxford University Press.
dc.relation.referencesChekroun, M. D., Ghil, M., and Neelin, J. D. (2018). Pullback Attractor Crisis in a Delay Differential ENSO Model, pages 1–33. Springer International Publishing, Cham.
dc.relation.referencesChen, S., Wu, R., Chen, W., Yu, B., and Cao, X. (2016). Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmospheric Science Letters, 17(7):384–391.
dc.relation.referencesChiodi, A. M., Harrison, D. E., and Vecchi, G. A. (2014). Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden-Julian oscillation and westerly wind events. Journal of Climate, 27(10):3619–3642.
dc.relation.referencesChowdary, J. S., Gnanaseelan, C., Vaid, B. H., and Salvekar, P. S. (2006). Changing trends in the tropical Indian Ocean SST during La Niña years. Geophysical Research Letters, 33(18).
dc.relation.referencesClarke, A. J. (1991). On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. Journal of Geophysical Research, 96(S01):3289.
dc.relation.referencesClarke, A. J. (2008). An introduction to the dynamics of El Niño and the Southern Oscilla- tion. Elsevier.
dc.relation.referencesClarke, A. J. and Van Gorder, S. (2003). Improving El Niño prediction using a space- time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophysical Research Letters, 30(7).
dc.relation.referencesDanabasoglu, G. (2019a). NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesDanabasoglu, G. (2019b). NCAR CESM2 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesDanabasoglu, G. (2019c). NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesDanabasoglu, G. (2019d). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical.
dc.relation.referencesDanek, C., Shi, X., Stepanek, C., Yang, H., Barbi, D., Hegewald, J., and Lohmann, G. (2020). AWI AWI-ESM1.1LR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesDing, H., Keenlyside, N. S., and Latif, M. (2012). Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Climate Dynamics, 38(9-10):1965–1972.
dc.relation.referencesDix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O’Farrell, S., Rashid, H., Srbinovsky, J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., Domingues, C., Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan, S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R. (2019). CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesDommenget, D., Semenov, V., and Latif, M. (2006). Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophysical Research Letters, 33(11).
dc.relation.referencesDong, L. and McPhaden, M. J. (2017). Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? Journal of Climate, 30(6):1971– 1983.
dc.relation.referencesEC-Earth, E.-E. C. (2019a). EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesEC-Earth, E.-E. C. (2019b). EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP historical.
dc.relation.referencesEC-Earth, E.-E. C. (2020a). EC-Earth-Consortium EC-Earth3-AerChem model output pre- pared for CMIP6 CMIP historical.
dc.relation.referencesEC-Earth, E.-E. C. (2020b). EC-Earth-Consortium EC-Earth3-Veg-LR model output pre- pared for CMIP6 CMIP historical.
dc.relation.referencesEC-Earth, E.-E. C. (2021). EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP historical.
dc.relation.referencesEckert, C. and Latif, M. (1997). Predictability of a stochastically forced hybrid coupled model of El Niño. Journal of Climate, 10(7):1488–1504.
dc.relation.referencesEisenman, I., Yu, L., and Tziperman, E. (2005). Westerly wind bursts: ENSO’s tail rather than the dog? Journal of Climate, 18(24):5224–5238.
dc.relation.referencesEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5):1937–1958.
dc.relation.referencesFasullo, J. T. (2020). Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geoscientific Model Development, 13(8):3627–3642.
dc.relation.referencesFasullo, J. T., Phillips, A. S., and Deser, C. (2020). Evaluation of Leading Modes of Climate Variability in the CMIP Archives. Journal of Climate, 33(13):5527–5545.
dc.relation.referencesFei-Fei Jin and Neelin, J. D. (1993). Modes of interannual tropical ocean-atmosphere inter- action - a unified view. Part III: analytical results in fully coupled cases. Journal of the Atmospheric Sciences, 50(21):3523–3540.
dc.relation.referencesFeng, M. and Meyers, G. (2003). Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(12-13):2263–2284.
dc.relation.referencesFeng, M., Meyers, G., and Wijffels, S. (2001). Interannual upper ocean variability in the tropical Indian Ocean. Geophysical Research Letters, 28(21):4151–4154.
dc.relation.referencesFischer, A. S., Terray, P., Guilyardi, E., Gualdi, S., and Delecluse, P. (2005). Two Indepen- dent Triggers for the Indian Ocean Dipole/Zonal Mode in a Coupled GCM. Journal of Climate, 18(17):3428–3449.
dc.relation.referencesFlato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Dri- ouech, F., Emori, S., Eyring, V., and Others (2013). Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the inter- governmental panel on climate change. Evaluation of Climate Models, eds TF Stocker, D. Qin, G.-K. Plattner, M. Tignor, SK Allen, J. Boschung, et al.(Cambridge: Cambridge University Press).
dc.relation.referencesGadgil, S., Joseph, P. V., and Joshi, N. V. (1984). Ocean-atmosphere coupling over monsoon regions. Nature, 312(5990).
dc.relation.referencesGarric, G., Parent, L., Greiner, E., Drévillon, M., Hamon, M., Lellouche, J.-M., Régnier, C., Desportes, C., Le Galloudec, O., Bricaud, C., Drillet, Y., Hernandez, F., Le Traon, P.-Y., Garric, G., Parent, L., Greiner, E., Drévillon, M., Hamon, M., Lellouche, J.-M., Régnier, C., Desportes, C., Le Galloudec, O., Bricaud, C., Drillet, Y., Hernandez, F., and Le Traon, P.-Y. (2017). Performance and quality assessment of the global ocean eddy-permitting physical reanalysis GLORYS2V4. Eguga, page 18776.
dc.relation.referencesGebbie, G., Eisenman, I., Wittenberg, A., and Tziperman, E. (2007). Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. Journal of the Atmospheric Sciences, 64(9):3281–3295.
dc.relation.referencesGodfrey, J. S. (1975). On Ocean Spindown I: A Linear Experiment. Journal of Physical Oceanography, 5(3):399–409.
dc.relation.referencesGualdi, S., Guilyardi, E., Navarra, A., Masina, S., and Delecluse, P. (2003). The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dynamics, 20(6):567–582.
dc.relation.referencesGuilyardi, E., Cai, W., Collins, M., Fedorov, A., Jin, F. F., Kumar, A., Sun, D. Z., and Wittenberg, A. (2012). New strategies for evaluating ENSO process es in climate models. Bulletin of the American Meteorological Society, 93(2):235–238.
dc.relation.referencesGuilyardi, E., Capotondi, A., Lengaigne, M., Thual, S., and Wittenberg, A. T. (2020). ENSO Modeling: History, Progress, and Challenges. El Niño Southern Oscillation in a Changing Climate, pages 199–226.
dc.relation.referencesGuilyardi, E., Wittenberg, A., Balmaseda, M., Cai, W., Collins, M., McPhaden, M. J., Watanabe, M., and Yeh, S. W. (2016). Fourth clivar workshop on the evaluation of enso processes in climate models: Enso in a changing climate. Bulletin of the American Meteorological Society, 97(5).
dc.relation.referencesGuo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Bushuk, M., Dunne, K. A., Dussin, R., Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Lin, P., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Shao, A., Silvers, L., Wyman, B., Yan, X., Zeng, Y., Adcroft, A., Dunne, J. P., Held, I. M., Krasting, J. P., Horowitz, L. W., Milly, P. C. D., Shevliakova, E., Winton, M., Zhao, M., and Zhang, R. (2018). NOAA-GFDL GFDL-CM4 model output historical.
dc.relation.referencesHa, K. J., Chu, J. E., Lee, J. Y., and Yun, K. S. (2017). Interbasin coupling between the tropical Indian and Pacific Ocean on interannual timescale: observation and CMIP5 reproduction. Climate Dynamics, 48(1-2):459–475.
dc.relation.referencesHam, Y.-G., Choi, J.-Y., and Kug, J.-S. (2017). The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Climate Dynamics, 49(1-2):249–261.
dc.relation.referencesHam, Y. G., Kug, J. S., and Park, J. Y. (2013). Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters.
dc.relation.referencesHarrison, D. E. and Larkin, N. K. (1998). El Nino-Southern Oscillation sea surface temper- ature and wind anomalies, 1946-1993. Reviews of Geophysics, 36(3):353–399.
dc.relation.referencesHarrison, D. E. and Schopf, P. S. (1984). Kelvin-wave-induced anomalous advection and the onset of surface warming in El Nino events. Monthly Weather Review, 112(5):923–933.
dc.relation.referencesHarrison, D. E. and Vecchi, G. A. (1997). Westerly wind events in the tropical pacific, 1986-95. Journal of Climate, 10(12):3131–3156.
dc.relation.referencesHendon, H. H., Wheeler, M. C., and Zhang, C. (2007). Seasonal dependence of the MJO- ENSO relationship. Journal of Climate, 20(3):531–543.
dc.relation.referencesHendon, H. H., Zhang, C., and Glick, J. D. (1999). Interannual variation of the Madden- Julian oscillation during austral summer. Journal of Climate, 12(8 PART 2):2538–2550.
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N. (2019). ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
dc.relation.referencesHong, C. C., Li, T., LinHo, and Chen, Y. C. (2010). Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. Journal of Climate, 23(13).
dc.relation.referencesHorii, T., Hase, H., Ueki, I., and Masumoto, Y. (2008). Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophysical Research Letters, 35(3).
dc.relation.referencesHsiang, S. M., Meng, K. C., and Cane, M. A. (2011). Civil conflicts are associated with the global climate. Nature, 476(7361):438–441.
dc.relation.referencesHuang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M. (2017). Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30(20):8179–8205.
dc.relation.referencesHuang, W. (2019). THU CIESM model output prepared for CMIP6 CMIP historical.
dc.relation.referencesInness, P. M., Slingo, J. M., Guilyardi, E., and Cole, J. (2003). Simulation of the Madden- Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. Journal of Climate, 16(3):365–382.
dc.relation.referencesIzumo, T., Lengaigne, M., Vialard, J., Luo, J. J., Yamagata, T., and Madec, G. (2014). Influ- ence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dynamics, 42(1-2):291–310.
dc.relation.referencesIzumo, T., Masson, S., Vialard, J., de Boyer Montegut, C., Behera, S. K., Madec, G., Taka- hashi, K., and Yamagata, T. (2010a). Low and high frequency Madden-Julian oscillations in austral summer: Interannual variations. Climate Dynamics, 35(4):669–683.
dc.relation.referencesIzumo, T., Vialard, J., Dayan, H., Lengaigne, M., and Suresh, I. (2016). A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Niño. Climate Dynamics, 46(7-8):2247–2268.
dc.relation.referencesIzumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S. K., Luo, J.-J., Cravatte, S., Masson, S., and Yamagata, T. (2010b). Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3(3):168–172.
dc.relation.referencesJensen, M. H., Bak, P., and Bohr, T. (1984). Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps. Physical Review A, 30(4):1960–1969.
dc.relation.referencesJia, F., Cai, W., Wu, L., Gan, B., Wang, G., Kucharski, F., Chang, P., and Keenlyside, N. (2019). Weakening Atlantic Niño–Pacific connection under greenhouse warming. Science Advances, 5(8).
dc.relation.referencesJiang, N., Neelin, J. D., and Ghil, M. (1995). Quasi-quadrennial and quasi-biennial variabil- ity in the equatorial Pacific. Climate Dynamics, 12(2):101–112.
dc.relation.referencesJin, F. F. (1997a). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54(7):811–829.
dc.relation.referencesJin, F. F. (1997b). An equatorial ocean recharge paradigm for ENSO. Part II: A stripped- down coupled model. Journal of the Atmospheric Sciences, 54(7):830–847.
dc.relation.referencesJin, F. F., Lin, L., Timmermann, A., and Zhao, J. (2007). Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophysical Research Letters, 34(3).
dc.relation.referencesJin, F. F., Neelin, J. D., and Ghil, M. (1994). El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264(5155):70–72.
dc.relation.referencesJin, F. F., Neelin, J. D., and Ghil, M. (1996). El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D: Nonlinear Phenomena, 98(2-4).
dc.relation.referencesJourdain, N. C., Lengaigne, M., Vialard, J., Izumo, T., and Gupta, A. S. (2016). Further insights on the influence of the Indian Ocean dipole on the following year’s ENSO from observations and CMIP5 models. Journal of Climate, 29(2).
dc.relation.referencesJungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M., Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E. (2019). MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesKajtar, J. B., Santoso, A., England, M. H., and Cai, W. (2015). Indo-pacific climate interac- tions in the absence of an Indonesian throughflow. Journal of Climate, 28(13):5017–5029.
dc.relation.referencesKalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, J., Janowiak, K., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. (1996). 40-Year Reanalysis Project. Bull. Am. Met. Soc., 77(3):437–470.
dc.relation.referencesKeane, A., Krauskopf, B., and Postlethwaite, C. (2016). Investigating irregular behavior in a model for the EI Niño Southern oscillation with positive and negative delayed feedback. SIAM Journal on Applied Dynamical Systems, 15(3):1656–1689.
dc.relation.referencesKessler, W. S. (2002). Is ENSO a cycle or a series of events? Geophysical Research Letters, 29(23).
dc.relation.referencesKessler, W. S. and Kleeman, R. (2000). Rectification of the Madden-Julian Oscillation into the ENSO cycle. Journal of Climate, 13(20):3560–3575.
dc.relation.referencesKessler, W. S., McPhaden, M. J., and Weickmann, K. M. (1995). Forcing of intraseasonal Kelvin waves in the equatorial Pacific. Journal of Geophysical Research, 100(C6):10613.
dc.relation.referencesKirtman, B. P. and Schopf, P. S. (1998). Decadal variability in ENSO predictability and prediction. Journal of Climate, 11(11):2804–2822.
dc.relation.referencesKleeman, R. and Moore, A. M. (1997). A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. Journal of the Atmospheric Sciences, 54(6):753– 767.
dc.relation.referencesKlein, S. A., Soden, B. J., and Lau, N. C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12(4):917– 932.
dc.relation.referencesKrasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesKrishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M., Bhalla, R. S., and Badiger, S. (2015). Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dynamics, 45(1-2).
dc.relation.referencesKug, J. S. and Ham, Y. G. (2012). Indian ocean feedback to the ENSO transition in a multimodel ensemble. Journal of Climate, 25(20):6942–6957.
dc.relation.referencesKug, J. S. and Kang, I. S. (2006). Interactive feedback between ENSO and the Indian Ocean. Journal of Climate, 19(9):1784–1801.
dc.relation.referencesKug, J.-S., Kirtman, B. P., Kang, I.-S., Kug, J.-S., Kirtman, B. P., and Kang, I.-S. (2006a). Interactive Feedback between ENSO and the Indian Ocean in an Interactive Ensemble Coupled Model. Journal of Climate, 19(24):6371–6381.
dc.relation.referencesKug, J. S., Li, T., An, S. I., Kang, I. S., Luo, J. J., Masson, S., and Yamagata, T. (2006b). Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geo- physical Research Letters, 33(9).
dc.relation.referencesKug, J.-S., Vialard, J., Ham, Y.-G., Yu, J.-Y., and Lengaigne, M. (2020). ENSO Remote forcing: influence of climate variability outside the tropical Pacific. El Niño Southern Oscillation in a Changing Climate, pages 247–265.
dc.relation.referencesLarkin, N. K. and Harrison, D. E. (2002). ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. Journal of Climate, 15(10):1118–1140.
dc.relation.referencesLatif, M., Anderson, D., Barnett, T., Cane, M., Kleeman, R., Leetmaa, A., O’Brien, J., Rosati, A., and Schneider, E. (1998). A review of the predictability and prediction of ENSO. Journal of Geophysical Research: Oceans, 103(C7).
dc.relation.referencesLatif, M., Barnett, T. P., Cane, M. A., Flügel, M., Graham, N. E., von Storch, H., Xu, J. S., and Zebiak, S. E. (1994). A review of ENSO prediction studies. Climate Dynamics, 9(4-5):167–179.
dc.relation.referencesLatif, M., Barnett, T. P., Latif, M., and Barnett, T. P. (1995). Interactions of the Tropical Oceans. Journal of Climate, 8(4):952–964.
dc.relation.referencesLau, N. C. and Nath, M. J. (2000). Impact of ENSO on the variability of the Asian-Australian Monsoons as simulated in GCM experiments. Journal of Climate, 13(24):4287–4309.
dc.relation.referencesLau, N. C. and Nath, M. J. (2003). Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. Journal of Climate, 16(1):3–20.
dc.relation.referencesLee, J., Planton, Y. Y., Gleckler, P. J., Sperber, K. R., Guilyardi, E., Wittenberg, A. T., McPhaden, M. J., and Pallotta, G. (2021). Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed? Geophysical Research Letters, 48(20).
dc.relation.referencesLee, W.-L. and Liang, H.-C. (2020). AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesLellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C. (2013). Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Science, 9(1):57–81.
dc.relation.referencesLengaigne, M., Boulanger, J.-P., Menkes, C., Masson, S., Madec, G., and Delecluse, P. (2002). Ocean response to the March 1997 Westerly Wind Event. Journal of Geophysical Research: Oceans, 107(C12):SRF 16–1–SRF 16–20.
dc.relation.referencesLevine, A. F. Z. and McPhaden, M. J. (2016). How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophysical Research Letters, 43(12):6503–6510.
dc.relation.referencesLi, T., Wang, B., Chang, C. P., and Zhang, Y. (2003). A theory for the Indian Ocean dipole-zonal mode. Journal of the Atmospheric Sciences, 60(17).
dc.relation.referencesLiang, Y. and Fedorov, A. V. (2021). Linking the Madden–Julian Oscillation, tropical cyclones and westerly wind bursts as part of El Niño development. Climate Dynamics, pages 1–22.
dc.relation.referencesLiebmann, B. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77:1275–1277.
dc.relation.referencesLorenz, S., Jungclaus, J., Schmidt, H., Haak, H., Reick, C., Schupfner, M., Wachsmann, F., Gayler, V., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Brovkin, V., Claussen, M., Crueger, T., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kinne, S., Kornblueh, L., Marotzke, J., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Pincus, R., Pohlmann, H., Rast, S., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Roeckner, E., Wieners, K.-H., Esch, M., Giorgetta, M., and Ilyina, T. (2021). MPI-M ICON-ESM-LR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesLosada, T., Rodrı́guez-Fonseca, B., Polo, I., Janicot, S., Gervois, S., Chauvin, F., and Ruti, P. (2010). Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Climate Dynamics, 35(1):45–52.
dc.relation.referencesLovato, T. and Peano, D. (2020). CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesLovato, T., Peano, D., and Butenschön, M. (2021). CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesLuo, J. J., Behera, S., Masumoto, Y., Sakuma, H., and Yamagata, T. (2008). Success- ful prediction of the consecutive IOD in 2006 and 2007. Geophysical Research Letters, 35(14):L14S02.
dc.relation.referencesLuo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., and Yamagata, T. (2010). Interaction between El Niño and extreme Indian Ocean dipole. Journal of Climate, 23(3):726–742.
dc.relation.referencesMadden, R. A. and Julian, P. R. (1971). Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific. Journal of the Atmospheric Sciences, 28(5).
dc.relation.referencesMadden, R. A. and Julian, P. R. (1972). Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. Journal of the Atmospheric Sciences, 29(6).
dc.relation.referencesMartı́n-Rey, M., Polo, I., Rodrı́guez-Fonseca, B., and Kucharski, F. (2012). Cambios en la Variabilidad Interanual del Pacı́fico Tropical Como Respuesta a un Forzamiento del Atlántico Ecuatorial. Scientia Marina, 76(SUPPL.1):105–116.
dc.relation.referencesMartı́n-Rey, M., Rodrı́guez-Fonseca, B., Polo, I., and Kucharski, F. (2014). On the At- lantic–Pacific Niños connection: a multidecadal modulated mode. Climate Dynamics, 43(11):3163–3178.
dc.relation.referencesMcCreary, J. (1976). Eastern Tropical Ocean Response to Changing Wind Systems: with Application to El Niño. Journal of Physical Oceanography, 6(5):632–645.
dc.relation.referencesMcPhaden, M. J. (1992). The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. Journal of Geophysical Research, 97(C9).
dc.relation.referencesMcPhaden, M. J. (1999). Genesis and evolution of the 1997-98 El Niño.
dc.relation.referencesMcPhaden, M. J. (2004). Evolution of the 2002/03 El Niño. Bulletin of the American Meteorological Society, 85(5):677–695.
dc.relation.referencesMcPhaden, M. J., Freitag, H. P., Hayes, S. P., Taft, B. A., Chen, Z., and Wyrtki, K. (1988). The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. Journal of Geophysical Research, 93(C9):10589.
dc.relation.referencesMcPhaden, M. J., Zebiak, S. E., and Glantz, M. H. (2006a). ENSO as an integrating concept in earth science.
dc.relation.referencesMcPhaden, M. J. and Zhang, X. (2009). Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophysical Research Letters, 36(13).
dc.relation.referencesMcPhaden, M. J., Zhang, X., Hendon, H. H., and Wheeler, M. C. (2006b). Large scale dy- namics and MJO forcing of ENSO variability. Geophysical Research Letters, 33(16):L16702.
dc.relation.referencesMeinen, C. S. and McPhaden, M. J. (2000). Observations of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. Journal of Climate, 13(20):3551–3559.
dc.relation.referencesMenkes, C. E., Lengaigne, M., Vialard, J., Puy, M., Marchesiello, P., Cravatte, S., and Cambon, G. (2014). About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophysical Research Letters, 41(18):6476–6483.
dc.relation.referencesMerle, J. (1980). Variabilité thermique annuelle et interannuelle de l’océan Atlantique équatorial Est. L’hypothèse d’un ”El Niño” Atlantique. Oceanologica Acta, 3(2):209–220.
dc.relation.referencesMeyers, G. (1996). Variation of Indonesian throughflow and the El Niño - Southern Oscilla- tion. Journal of Geophysical Research C: Oceans, 101(C5):12255–12263.
dc.relation.referencesMoore, A. M. and Kleeman, R. (1999). Stochastic forcing of ENSO by the intraseasonal oscillation. Journal of Climate, 12(5 I):1199–1220.
dc.relation.referencesMunnich, M., Cane, M. A., and Zebiak, S. E. (1991). A study of self-excited oscillations of the tropical ocean- atmosphere system. Part II: nonlinear cases. Journal of the Atmospheric Sciences, 48(10):1238–1248.
dc.relation.referencesMurtugudde, R. and Busalacchi, A. J. (1999). Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. Journal of Climate, 12(8 PART 1):2300– 2326.
dc.relation.referencesMurtugudde, R., McCreary, J. P., and Busalacchi, A. J. (2000). Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998.
dc.relation.referencesN. H. Saji (2018). The Indian Ocean Dipole. Oxford Research Encyclopedia of Climate Science, 1(March):1–35.
dc.relation.referencesNASA/GISS, N. G. I. f. S. S. (2018). NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical.
dc.relation.referencesNeelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F. F., Wakata, Y., Yamagata, T., and Zebiak, S. E. (1998). ENSO theory. Journal of Geophysical Research: Oceans, 103(C7):14261– 14290.
dc.relation.referencesNeubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., and Lohmann, U. (2019). HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical.
dc.relation.referencesNidheesh, A. G., Lengaigne, M., Vialard, J., Izumo, T., Unnikrishnan, A. S., and Krishnan, R. (2019). Natural decadal sea-level variability in the Indian Ocean: lessons from CMIP models. Climate Dynamics, 53(9-10):5653–5673.
dc.relation.referencesOhba, M. and Ueda, H. (2005). Basin-wide Warming in the Equatorial Indian Ocean Asso- ciated with El Nino. Sola, 1:89–92.
dc.relation.referencesOhba, M. and Ueda, H. (2007). An impact of SST anomalies in the Indian Ocean in acceler- ation of the El Niño to La Niña transition. Journal of the Meteorological Society of Japan, 85(3):335–348.
dc.relation.referencesOhba, M. and Ueda, H. (2009). Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. Journal of Climate, 22(1):177–192.
dc.relation.referencesOhba, M. and Watanabe, M. (2012). Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. Journal of Climate, 25(9):3321–3335.
dc.relation.referencesOkumura, Y. M. and Deser, C. (2010). Asymmetry in the duration of El Niño and la Niña. Journal of Climate, 23(21):5826–5843.
dc.relation.referencesOkumura, Y. M., Ohba, M., Deser, C., and Ueda, H. (2011). A proposed mechanism for the asymmetric duration of El Niño and La Niña. Journal of Climate, 24(15):3822–3829.
dc.relation.referencesPark, S. and Shin, J. (2019). SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical.
dc.relation.referencesParlitz, U. (2016). Estimating lyapunov exponents from time series. Chaos detection and predictability, pages 1–34.
dc.relation.referencesPenland, C. and Sardeshmukh, P. D. (1995). The optimal growth of tropical sea surface temperature anomalies. Journal of Climate, 8(8):1999–2024.
dc.relation.referencesPicaut, J., Loualalen, M., Menkes, C., Delcroix, T., and McPhaden, M. J. (1996). Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274(5292):1486–1489.
dc.relation.referencesPicaut, J., Masia, F., and Du Penhoat, Y. (1997). An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277(5326):663–666.
dc.relation.referencesPlanton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J., Bayr, T., McGre- gor, S., McPhaden, M. J., Power, S., Roehrig, R., Vialard, J., and Voldoire, A. (2021). Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package. Bulletin of the American Meteorological Society, 102(2):E193–E217.
dc.relation.referencesPolo, I., Martin-Rey, M., Rodriguez-Fonseca, B., Kucharski, F., and Mechoso, C. R. (2015). Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dynamics, 44(1-2):115–131.
dc.relation.referencesPuy, M., Vialard, J., Lengaigne, M., and Guilyardi, E. (2016). Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively- coupled Rossby waves. Climate Dynamics, 46(7-8):2155–2178.
dc.relation.referencesRao, S. A. and Behera, S. K. (2005). Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dynamics of Atmospheres and Oceans, 39(1-2 SPEC. ISS.):103–135.
dc.relation.referencesRao, S. A., Behera, S. K., Masumoto, Y., and Yamagata, T. (2002). Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(7-8):1549–1572.
dc.relation.referencesRao, S. A. and Yamagata, T. (2004). Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophysical Research Letters, 31(19):L19306.
dc.relation.referencesRasmusson, E. M. and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/ El Nino ( Pacific) . Monthly Weather Review, 110(5):354–384.
dc.relation.referencesReason, C., Allan, R., Lindesay, J., and Ansell, T. (2000). ENSO and climatic signals across the Indian Ocean Basin in the global context: part I, interannual composite patterns. International Journal of Climatology, 20(11):1285–1327.
dc.relation.referencesRodrı́guez-Fonseca, B., Polo, I., Garcı́a-Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., and Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36(20).
dc.relation.referencesRong, X. (2019). CAMS CAMS CSM1.0 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesRosenstein, M. T., Collins, J. J., and De Luca, C. J. (1993). A practical method for calculat- ing largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1-2).
dc.relation.referencesSaji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T. (1999). A dipole mode in the tropical Indian ocean. Nature, 401(6751):360–363.
dc.relation.referencesSaji, N. H., Jin, D., and Thilakan, V. (2018). A model for super El Niños. Nature Commu- nications, 9(1).
dc.relation.referencesSaji, N. H. and Yamagata, T. (2003). Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25(2):151–169.
dc.relation.referencesSalby, M. L. and Hendon, H. H. (1994). Intraseasonal Behavior of Clouds, Temperature, and Motion in the Tropics. Journal of the Atmospheric Sciences, 51(15):2207–2224.
dc.relation.referencesSantoso, A., England, M. H., and Cai, W. (2012). Impact of indo-pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. Journal of Climate, 25(21):7743–7763.
dc.relation.referencesScoccimarro, E., Bellucci, A., and Peano, D. (2020). CMCC CMCC-CM2-HR4 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesSeiki, A., Nagura, M., Hasegawa, T., and Yoneyama, K. (2016). Seasonal onset of the Mad- den–Julian oscillation and its relation to the Southeastern Indian Ocean cooling. Journal of the Meteorological Society of Japan, 93A:139–156.
dc.relation.referencesSeiki, A. and Takayabu, Y. N. (2007). Westerly wind burst and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Monthly Weather Review, 135(10):3325–3345.
dc.relation.referencesSemmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T. (2018). AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesShi, L., Alves, O., Hendon, H. H., Wang, G., and Anderson, D. (2009). The role of stochastic forcing in ensemble forecasts of the 1997/98 El Niño. Journal of Climate, 22(10).
dc.relation.referencesShinoda, T. and Hendon, H. H. (2001). Upper-ocean heat budget in response to the Madden- Julian oscillation in the Western Equatorial Pacific. Journal of Climate, 14(21):4147–4165.
dc.relation.referencesShinoda, T., Hendon, H. H., and Alexander, M. A. (2004). Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Research Part I: Oceanographic Research Papers, 51(5):619–635.
dc.relation.referencesSingh, P., Chowdary, J. S., and Gnanaseelan, C. (2013). Impact of prolonged La Niña events on the Indian Ocean with a special emphasis on southwest Tropical Indian Ocean SST. Global and Planetary Change, 100.
dc.relation.referencesSong, Z., Qiao, F., Bao, Y., Shu, Q., Song, Y., and Yang, X. (2019). FIO-QLNM FIO- ESM2.0 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesStein, K., Schneider, N., Timmermann, A., and Jin, F. F. (2010). Seasonal synchronization of ENSO events in a linear stochastic model. Journal of Climate, 23(21).
dc.relation.referencesStein, K., Timmermann, A., and Schneider, N. (2011). Phase synchronization of the El Niño-Southern Oscillation with the annual cycle. Physical Review Letters, 107(12).
dc.relation.referencesStouffer, R. (2019). UA MCM-UA-1-0 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesStuecker, M. F., Timmermann, A., Jin, F. F., Chikamoto, Y., Zhang, W., Wittenberg, A. T., Widiasih, E., and Zhao, S. (2017). Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophysical Research Letters, 44(5).
dc.relation.referencesSuarez, M. J. and Schopf, P. S. (1988). A delayed action oscillator for ENSO. Journal of the Atmospheric Sciences, 45(21):3283–3287.
dc.relation.referencesSwart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M. (2019). CCCma CanESM5 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesTang, Y., Zhang, R. H., Liu, T., Duan, W., Yang, D., Zheng, F., Ren, H., Lian, T., Gao, C., Chen, D., and Mu, M. (2018). Progress in ENSO prediction and predictability study.
dc.relation.referencesTatebe, H. and Watanabe, M. (2018). MIROC MIROC6 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesTaylor, K. E. (2001). Summarizing multiple aspects of model performance in a single dia- gram. Journal of Geophysical Research: Atmospheres, 106(D7):7183–7192.
dc.relation.referencesTimmermann, A., An, S. I., Kug, J. S., Jin, F. F., Cai, W., Capotondi, A., Cobb, K., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K. S., Bayr, T., Chen, H. C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y. G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W. M., Lee, J. Y., Li, T., Luo, J. J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H. L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W. H., Yeh, S. W., Yoon, J., Zeller, E., and Zhang, X. (2018). El Niño–Southern Oscillation complexity.
dc.relation.referencesTozuka, T., Luo, J. J., Masson, S., and Yamagata, T. (2007). Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. Journal of Climate, 20(13):2881– 2894.
dc.relation.referencesTrenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., and Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections as- sociated with tropical sea surface temperatures. Journal of Geophysical Research: Oceans, 103(C7):14291–14324.
dc.relation.referencesTziperman, E., Cane, M. A., and Zebiak, S. E. (1995). Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. Journal of the Atmospheric Sciences, 52(3):293–306.
dc.relation.referencesTziperman, E., Stone, L., Cane, M. A., and Jarosh, H. (1994). El Niño chaos: Overlapping of resonances between the seasonal cycle and the pacific ocean-atmosphere oscillator. Science, 264(5155):72–74.
dc.relation.referencesUeda, H. and Matsumoto, J. (2000). A possible triggering process of east-west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. Journal of the Meteoro- logical Society of Japan, 78(6):803–818.
dc.relation.referencesVecchi, G. A. and Harrison, D. E. (2000). Tropical Pacific sea surface temperature anomalies, El Nino, and equatorial westerly wind events. Journal of Climate, 13(11):1814–1830.
dc.relation.referencesVecchi, G. A. and Wittenberg, A. T. (2010). El Niño and our future climate: Where do we stand? Wiley Interdisciplinary Reviews: Climate Change, 1(2):260–270.
dc.relation.referencesVenzke, S., Latif, M., and Villwock, A. (2000). The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. Journal of Climate, 13(8):1371–1383.
dc.relation.referencesWaliser, D. E. and Graham, N. E. (1993). Convective cloud systems and warm-pool sea surface temperatures: coupled interactions and self-regulation. Journal of Geophysical Research, 98(D7).
dc.relation.referencesWang, B., Wu, R., and Fu, X. (2000). Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? Journal of Climate, 13(9):1517–1536.
dc.relation.referencesWang, C. (2001). A Unified Oscillator Model for the El Nino-Southern oscillation. Journal of Climate, 14(1):98–115.
dc.relation.referencesWang, C. (2006). An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophysical Research Letters, 33(12).
dc.relation.referencesWang, H., Kumar, A., Murtugudde, R., Narapusetty, B., and Seip, K. L. (2019). Covariations between the Indian Ocean dipole and ENSO: a modeling study. Climate Dynamics, 53(9- 10):5743–5761.
dc.relation.referencesWang, W., Chen, M., Kumar, A., and Xue, Y. (2011). How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophysical Research Letters, 38(13).
dc.relation.referencesWeare, B. C. and Nasstrom, J. S. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6):481–485.
dc.relation.referencesWeare, B. C., Navato, A. R., and Newell, R. E. (1976). Empirical Orthogonal Analysis of Pacific Sea Surface Temperatures. Journal of Physical Oceanography, 6(5):671–678.
dc.relation.referencesWebster, P. (2020). Dynamics of The Tropical Atmosphere and Oceans. John Wiley & Sons.
dc.relation.referencesWebster, P. J. (1995). The annual cycle and the predictability of the tropical coupled ocean- atmosphere system. Meteorology and Atmospheric Physics, 56(1-2).
dc.relation.referencesWebster, P. J. and Hoyos, C. D. (2010). Beyond the spring barrier? Nature Geoscience, 3(3):152–153.
dc.relation.referencesWebster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R. (1999). Coupled ocean- atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401(6751):356–360.
dc.relation.referencesWebster, P. J. and Yang, S. (1992). Monsoon and ENSO. Quarterly Journal of the Royal Meteorological Society, 118:877–926.
dc.relation.referencesWeisberg, R. H. and Wang, C. (1997). A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophysical Research Letters.
dc.relation.referencesWheeler, M. and Kiladis, G. N. (1999). Convectively Coupled Equatorial Waves: Analy- sis of Clouds and Temperature in the Wavenumber-Frequency Domain. Journal of the Atmospheric Sciences, 56(3):374–399.
dc.relation.referencesWhite, W. B. and Cayan, D. R. (2000). A global El Niño-Southern Oscillation wave in surface temperature and pressure and its interdecadal modulation from 1900 to 1997.
dc.relation.referencesWieners, C. E., de Ruijter, W. P. M., Ridderinkhof, W., von der Heydt, A. S., and Dijkstra, H. A. (2016). Coherent Tropical Indo-Pacific Interannual Climate Variability. Journal of Climate, 29(11):4269–4291.
dc.relation.referencesWieners, C. E., Dijkstra, H. A., and de Ruijter, W. P. (2017). The influence of atmospheric convection on the interaction between the Indian Ocean and ENSO. Journal of Climate, 30(24):10155–10178.
dc.relation.referencesWieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E. (2019). MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesWilson, E. A., Gordon, A. L., and Kim, D. (2013). Observations of the madden julian oscil- lation during Indian ocean dipole events. Journal of Geophysical Research Atmospheres, 118(6):2588–2599.
dc.relation.referencesWu, R. and Kirtman, B. P. (2004). Understanding the impacts of the Indian ocean on ENSO variability in a coupled GCM. Journal of Climate, 17(20):4019–4031.
dc.relation.referencesWu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y. (2018). BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical.
dc.relation.referencesWyrtki, K. (1975). El Niño—The Dynamic Response of the Equatorial Pacific Ocean to Atmospheric Forcing. Journal of Physical Oceanography, 5(4):572–584.
dc.relation.referencesWyrtki, K. (1985). Water displacements in the Pacific and the genesis of El Nino cycles. Journal of Geophysical Research, 90(C4).
dc.relation.referencesXian, W. U., Okumura, Y. M., and Dinezio, P. N. (2019). What controls the duration of El Niño and La Niña events? Journal of Climate, 32(18):5941–5965.
dc.relation.referencesXie, S. P., Annamalai, H., Schott, F. A., and McCreary, J. P. (2002). Structure and mecha- nisms of South Indian Ocean climate variability. Journal of Climate, 15(8):864–878.
dc.relation.referencesXie, S. P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., and Sampe, T. (2009). Indian Ocean capacitor effect on Indo-Western pacific climate during the summer following El Niño. Journal of Climate, 22(3):730–747.
dc.relation.referencesXie, S. P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., and Huang, G. (2016). Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Advances in Atmospheric Sciences, 33(4):411–432.
dc.relation.referencesYamagata, T., Behera, S. K., Luo, J. J., Masson, S., Jury, M. R., and Rao, S. A. (2004). Cou- pled ocean-atmosphere variability in the tropical Indian ocean. In Geophysical Monograph Series, volume 147, pages 189–211. Blackwell Publishing Ltd.
dc.relation.referencesYamagata, T. and Masumoto, Y. (1990). A simple ocean-atmosphere coupled model for the origin of a warm El Nino Southern Oscillation event. The dynamics of the coupled atmosphere and ocean. Proc. Royal Society meeting, 1988, 329(1604):71–82.
dc.relation.referencesYasunari, T. (1985). Zonally Propagating Modes of the Global East-West Circulation Asso- ciated with the Southern Oscillation. Journal of the Meteorological Society of Japan. Ser. II, 63(6):1013–1029.
dc.relation.referencesYeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S. I., Yim, B. Y., and Kug, J. S. (2018). ENSO Atmospheric Telecon- nections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 56(1).
dc.relation.referencesYu, J. Y. and Lau, K. M. (2005). Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere-ocean GCM study. Meteorology and Atmospheric Physics, 90(3-4).
dc.relation.referencesYu, L. and Rienecker, M. M. (1999). Mechanisms for the Indian Ocean warming during the 1997-98 El Niño. Geophysical Research Letters, 26(6):735–738.
dc.relation.referencesYuan, D., Wang, J., Xu, T., Xu, P., Hui, Z., Zhao, X., Luan, Y., Zheng, W., and Yu, Y. (2011). Forcing of the Indian Ocean Dipole on the Interannual Variations of the Tropical Pacific Ocean: Roles of the Indonesian Throughflow. Journal of Climate, 24(14):3593– 3608.
dc.relation.referencesYuan, D., Zhou, H., and Zhao, X. (2013). Interannual climate variability over the tropical pacific ocean induced by the indian ocean dipole through the Indonesian Throughflow. Journal of Climate, 26(9):2845–2861.
dc.relation.referencesYuan, Y., Chan, C. L., Zhou, W., and Li, C. (2008a). Decadal and interannual variability of the Indian Ocean Dipole. Advances in Atmospheric Sciences, 25(5):856–866.
dc.relation.referencesYuan, Y., Hui, Y., and Chong-Yin, L. (2014). Possible influences of the tropical indian ocean dipole on the eastward propagation of mjo. Journal of Tropical Meteorology, 20(2):173– 180.
dc.relation.referencesYuan, Y., Zhou, W., Yang, H., and Li, C. (2008b). Warming in the northwestern Indian Ocean associated with the El Niño event. Advances in Atmospheric Sciences, 25(2).
dc.relation.referencesYukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesZang, X., Fu, L. L., and Wunsch, C. (2002). Observed reflectivity of the western boundary of the equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 107(10).
dc.relation.referencesZavala-Garay, J., Zhang, C., Moore, A. M., and Kleeman, R. (2005). The linear response of ENSO to the Madden-Julian Oscillation. Journal of Climate, 18(13):2441–2459.
dc.relation.referencesZebiak, S. E. (1985). Tropical Atmosphere - Ocean Interaction and the El Nino/southern Oscillation Phenomenon. PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOL- OGY.
dc.relation.referencesZebiak, S. E. (1989). On the 30–60 Day Oscillation and the Prediction of El Niño. Journal of Climate, 2(11):1381–1387.
dc.relation.referencesZebiak, S. E. (1993). Air-sea interaction in the equatorial Atlantic region. Journal of Climate, 6(8):1567–1586.
dc.relation.referencesZebiak, S. E. and Cane, M. A. (1987). A Model El Niño–Southern Oscillation. Monthly Weather Review, 115(10):2262–2278.
dc.relation.referencesZhang, C., Dong, M., Gualdi, S., Hendon, H. H., Maloney, E. D., Marshall, A., Sperber, K. R., and Wang, W. (2006). Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dynamics, 27(6):573–592.
dc.relation.referencesZhang, C. and Gottschalck, J. (2002). SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific. Journal of Climate, 15(17):2429–2445.
dc.relation.referencesZhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., and Wei, M. (2018). BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesZhang, W., Wang, Y., Jin, F. F., Stuecker, M. F., and Turner, A. G. (2015). Impact of different El Niño types on the El Niño/IOD relationship. Geophysical Research Letters, 42(20):8570–8576.
dc.relation.referencesZhao, Y. and Nigam, S. (2015). The Indian ocean dipole: A monopole in SST. Journal of Climate, 28(1):3–19.
dc.relation.referencesZiehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobro- hotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P., Mackallah, C., Sullivan, A., O’Farrell, S., and Druken, K. (2019). CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP historical.
dc.relation.referencesZuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M. (2019). The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Science, 15(3):779–808.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCambios climáticos
dc.subject.lembClimatic changes
dc.subject.proposalEl Niño-Southern Oscillation (ENSO)
dc.subject.proposalInter-basin Interaction
dc.subject.proposalTropical Indo-Pacific
dc.subject.proposalIndian Ocean Dipole (IOD)
dc.subject.proposalIndian Ocean basin-wide Mode (IOBM)
dc.subject.proposalMadden-Julian Oscillation (MJO)
dc.subject.proposalIntraseasonal variability (ISV)
dc.subject.proposalInterannual variability
dc.subject.proposalCMIP6
dc.subject.proposalExtended Empirical Orthogonal Function (EEOF)
dc.subject.proposalDeterministic Chaos
dc.subject.proposalEl Niño-Oscilación del Sur (ENSO)
dc.subject.proposalInteracción entre cuencas
dc.subject.proposalIndoPacífico tropical
dc.subject.proposalDipolo del Océano Índico (IOD)
dc.subject.proposalOscilación de Madden-Julian (MJO)
dc.subject.proposalVariabilidad intraestacional (ISV)
dc.subject.proposalVariabilidad interanual
dc.subject.proposalFunciones ortogonales empíricas extendidas (EEOF)
dc.subject.proposalCaos determinístico
dc.title.translatedInfluencia del Océano Índico en la evolución del ENSO
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito