Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.advisorMantilla Gonzalez, Juan Miguel
dc.contributor.authorMendez Bohorquez, Miguel David
dc.date.accessioned2022-12-01T17:16:14Z
dc.date.available2022-12-01T17:16:14Z
dc.date.issued2022-11-29
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82830
dc.descriptionilustraciones, gráficas
dc.description.abstractSe realizó un estudio numérico sobre la interrelación entre los números adimensioanles de Reynolds y Prandtl en situaciones de transferencia de calor por convección forzada en flujo externo. Para cada geometría se exploraron dos condiciones de flujo diferentes con el objetivo de recrear un conjunto amplio de escenarios de separación. Se hizo un estudio parametrico, utilizando cinco valores del número de Prandtl, entre 0.1 < Pr < 500, y cuatro valores del número de Reynolds, entre 10 < Re < 10000. El número de Nusselt local y promedio, en conjunto con perfiles de velocidad, coeficientes de presión y coeficientes de fricción fueron analizados. De los resultados se observó que los valores del número de Nusselt promediados en las caras tienen un valor máximo pra Pr = 50 entre 10 < Re < 1000. Para Re = 10000, la difusión térmica adquiere mayor relevancia y los valores máximos se desplazan hacia Pr = 5, en la mayoría de los casos, y Pr = 0.72 y Pr = 0.1 en casos puntuales. Con relación al comportamiento local, se observa que la aparición de los valores máximos o mínimos del número de Nusselt, se da en la vecindad de los puntos de separación del flujo, donde la aparición de vórtices influye en el posicionamiento de estos. Del estudio se infiere que, contrario a lo establecido por varios autores y en diferentes libros de texto, el exponente n = 1/3 para el número de Prandtl, en las correlaciones tipo ley de potencia del número de Nusselt, no describe completamente los fenómenos capturados para el conjunto de situaciones de flujo analizadas en este estudio. (Texto tomado de la fuente)
dc.description.abstractA numerical study was done in order to assess the interrelationship between the nondimensional numbers Reynolds and Prandtl in the heat transfer forced convection around blunt bodies. For each case, two different flow conditions were explored in order to obtain a wide set of separation situations. A parametric study was carried out using five Prandtl numbers, between 0.1 < Pr < 500, and four Reynolds numbers, between 10 < Re < 10000$. The local and average Nusselt number was analyzed in conjunction with the velocity profiles, the pressure coefficient and surface shear stress coefficient. The averaged Nusselt over the studied faces showed a maximum value at Pr = 50 between 10 < Re < 1000. For Re = 10000, the thermal diffusivity was more relevant and the maximum values shifted to Pr = 5, in most of the cases, and Pr = 0.72 and Pr = 0.1 in less situations. From the local behavior was observed the apparition of relative extreme values in the neighborhood of the boundary layer detachment points, where the vortex formation influenced the positioning of these values. It can be inferred from the study that, contrary to what has been established by several authors and textbooks, the assumption for the exponent n = 1/3, in the Nusselt power lay correlations, do not fully describe the phenomena observed in the situations analyzed in this work.
dc.format.extentxvi, 83 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::532 - Mecánica de fluidos
dc.subject.ddc530 - Física::536 - Calor
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleEstudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaTransferencia de calor
dc.description.researchareaMecánica de fluidos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAhmed, G. R. and Yovanovich, M. M. (1997). Experimental Study of Forced Convection From Isothermal Circular and Square Cylinders and Toroids. Journal of Heat Transfer, 119(1):70–79.
dc.relation.referencesBergman, T., Lavine, A., Incropera, F., and Dewitt, D. (2011). Fundamentals of Heat and Mass Transfer. John Wiley and Sons, 7th edition.
dc.relation.referencesÇengel, Y. (1998). Heat Transfer: A Practical Approach. McGraw-Hill series in mechanical engineering. McGraw-Hill.
dc.relation.referencesChang, P. (1970). Separation of Flow. Commonwealth and International Library. History Division. Elsevier Science & Technology.
dc.relation.referencesDey, P. and Das, A. K. (2016). Heat Transfer Enhancement Around a Cylinder-A CFD Study of Effect of Corner Radius and Prandtl Number. International Journal of Chemical Reactor Engineering, 14(2):587–597.
dc.relation.referencesDhiman, A. K., Chhabra, R. P., Sharma, A., and Eswaran, V. (2006). Effects of reynolds and prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numerical Heat Transfer, Part A: Applications, 49:717–731.
dc.relation.referencesDucros, F., Nicoud, F., and Poinsot, T. (2007). Wall-adapting local eddy-viscosity models for simulations in complex geometries.
dc.relation.referencesEckert, E. R. G. (1950). Introduction to the Transfer of Heat and Mass. McGraw-Hill Book Company.
dc.relation.referencesGerbhardt, B. (1961). Heat Transfer. McGraw-Hill Book Company, New York.
dc.relation.referencesGoldstein, R., Yoo, S., and Chung, M. (1990). Convective mass transfer from a square cylinder and its base plate. International Journal of Heat and Mass Transfer, 33(1):9–18.
dc.relation.referencesHilpert, R. (1933). Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom. Fors- chung auf dem Gebiet des Ingenieurwesens., 4:215–224.
dc.relation.referencesHu, S. and Herold, K. E. (1995). Prandtl number effect on offset fin heat exchanger perfor- mance: experimental results. International Journal of Heat and Mass Transfer, 38(6):1053– 1061.
dc.relation.referencesIgarashi, T. (1985). Heat transfer from a square prism to an air stream. International Journal of Heat and Mass Transfer, 28(1):175–181.
dc.relation.referencesJakob, M. (1949). Heat Transfer Volume 1. John Wiley and Sons, New York.
dc.relation.referencesJoshi, H. M. and Webb, R. L. (1987). Heat transfer and friction in the offset stripfin heat exchanger. International Journal of Heat and Mass Transfer, 30(1):69–84.
dc.relation.referencesKapitz, M., Teigeler, C., Wagner, R., Helcig, C., and aus der Wiesche, S. (2018). Experimental study of the influence of the Prandtl number on the convective heat transfer from a square cylinder. International Journal of Heat and Mass Transfer, 120:471–480.
dc.relation.referencesKnudsen, J. and Katz, D. (1959). Fluid Dynamics and Heat Transfer. McGraw-Hill Book Company, New York.
dc.relation.referencesKumar, R. S. and Jayavel, S. (2018). Forced Convective Air-Cooling Effect on Electronic Components of Different Geometries and Orientations at Flow Shedding Region. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(4):597–605.
dc.relation.referencesLienhard, J. I. and Lienhard, J. V. (2011). A Heat Transfer Textbook. Dove, New York, 4th edition.
dc.relation.referencesMurmu, S. C., Bhattacharyya, S., Chattopadhyay, H., and Biswas, R. (2020). Analysis of heat transfer around bluff bodies with variable inlet turbulent intensity: A numerical simulation. International Communications in Heat and Mass Transfer, 117(August).
dc.relation.referencesPope, S. (2000). Turbulent Flows. Cambridge University Press.
dc.relation.referencesReiher, H. (1925). Der Wärmeubergang von stromender luft and rohrbundel in Kreuztrom. VDI Forschungsheft, 269:47
dc.relation.referencesSahu, A. K., Chhabra, R. P., and Eswaran, V. (2009). Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. International Journal of Heat and Mass Transfer, 52(3-4):839–850.
dc.relation.referencesSharma, A. and Eswaran, V. (2004). Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numerical Heat Transfer, Part A: Applications, 45:247–269.
dc.relation.referencesShyam, R. and Chhabra, R. P. (2013). Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime. International Journal of Heat and Mass Transfer, 57(2):742–755.
dc.relation.referencesSmith, R., Peters, C., and Inomata, H. (2013). Heat transfer and finite-difference methods.
dc.relation.referencesSparrow, E. M., Abraham, J. P., and Tong, J. C. (2004). Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross- flow. International Journal of Heat and Mass Transfer, 47(24):5285–5296.
dc.relation.referencesWhite, F. (1999). Fluid Mechanics. McGraw-Hill International Editions. WCB/McGraw- Hill
dc.relation.referencesWieting, A. R. (1975). Empirical Correlations for Heat Transfer and Flow Friction Charac- teristics of Rectangular Offset-Fin Plate-Fin Heat Exchangers. Journal of Heat Transfer, 97(3):488–490.
dc.relation.referencesYousif, A. H. (2019). Effect of triangular splitter on heat transfer and fluid flow over triangu- lar cylinder. International Journal of Engineering Research and Technology, 12(12):2874– 2879.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcAnálisis numérico
dc.subject.armarcNumerical analysis
dc.subject.lembTransmisión del calor
dc.subject.lembHeat - Transmission
dc.subject.lembProcesamiento de datos
dc.subject.lembdata processing
dc.subject.proposalConvección de calor forzada
dc.subject.proposalFlujo externo
dc.subject.proposalSeparación de flujo
dc.subject.proposalNúmero de Reynolds
dc.subject.proposalNúmero de Prandtl
dc.subject.proposalHeat Transfer Forced Convection
dc.subject.proposalExternal flow
dc.subject.proposalFlow separation
dc.subject.proposalReynolds number
dc.subject.proposalPrandtl number
dc.subject.proposalLarge Eddy Simulations
dc.subject.proposalFlujo incompresible
dc.subject.proposalIncompressible flow
dc.title.translatedNumerical assessment of the interdependency of the non-dimensional numbers Nusselt, Reynolds and Prandtl.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito