Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCiangherotti Franco, Carlos Eduardo
dc.contributor.advisorOrozco Sanabria, Camilo Alberto
dc.contributor.authorSuarez Torres, Jose Daniel
dc.date.accessioned2022-12-01T22:59:49Z
dc.date.available2022-12-01T22:59:49Z
dc.date.issued2022-10-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82835
dc.descriptionilustraciones, fotografías a color, gráficas
dc.description.abstractEl bioensayo de carcinogénesis en roedores a 2-años (RCB), todavía es el estándar de oro preclínico para predecir la carcinogenicidad innata para los humanos de las sustancias. Desde hace 40 años, el RCB es un requisito preclínico del que depende la aprobación gubernamental de la comercialización de una diversidad de sustancias, incluyendo (1) aditivos alimentarios; (2) principios activos de plaguicidas; (3) fármacos de uso crónico en humanos, y (4) fármacos de uso en animales productores de alimentos. Por su antigüedad, y por la necesidad que había en aquella época de implementar con urgencia pruebas preclínicas de toxicidad, el RCB se adoptó sin conocimiento empírico acerca de su desempeño predictivo. No obstante, aún se desconoce exactamente cuál es la sensibilidad y especificidad del RCB hacia los carcinógenos de humanos. Esta tesis doctoral es el producto de una investigación teórica basada en datos experimentales publicados en la literatura. En tal sentido, esta tesis se planteó las siguientes preguntas de investigación. Uno, ¿Cuál es la sensibilidad (SEN) y especificidad (SPEC) del RCB hacia los carcinógenos de humanos? Dos, considerando que la toxicología preclínica tiene un carácter y fines predictivos, ¿Cuál es la probabilidad cuantitativa de que carezcan de carcinogenicidad innata para los humanos, sustancias específicas que ya resultaron negativas en el RCB? Tres, ¿Cuál es la probabilidad cuantitativa de que sean connaturalmente carcinogénicas para los humanos, sustancias específicas que ya resultaron positivas en el RCB? Para responder dichas preguntas, esta tesis expandió y adaptó el marco matemático propuesto por la medicina humana para estimar la sensibilidad (SEN), especificidad (SPEC), y los valores predictivos de los resultados entregados por los exámenes de tamizaje (o cribaje). Como carcinógenos de humanos desde los cuales discernir la SEN del RCB, esta tesis reconoció a las sustancias que tienen suficiente evidencia epidemiológica de carcinogénesis en humanos, según las evaluaciones de la IARC, el U.S. NTP, o la U.S. EPA. En materia de resultados, y en términos de vías de exposición, las vías oral e inhalatoria del RCB exhibieron 95% o más de SEN hacia los carcinógenos de humanos de tipo mutagénico con alta potencia genotóxica. La vía inhalatoria del RCB presentó 88% de SEN hacia los carcinógenos de humanos por inhalación de tipo no-mutagénico. La vía oral del RCB presentó tan sólo 65% de SEN hacia los carcinógenos de humanos por ingestión de tipo no-mutagénico. Como no-carcinógenos de humanos desde los cuales dilucidar la SPEC del RCB, esta tesis reconoció a las sustancias que tienen suficiente evidencia mecanicista de que carecen de carcinogenicidad innata para los humanos (p. ej., evidencia mecanicista en términos de mecanismos de acción farmacológica, o mecanismos de acción toxicológica). Hacia los carcinógenos de humanos por ingestión de tipo no-mutagénico, y basado sólo en no-carcinógenos de humanos con muy bajo potencial de carcinogenicidad en el RCB, esta tesis estimó 95% o más de SPEC para la vía oral del RCB. Con base en las SENs y SPEC mencionadas previamente, y mediante las ecuaciones proporcionadas por (1) la estadística Bayesiana, o (2) por la aproximación desarrollada en esta tesis bajo el nombre de la probabilidad de verosimilitud, encontramos los siguientes resultados adicionales. Primero, 98% de probabilidad de que 52 sustancias específicas sean connaturalmente carcinogénicas para los humanos por ingestión o inyección, entre ellas numerosos fármacos de uso antineoplásico o no-antineoplásico en humanos. Segundo, un 96% de probabilidad de que otras 68 sustancias específicas carezcan de carcinogenicidad innata para los humanos por ingestión, incluyendo varios (1) colorantes de alimentos, medicamentos, y cosméticos; (2) principios activos de productos plaguicidas, y (3) fármacos de uso no-antineoplásico en humanos. De ese modo, esta tesis entregó una amplia discusión, así como numerosas conclusiones y recomendaciones acerca de (1) el desempeño del RCB como modelo para el pronóstico preclínico de la carcinogenicidad innata de las sustancias para los humanos; (2) distintas configuraciones para el RCB (p. ej., en términos de dosis, especies, o vías de exposición de los roedores a las sustancias de prueba); (3) del futuro del RCB en la práctica reguladora; (4) de las aproximaciones probabilísticas como una vía para traducir la relevancia (o insignificancia) clínica de hallazgos preclínicos particulares, y (5) la pertinencia de las predicciones de carcinogenicidad (o de carencia de carcinogenicidad) innata para los humanos, entregada por esta tesis para 120 sustancias específicas. (Texto tomado de la fuente)
dc.description.abstractAt the preclinical level, the 2-year rodent carcinogenesis bioassay (RCB) is the gold standard to predict the innate carcinogenicity to humans of substances. For 40 years, the RCB has been a preclinical requirement for the regulatory approval of a variety of chemicals, including (1) food additives; (2) active ingredients of pesticides; (3) pharmaceuticals for chronic use in humans, and (4) for drugs used in food-producing animals. Due to its antiquity, and the need in those days for an urgent deployment of preclinical tests, the RCB was adopted without knowledge of its true predictive performance. Although the RCB is regulatorily in force, the sensitivity and specificity of the RCB towards human carcinogens remain unknown. This doctoral thesis is the product of theoretical research based on experimental data available in the literature. In that respect, this thesis addressed the following research questions. One, what is the sensitivity (SEN) and specificity (SPEC) of the RCB towards human carcinogens? Two, considering the predictive nature and the predictive purpose of preclinical toxicology, what is the numerical probability that specific chemicals that tested negative in the RCB actually lack any carcinogenicity to humans? And third, what is the numerical probability that specific substances that tested positive in the RCB are innately carcinogenic to humans? To answer those questions, this thesis expanded and adapted the mathematical framework used in human medicine to evaluate the sensitivity (SEN), specificity (SPEC), and the predictive value of the results provided by medical screening tests. As human carcinogens (on which to base the SEN of the RCB), we recognized those chemicals with sufficient epidemiological evidence of carcinogenicity in humans, according to the evaluations published by the IARC, the U.S. NTP, or the U.S. EPA. As a result, both the oral and inhalation routes of the RCB showed more than 95% SEN towards human carcinogens with high genotoxic potency. The inhalation route of the RCB displayed 88% SEN towards non-mutagenic human carcinogens by inhalation. Toward non-mutagenic human carcinogens by ingestion, the RCB’s oral route displayed as few as 65% SEN. As human non-carcinogens (from which to elucidate the SPEC of the RCB), this thesis recognized those chemicals with sufficient mechanistic evidence that they lack innate carcinogenicity to humans (e.g., mechanistic evidence in terms of their mechanism of action, their mechanistic toxicology, or their basic pharmacology). Thereby, towards non-mutagenic human carcinogens by ingestion, and based only on human non-carcinogens with scant carcinogenic potential, this thesis estimated a 95% SPEC for the oral route of the RCB. Based on the SENs and SPEC mentioned before, and through the equations provided by (1) the Bayesian statistics, or (2) the method developed here and named the probability of verisimilitude, we found the following additional results. First, a 98% probability that 52 specific chemicals are innately carcinogenic to humans by ingestion or injection, including several pharmaceuticals of either antineoplastic or non-antineoplastic use in humans. Second, a 96% probability that 68 other substances lack innate carcinogenicity to humans by ingestion, including various (1) food, drug, and cosmetic colorants; (2) active ingredients of pesticides, or (3) several pharmaceuticals used in the treatment of human non-neoplastic diseases. Accordingly, this thesis delivered a large discussion, together with numerous conclusions and recommendations about (1) the preclinical performance of the RCB, as an animal testing method to predict the innate carcinogenicity to humans of chemicals; (2) different configurations for the RCB, including aspects such as the rodent species, doses, endpoints, or routes of exposure; (3) the future of the RCB in regulatory policy; (4) the probabilistic approaches used in this thesis, as a mode for translating the clinical relevance (or insignificance) of specific preclinical findings, and (5) the clinical and regulatory implications of the predictions placed by this thesis, about the innate carcinogenicity to humans (or the lack of innate carcinogenicity to humans) of 120 chemicals of either therapeutic or toxicological interest.
dc.description.sponsorshipConvocatoria 757 de 2016 (Crédito Educativo Condonable). Doctorado Nacional. Ministerio de Ciencia, Tecnología e Innovación. República de Colombia.
dc.format.extentxx. 167 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humana
dc.titleBioensayo de carcinogenicidad en roedores a 2-años: Desempeño, y valores predictivos para múltiples fármacos y otras sustancias de interés
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticas
dc.contributor.researchgroupFarmacología y Fisiología Veterinaria
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Farmacéuticas
dc.description.researchareaFarmacología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesIARC (International Agency for Research on Cancer). Preamble to the IARC Monographs (Amended January 2019) [internet]. Lyon: International Agency for Research on C ancer / World Health Organization; 2019 [citado Mayo 2022]. Disponible desde: https://monographs.iarc.who.int/iarc-monographs-preamble-preamble-to-the-iarc-monographs/
dc.relation.referencesU.S. EPA (United States of America Environmental Protection Agency). Guidelines for Carcinogen Risk Assessment [internet]. Washington, D.C: United States Environmental Protection Agency; 2005 [citado Mayo 2022]. Disponible desde: https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). 14th Report on Carcinogens Table of Contents: Introduction [internet]. Research Triangle Park: U.S. Department of Health and Human Services; 2016 [citado Mayo 2022]. Disponible desde: https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/roc/index.html
dc.relation.referencesGordis L. Introduction (Chapter 1). In: Gordis L, editor. Epidemiology, 5th edition. Elsevier Saunders; 2014. p. 2-18.
dc.relation.referencesOrganización Mundial de la Salud (OMS). Las 10 principales causas de defunción [internet]. Ginebra: Organización de las Naciones Unidas; 2020 [citado Mayo 2022]. Disponible desde: https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death
dc.relation.referencesKlaunig JE. Chemical carcinogenesis (Chapter 4). In: Klaassen CD, editor. Casarett & Doull's Toxicology the Basic Science of Poisons, 8th edition. McGraw-Hill Education medical; 2013. p. 393-443.
dc.relation.referencesU.S. EPA (United States of America Environmental Protection Agency). 870.4200 – Carcinogenicity (August 1998) [internet]. Washington, D.C: United States of America Environmental Protection Agency; 1998 [citado Mayo 2022]. Disponible desde: https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0156-0020
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Redbook 2000: IV.C.6 Carcinogenicity Studies with Rodents [internet]. Silver Spring: U.S. FDA Center for Food Safety and Applied Nutrition; 2006 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/redbook-2000-ivc6-carcinogenicity-studies-rodents
dc.relation.referencesOECD (Organisation for Economic Co-operation and Development). Test No. 451: Carcinogenicity Studies [internet]. Paris (France): Organisation for Economic Co-operation and Development, 2018 [citado Mayo 2022]. Disponible desde: https://www.oecd-ilibrary.org/environment/test-no-451-carcinogenicity-studies_9789264071186-en
dc.relation.referencesICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use). S1B(R1) EWG Rodent Carcinogenicity Studies for Human Pharmaceuticals – Endorsed Documents: S1(R1) Concept Paper [internet]. Geneva: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; 2012 [citado Mayo 2022]. Disponible desde: https://www.ich.org/page/safety-guidelines
dc.relation.referencesBogdanffy MS, Lesniak J, Mangipudy R, et al. Tg.rasH2 mouse model for assessing carcinogenic potential of pharmaceuticals: Industry survey of current practices. Int J Toxicol. 2020;39(3):198-206. doi:10.1177/1091581820919896
dc.relation.referencesFaustman EM, Omenn GS. Risk assessment (Chapter 4). In: Klaassen CD, editor. Casarett & Doull's Toxicology the Basic Science of Poisons, 8th edition. McGraw-Hill Education medical; 2013. p. 123-149.
dc.relation.referencesU.S. NTP. Specifications for the conduct of studies to evaluate the toxic and carcinogenic potential of chemical, biological and physical agents in laboratory animals for the National Toxicology Program (NTP) [internet]. Research Triangle Park: U.S. National Institute of Environmental Health Sciences; 2011 [citado Mayo 2022]. Disponible desde: https://ntp.niehs.nih.gov/ntp/test_info/finalntp_toxcarspecsjan2011.pdf
dc.relation.referencesGoodman JI. Goodbye to the bioassay. Toxicol Res (Camb). 2018;7(4):558-564. doi:10.1039/c8tx00004b
dc.relation.referencesDoe JE, Boobis AR, Dellarco V, et al. Chemical carcinogenicity revisited 2: Current knowledge of carcinogenesis shows that categorization as a carcinogen or non-carcinogen is not scientifically credible. Regul Toxicol Pharmacol. 2019;103:124-129. doi:10.1016/j.yrtph.2019.01.024
dc.relation.referencesCorvi R, Madia F, Guyton KZ, et al. Moving forward in carcinogenicity assessment: Report of an EURL ECVAM/ESTIV workshop. Toxicol In Vitro. 2017;45(Pt 3):278-286. doi:10.1016/j.tiv.2017.09.010
dc.relation.referencesReddy MV, Sistare FD, Christensen JS, et al. An evaluation of chronic 6- and 12-month rat toxicology studies as predictors of 2-year tumor outcome. Vet Pathol. 2010;47(4):614-629. doi:10.1177/0300985810373242
dc.relation.referencesvan der Laan JW, Buitenhuis WH, Wagenaar L, et al. Prediction of the carcinogenic potential of human pharmaceuticals using repeated dose toxicity data and their pharmacological properties. Front Med (Lausanne). 2016;3:45. doi:10.3389/fmed.2016.00045
dc.relation.referencesUrano K, Tamaoki N, Nomura T. Establishing a laboratory animal model from a transgenic animal: RasH2 mice as a model for carcinogenicity studies in regulatory science. Vet Pathol. 2012;49(1):16-23. doi:10.1177/0300985811430318
dc.relation.referencesU.S. NIOSH (United States of America National Institute for Occupational Safety and Health). NIOSH Chemical Carcinogen Policy (DHHS (NIOSH) Publication Number 2017-100) [internet]. Washington, D.C.: United States Department of Health and Human Services; 2017 [citado Mayo 2022]. Disponible en: https://www.cdc.gov/niosh/docs/2017-100/default.html
dc.relation.referencesICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use). S1B Testing for Carcinogenicity of Pharmaceuticals – S1B Guideline [internet]. Geneva: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; 1997 [citado Mayo 2022]. Disponible desde: https://www.ich.org/page/safety-guidelines
dc.relation.referencesEaton DL, Gilbert SG. Principles of Toxicology (Chapter 2). In: Klaassen CD, editor. Casarett & Doull's Toxicology the Basic Science of Poisons, 8th edition. McGraw-Hill Education medical; 2013. p. 13-48.
dc.relation.referencesRahman MA, Lin KK. A comparison of false positive rates of peto and poly-3 methods for long-term carcinogenicity data analysis using multiple comparison adjustment method suggested by Lin and Rahman. J Biopharm Stat. 2008;18(5):949-958. doi:10.1080/10543400802287628
dc.relation.referencesKodell RL. Should we assess tumorigenicity with the Peto or Poly-k test? Stat Biopharm Res. 2012;4(2):118-124. doi:10.1198/sbr.2010.1003
dc.relation.referencesMeek ME, Bucher JR, Cohen SM, et al. A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol. 2003;33(6):591-653. doi:10.1080/713608373
dc.relation.referencesBoobis AR, Cohen SM, Dellarco V, et al. IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol. 2006;36(10):781-792. doi:10.1080/10408440600977677
dc.relation.referencesMeek ME, Boobis A, Cote I, et al. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol. 2014;34(1):1-18. doi:10.1002/jat.2949
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Guidance for industry nonclinical studies for the safety evaluation of pharmaceutical excipients [internet]. Silver Spring: U.S. FDA Center for Drug Evaluation and Research; 2005 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/nonclinical-studies-safety-evaluation-pharmaceutical-excipients
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Studies to evaluate the safety of residues of veterinary drugs in human food: Carcinogenicity testing VICH GL28 [internet]. Silver Spring: U.S. FDA Center for Veterinary Medicine; 2006 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-141-vich-gl28-studies-evaluate-safety-residues-veterinary-drugs-human-food-carcinogenicity
dc.relation.referencesU.S. Federal Register. 40 CFR Part 158 – Data requirements for pesticides [internet]. College Park: Office of the Federal Register; 2007 [citado Mayo 2022]. Disponible desde: https://www.epa.gov/pesticide-registration/data-requirements-pesticide-registration#dh
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Guidance for industry: Summary table of recommended toxicological testing for additives used in food [internet]. Silver Spring: U.S. FDA Center for Food Safety and Applied Nutrition; 2006 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-summary-table-recommended-toxicological-testing-additives-used-food
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Guidance for industry: Preparation of food contact notifications for food contact substances (toxicology recommendations) [internet]. Silver Spring: U.S. FDA Center for Food Safety and Applied Nutrition; 2002 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ucm081825.htm
dc.relation.referencesMarchant GE. Regulatory toxicology (Chapter 35). In: Klaassen CD, editor. Casarett & Doull's Toxicology the Basic Science of Poisons, 8th edition. McGraw-Hill Education medical; 2013. p. 1413-1425.
dc.relation.referencesThorne PS. Occupational Toxicology (Chapter 34). In: Klaassen CD, editor. Casarett & Doull's Toxicology the Basic Science of Poisons, 8th edition. McGraw-Hill Education medical; 2013. p. 1391-1411
dc.relation.referencesWilbourn J, Haroun L, Heseltine E, et al. Response of experimental animals to human carcinogens: an analysis based upon the IARC Monographs programme. Carcinogenesis. 1986;7(11):1853-1863. doi:10.1093/carcin/7.11.1853
dc.relation.referencesEnnever FK, Lave LB. Implications of the lack of accuracy of the lifetime rodent bioassay for predicting human carcinogenicity. Regul Toxicol Pharmacol. 2003;38(1):52-57. doi:10.1016/s0273-2300(03)00068-0
dc.relation.referencesEnnever FK, Noonan TJ, Rosenkranz HS. The predictivity of animal bioassays and short-term genotoxicity tests for carcinogenicity and non-carcinogenicity to humans. Mutagenesis. 1987;2(2):73-78. doi:10.1093/mutage/2.2.73
dc.relation.referencesTomatis L. The IARC program on the evaluation of the carcinogenic risk of chemicals to man. Ann N Y Acad Sci. 1976;271:396-409. doi:10.1111/j.1749-6632.1976.tb23139.x
dc.relation.referencesLave LB, Ennever FK, Rosenkranz HS, et al. Information value of the rodent bioassay. Nature. 1988;336(6200):631-633. doi:10.1038/336631a0
dc.relation.referencesKnight A, Bailey J, Balcombe J. Animal carcinogenicity studies: 1. Poor human predictivity. Altern Lab Anim. 2006;34(1):19-27. doi:10.1177/026119290603400117
dc.relation.referencesSuarez-Torres JD, Jimenez-Orozco FA, Ciangherotti CE. The 2-year rodent bioassay in drug and chemical carcinogenesis testing: Sensitivity, according to the framework of carcinogenic action. Toxicol Mech Methods. 2020;30(6):462-475. doi:10.1080/15376516.2020.1760986
dc.relation.referencesSuarez-Torres JD, Jimenez-Orozco FA, Ciangherotti CE. Drug excipients, food additives, and cosmetic ingredients probably not carcinogenic to humans reveal a functional specificity for the 2-year rodent bioassay. J Appl Toxicol. 2020;40(8):1113-1130. doi:10.1002/jat.3971
dc.relation.referencesSuarez-Torres JD, Orozco CA, Ciangherotti CE. The 2-year rodent bioassay in drug and chemical carcinogenicity testing: Performance, utility, and configuration for cancer hazard identification. J Pharmacol Toxicol Methods. 2021;110:107070. doi:10.1016/j.vascn.2021.107070
dc.relation.referencesSuarez-Torres JD, Ciangherotti CE, Jimenez-Orozco FA. Insights into toxicology, safety pharmacology, and drug dependence testing: The performance and predictive values of nonclinical tests. J Pharmacol Toxicol Methods. 2020;103:106684. doi:10.1016/j.vascn.2020.106684
dc.relation.referencesAlden CL, Lynn A, Bourdeau A, et al. A critical review of the effectiveness of rodent pharmaceutical carcinogenesis testing in predicting for human risk. Vet Pathol. 2011;48(3):772-784. doi:10.1177/0300985811400445
dc.relation.referencesBillington R, Lewis RW, Mehta JM, Dewhurst I. The mouse carcinogenicity study is no longer a scientifically justifiable core data requirement for the safety assessment of pesticides. Crit Rev Toxicol. 2010;40(1):35-49. doi:10.3109/10408440903367741
dc.relation.referencesSmith CJ, Perfetti TA. Tumor site concordance and genetic toxicology test correlations in NTP 2-year gavage, drinking water, dermal, and intraperitoneal injection studies. Toxicol Res Appl. 2018;2:2397847317751147. doi:10.1177/2397847317751147
dc.relation.referencesBoobis AR, Cohen SM, Dellarco VL, et al. Classification schemes for carcinogenicity based on hazard-identification have become outmoded and serve neither science nor society. Regul Toxicol Pharmacol. 2016;82:158-166. doi:10.1016/j.yrtph.2016.10.014
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). ZYRTEC® (cetirizine hydrochloride) tablets and syrup, for oral use (prescribing information) [internet]. Silver Spring: U.S. FDA Center for Drug Evaluation and Research; 2002 [citado Mayo 2022]. Disponible desde: https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/19835s15,%2020346s8lbl.pdf
dc.relation.referencesU.S. NLM (United States of America National Library Medicine). PubChem - Hazardous Substances Data Bank (HSDB): Loratadine (CID 3957) [internet]. Bethesda: U.S. National Institutes of Health; 2021 [citado Mayo 2022]. Disponible desde: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3578
dc.relation.referencesEMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics Institute). Ensembl release 95, Whole-genome alignments [internet]. Cambridge: European Molecular Biology Laboratory - European Bioinformatics Institute; 2020 [citado Mayo 2022]. Disponible en: http://www.ensembl.org/info/genomJCFAe/compara/analyses.html
dc.relation.referencesMiller DC, Dunn RL, Wei JT. Assessing the Performance and Validity of Diagnostic Tests and Screening Programs (Chapter 10). In: Penson DF, Wei JT, editors. Clinical Research Methods for Surgeons, 1st edition. Humana Press; 2007. p. 157-174. doi:10.1007/978-1-59745-230-4_10
dc.relation.referencesValentin JP, Bialecki R, Ewart L, et al. A framework to assess the translation of safety pharmacology data to humans. J Pharmacol Toxicol Methods. 2009;60(2):152-158. doi:10.1016/j.vascn.2009.05.011
dc.relation.referencesEFSA (European Food Safety Authority). Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment [internet]. Parma: European Commission; 2011 [citado Mayo 2022]. Disponible desde: https://www.efsa.europa.eu/es/efsajournal/pub/2379
dc.relation.referencesSuarez-Torres JD, Ciangherotti CE, Orozco CA. Setting course for a translational pharmacology and predictive toxicology based on the numerical probability of clinical relevance. Environmental Toxicology and Pharmacology. (Acceptance for publication pending on minor changes already requested by the referees).
dc.relation.referencesWassertheil-Smoller S, Smoller J. A Little Bit of Probability (Chapter 2). In: Wassertheil-Smoller S, Smoller J, editors. Biostatistics and Epidemiology: A Primer for Health and Biomedical Professionals, 4th edition. New York, NY: Springer New York; 2015. p. 17-25. doi:10.1007/978-1-4939-2134-8_2
dc.relation.referencesIARC (International Agency for Research on Cancer). IARC monographs on the identification of carcinogenic hazards to humans [internet]. Lyon: International Agency for Research on Cancer / World Health Organization; 2021 [citado Mayo 2022]. Disponible desde: https://monographs.iarc.who.int/monographs-available/
dc.relation.referencesU.S. EPA (United States of America Environmental Protection Agency). IRIS Assessments [internet]. Washington, D.C: United States Environmental Protection Agency; 2021 [citado Mayo 2022]. Disponible desde: https://iris.epa.gov/AtoZ/?list_type=alpha
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). 14th Report on Carcinogens [internet]. Research Triangle Park: U.S. Department of Health and Human Services; 2016 [citado Mayo 2022]. Disponible desde: https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/roc/index.html
dc.relation.referencesU.S. NLM (United States of America National Library Medicine). Hazardous Substances Data Bank (HSDB) is now available through PubChem [internet]. Bethesda: U.S. National Institutes of Health; 2021 [citado Mayo 2022]. Disponible desde: https://pubchem.ncbi.nlm.nih.gov/
dc.relation.referencesJECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluations of the JECFA [internet]. Geneva (Switzerland): Joint FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization of the United Nations) Expert Committee on Food Additives; 2021 [citado Mayo 2022]. Disponible desde: https://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx
dc.relation.referencesU.S. NLM (United States of America National Library of Medicine). Chemical Carcinogenesis Research Information System (CCRIS) is now available through PubChem Substance [internet]. Bethesda: U.S. National Institutes of Health; 2021 [citado Mayo 2022]. Disponible desde: https://www.ncbi.nlm.nih.gov/pcsubstance
dc.relation.referencesU.S. NLM (United States of America National Library of Medicine). Genetic Toxicology Data Bank (GENE-TOX) is now available through PubChem Substance [internet]. Bethesda: U.S. National Institutes of Health; 2021 [citado Mayo 2022]. Disponible desde: https://www.ncbi.nlm.nih.gov/pcsubstance
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). Chemical Effects in Biological Systems (CEBS) [internet]. Research Triangle Park: U.S. National Institute of Environmental Health Sciences; 2021 [citado Mayo 2022]. Disponible desde: https://manticore.niehs.nih.gov/cebssearch
dc.relation.referencesCorvi R, Madia F. EURL ECVAM Genotoxicity and Carcinogenicity Consolidated Database of Ames Positive Chemicals [internet]. Sevilla (Spain): European Commission, Joint Research Centre (JRC); 2018 [citado Mayo 2022]. Disponible desde: http://data.europa.eu/89h/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames
dc.relation.referencesLhasa Limited. Lhasa Carcinogenicity Database [internet]: Leeds: Lhasa Limited; 2021 [citado Mayo 2022]. Disponible desde: https://www.lhasalimited.org/products/lhasa-carcinogenicity-database.htm
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Drugs@FDA: FDA-Approved Drugs - Approval Date(s), History, Letters, Labels, and Reviews [internet]. Silver Spring: U.S. FDA Center for Drug Evaluation and Research; 2021 [citado Mayo 2022]. Disponible desde: https://www.accessdata.fda.gov/scripts/cder/daf/
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). Testing Status [internet]. Research Triangle Park: U.S. National Institute of Environmental Health Sciences; 2021 [citado Mayo 2022]. Disponible desde: https://ntpsearch.niehs.nih.gov/?e=True&ContentType=Testing+Status
dc.relation.referencesGold LS, Sawyer CB, Magaw R, et al. A carcinogenic potency database of the standardized results of animal bioassays. Environ Health Perspect. 1984;58:9-319. doi:10.1289/ehp.84589. Bases de datos disponible desde: https://files.toxplanet.com/cpdb/chemnameindex.html
dc.relation.referencesToxPlanet. ChemEXPERT™ [internet]. Wilmington (USA): Timberlake Ventures, Inc; 2020 [citado Mayo 2022]. Disponible desde: https://www.toxplanet.com/collections-available-from-toxplanet.html
dc.relation.referencesKadekar S, Peddada S, et al. Gender differences in chemical carcinogenesis in National Toxicology Program 2-year bioassays. Toxicol Pathol. 2012;40(8):1160-1168. doi:10.1177/0192623312446527
dc.relation.referencesOECD (Organisation for Economic Co-operation and Development). Series on testing and assessment - Guidance document No. 116: Guidance on the conduct and design of chronic toxicity and carcinogenicity Studies [internet]. Paris (France): OECD, 2012 [citado Mayo 2022]. Disponible desde: http://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
dc.relation.referencesMcConnell EE, Solleveld HA, Swenberg JA, Boorman GA. Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J Natl Cancer Inst. 1986;76(2):283-289.
dc.relation.referencesSuarez-Torres JD, Orozco CA, Ciangherotti CE. The numerical probability of carcinogenicity to humans of some pharmaceutical drugs: Alkylating agents, topoisomerase inhibitors or poisons, and DNA intercalators. Fundam Clin Pharmacol. 2021;10.1111/fcp.12674. doi:10.1111/fcp.12674
dc.relation.referencesSuarez-Torres JD, Orozco CA, Ciangherotti CE. The numerical probability of carcinogenicity to humans of some antimicrobials: Nitro-monoaromatics (including 5-nitrofurans and 5-nitroimidazoles), quinoxaline-1,4-dioxides (including carbadox), and chloramphenicol. Toxicol In Vitro. 2021;75:105172. doi:10.1016/j.tiv.2021.105172
dc.relation.referencesSmith MT, Guyton KZ, Gibbons CF, et al. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ Health Perspect. 2016;124(6):713-721. doi:10.1289/ehp.1509912
dc.relation.referencesGuyton KZ, Rieswijk L, Wang A, Chiu WA, Smith MT. Key Characteristics Approach to Carcinogenic Hazard Identification. Chem Res Toxicol. 2018;31(12):1290-1292. doi:10.1021/acs.chemrestox.8b00321
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Pesticide residues in food – Evaluations 1999. Part II, Toxicological: Permethrin [Internet]. Rome: Joint FAO/WHO Meeting on Pesticide Residues; 1999 [citado Mayo 2022]. Disponible desde: https://inchem.org/documents/jmpr/jmpmono/v99pr07.htm
dc.relation.referencesLauby-Secretan B, Loomis D, Baan R, et al. Use of mechanistic data in the IARC evaluations of the carcinogenicity of polychlorinated biphenyls and related compounds. Environ Sci Pollut Res Int. 2016;23(3):2220-2229. doi:10.1007/s11356-015-4829-4
dc.relation.referencesHabibzadeh F, Habibzadeh P. The likelihood ratio and its graphical representation. Biochem Med (Zagreb). 2019;29(2):020101. doi:10.11613/BM.2019.020101
dc.relation.referencesGoodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med. 1999;130(12):1005-1013. doi:10.7326/0003-4819-130-12-199906150-00019
dc.relation.referencesGoodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med. 1999;130(12):995-1004. doi:10.7326/0003-4819-130-12-199906150-00008
dc.relation.referencesRosenkranz HS, Ennever FK. An association between mutagenicity and carcinogenic potency. Mutat Res. 1990;244(1):61-65. doi:10.1016/0165-7992(90)90109-w
dc.relation.referencesSuarez-Torres JD, Orozco CA, Ciangherotti CE. Applying Bayesian forecasting to predictive toxicology: The probability of innate carcinogenicity to humans of colorants synthesized from benzidine. Toxicol Lett. 2021;351:111-134. doi:10.1016/j.toxlet.2021.08.004
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Inventory of evaluations performed by the Joint Meeting on Pesticide Residues (JMPR) [internet]. Rome: Joint FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization of the United Nations) Meeting on Pesticide Residues; 2021 [citado Mayo 2022]. Disponible desde: https://apps.who.int/pesticide-residues-jmpr-database
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). JMPR - Monographs & Evaluations (at IPCS INCHEM) [internet]. Rome: Joint FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization of the United Nations) Meeting on Pesticide Residues; 2021 [citado Mayo 2022]. Disponible desde: https://inchem.org/pages/jmpr.html
dc.relation.referencesEFSA (European Food Safety Authority). Publications (Topic: Food Ingredients and Packaging; Type: Scientific Opinion) [internet]. Parma: European Commission; 2021 [citado Mayo 2022]. Disponible desde: https://www.efsa.europa.eu/es/efsajournal/pub/2379
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). Toxicology/Carcinogenicity (Study Overview and Database) [internet]. Research Triangle Park: U.S. National Institute of Environmental Health Sciences; 2021 [citado Mayo 2022]. Disponible desde: https://ntp.niehs.nih.gov/whatwestudy/testpgm/cartox/index.html
dc.relation.referencesBhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol. 2018;38(1):81-99. doi:10.1002/jat.3496
dc.relation.referencesKirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res. 2011;721(1):27-73. doi:10.1016/j.mrgentox.2010.12.015
dc.relation.referencesICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use). S1B(R1) Draft Guideline: Addendum to the Guideline on Testing for Carcinogenicity of Pharmaceuticals S1B(R1) [internet]. Geneva: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; 2021 [citado Mayo 2022]. Disponible desde: https://www.ich.org/page/safety-guidelines
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). Toxicology and Carcinogenesis Studies of C.I. Pigment Red 23 (CAS No. 6471-49-4) in F344 Rats and B6C3F1 Mice (Feed Studies). Natl Toxicol Program Tech Rep Ser. 1992;411:1-283. PMID: 12621519
dc.relation.referencesU.S. NTP (United States of America National Toxicology Program). Toxicology and Carcinogenesis Studies of Malachite Green chloride and Leucomalachite Green (CAS NOs. 569-64-2 and 129-73-7) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 2005;(527):1-312. PMID: 15891780
dc.relation.referencesIARC (International Agency for Research on Cancer). Carbon Black, Titanium Dioxide, and Talc. IARC Monograph vol. 93 [internet]. Lyon: International Agency for Research on Cancer / World Health Organization; 2010 [citado Mayo 2022]. Disponible desde: https://monographs.iarc.who.int/monographs-available/
dc.relation.referencesIARC (International Agency for Research on Cancer). Chemical Agents and Related Occupations. IARC Monograph vol. 100F [internet]. Lyon: International Agency for Research on Cancer / World Health Organization; 2012 [citado Mayo 2022]. Disponible desde: https://monographs.iarc.who.int/monographs-available/
dc.relation.referencesMaltoni C, Ciliberti A, Cotti G, Perino G. Long-term carcinogenicity bioassays on acrylonitrile administered by inhalation and by ingestion to Sprague-Dawley rats. Ann N Y Acad Sci. 1988;534:179-202. doi:10.1111/j.1749-6632.1988.tb30111.x
dc.relation.referencesGaylor DW. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?. Regul Toxicol Pharmacol. 2005;41(2):128-133. doi:10.1016/j.yrtph.2004.11.001
dc.relation.referencesFung VA, Barrett JC, Huff J. The carcinogenesis bioassay in perspective: application in identifying human cancer hazards. Environ Health Perspect. 1995;103(7-8):680-683. doi:10.1289/ehp.95103680
dc.relation.referencesMcConnell EE. The Maximum Tolerated Dose: The Debate. J Am Coll Toxicol. 1989;8(6):1115-1120. doi:10.3109/10915818909018071
dc.relation.referencesAkobeng AK. Understanding type I and type II errors, statistical power and sample size. Acta Paediatr. 2016;105(6):605-609. doi:10.1111/apa.13384
dc.relation.referencesBogdanffy MS, Lesniak J, Mangipudy R, et al. Tg.rasH2 Mouse Model for Assessing Carcinogenic Potential of Pharmaceuticals: Industry Survey of Current Practices. Int J Toxicol. 2020;39(3):198-206. doi:10.1177/1091581820919896
dc.relation.referencesNC3Rs (National Centre for the Replacement, Refinement, and Reduction of Animals in Research). Review of the use of two species in regulatory toxicology studies [internet]. London (England): National Centre for the Replacement, Refinement, and Reduction of Animals in Research; 2021 [citado Mayo de 2022]. Disponible desde: https://www.nc3rs.org.uk/review-use-two-species-regulatory-toxicology-studies
dc.relation.referencesHeusinkveld H, Braakhuis H, Gommans R, et al. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit Rev Toxicol. 2020;50(9):725-739. doi:10.1080/10408444.2020.1841732
dc.relation.referencesCohen SM. Alternative models for carcinogenicity testing: weight of evidence evaluations across models. Toxicol Pathol. 2001;29 Suppl:183-190. doi:10.1080/019262301753178609
dc.relation.referencesSistare FD, Morton D, Alden C, et al. An analysis of pharmaceutical experience with decades of rat carcinogenicity testing: support for a proposal to modify current regulatory guidelines. Toxicol Pathol. 2011;39(4):716-744. doi:10.1177/0192623311406935
dc.relation.referencesMorton D, Alden CL, Roth AJ, Usui T. The Tg rasH2 mouse in cancer hazard identification. Toxicol Pathol. 2002;30(1):139-146. doi:10.1080/01926230252824851
dc.relation.referencesCohen SM, Klaunig J, Meek ME, et al. Evaluating the human relevance of chemically induced animal tumors. Toxicol Sci. 2004;78(2):181-186. doi:10.1093/toxsci/kfh073
dc.relation.referencesCorton JC, Peters JM, Klaunig JE. The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol. 2018;92(1):83-119. doi:10.1007/s00204-017-2094-7
dc.relation.referencesICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use). E14/S7B IWG, Question & Answers: Clinical and Nonclinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential [internet]. Geneva: ICH; 2018 [citado Mayo de 2022]. Disponible desde: https://www.ich.org/page/safety-guidelines
dc.relation.referencesSuarez-Torres JD, Ciangherotti CE, Jimenez-Orozco FA. The predictivity of the -alert performance- functionality of the OECD QSAR-Toolbox (c/w further issues on the predictivity of nonclinical testing). Toxicol In Vitro. 2020;66:104858. doi:10.1016/j.tiv.2020.104858
dc.relation.referencesGreenland S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int J Epidemiol. 2006;35(3):765-775. doi:10.1093/ije/dyi312
dc.relation.referencesCarlin BP, Louis TA. Approaches for statistical inference (Chapter 1) - Bayesian Methods for Data Analysis (3rd edition). In: Carlin BP, Louis TA, eds. Boca Raton: Chapman and Hall/CRC; 2008. doi:10.1201/b14884
dc.relation.referencesDunson DB, Rubin DB, Carlin JB, et al. Probability and inference (Chapter 1) - Bayesian Data Analysis (3rd edition). In: Dunson DB, Rubin DB, Carlin JB, et al., eds. Boca Raton: Chapman and Hall/CRC; 2013. doi:10.1201/b16018
dc.relation.referencesEfron B. Controversies in the Foundations of Statistics. Am Math Mon. 1978;85(4):231-246. doi:10.1080/00029890.1978.11994566
dc.relation.referencesKadane JB, Schervish MJ, Seidenfeld T. Introduction. In: Rethinking the Foundations of Statistics. Cambridge Studies in Probability, Induction and Decision Theory. Cambridge: Cambridge University Press; 1999:1-14. doi:10.1017/CBO9781139173230.001
dc.relation.referencesSnyder RD, McNulty J, Zairov G, Ewing DE, Hendry LB. The influence of N-dialkyl and other cationic substituents on DNA intercalation and genotoxicity. Mutat Res. 2005;578(1-2):88-99. doi:10.1016/j.mrfmmm.2005.03.022
dc.relation.referencesSnyder RD. Assessment of atypical DNA intercalating agents in biological and in silico systems. Mutat Res. 2007;623(1-2):72-82. doi:10.1016/j.mrfmmm.2007.03.006
dc.relation.referencesSnyder RD, Arnone MR. Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat Res. 2002;503(1-2):21-35. doi:10.1016/s0027-5107(02)00028-3
dc.relation.referencesTurner PR, Denny WA. The mutagenic properties of DNA minor-groove binding ligands. Mutat Res. 1996;355(1-2):141-169. doi:10.1016/0027-5107(96)00027-9
dc.relation.referencesBaguley BC, Ferguson LR. Mutagenic properties of topoisomerase-targeted drugs. Biochim Biophys Acta. 1998;1400(1-3):213-222. doi:10.1016/s0167-4781(98)00137-7
dc.relation.referencesAnderson RD, Berger NA. Mutagenicity and carcinogenicity of topoisomerase-interactive agents. Mutat Res. 1994;309(1):109-142. doi:10.1016/0027-5107(94)90048-5
dc.relation.referencesShrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis. 2010;31(1):59-70. doi:10.1093/carcin/bgp262
dc.relation.referencesLawley PD. Some chemical aspects of dose-response relationships in alkylation mutagenesis. Mutat Res. 1974;23(3):283-295. doi:10.1016/0027-5107(74)90102-x
dc.relation.referencesCheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992;267(1):166-172.
dc.relation.referencesKasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387(3):147-163. doi:10.1016/s1383-5742(97)00035-5
dc.relation.referencesStreeter AJ, Hoener BA. Evidence for the involvement of a nitrenium ion in the covalent binding of nitrofurazone to DNA. Pharm Res. 1988;5(7):434-436. doi:10.1023/a:1015988401601
dc.relation.referencesKedderis GL, Miwa GT. The metabolic activation of nitroheterocyclic therapeutic agents. Drug Metab Rev. 1988;19(1):33-62. doi:10.3109/03602538809049618
dc.relation.referencesEdwards DI. Reduction of nitroimidazoles in vitro and DNA damage. Biochem Pharmacol. 1986;35(1):53-58. doi:10.1016/0006-2952(86)90554-x
dc.relation.referencesNishimoto M, Roubal WT, Stein JE, Varanasi U. Oxidative DNA damage in tissues of English sole (Parophrys vetulus) exposed to nitrofurantoin. Chem Biol Interact. 1991;80(3):317-326. doi:10.1016/0009-2797(91)90091-k
dc.relation.referencesBrezden CB, Horn L, McClelland RA, Rauth AM. Oxidative stress and 1-methyl-2-nitroimidazole cytotoxicity. Biochem Pharmacol. 1998;56(3):335-344. doi:10.1016/s0006-2952(98)00158-0
dc.relation.referencesUnfried K, Schürkes C, Abel J. Distinct spectrum of mutations induced by crocidolite asbestos: clue for 8-hydroxydeoxyguanosine-dependent mutagenesis in vivo. Cancer Res. 2002;62(1):99-104.
dc.relation.referencesHiraku Y, Sekine A, Nabeshi H, et al. Mechanism of carcinogenesis induced by a veterinary antimicrobial drug, nitrofurazone, via oxidative DNA damage and cell proliferation. Cancer Lett. 2004;215(2):141-150. doi:10.1016/j.canlet.2004.05.016
dc.relation.referencesShamovsky I, Ripa L, Börjesson L, et al. Explanation for main features of structure-genotoxicity relationships of aromatic amines by theoretical studies of their activation pathways in CYP1A2. J Am Chem Soc. 2011;133(40):16168-16185. doi:10.1021/ja206427u
dc.relation.referencesWang X, Martínez MA, Cheng G, et al. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo. Drug Metab Rev. 2016;48(2):159-182. doi:10.1080/03602532.2016.1189560
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). ZINECARD® (dexrazoxane) for injection (prescribing information) [internet]. Silver Spring: U.S. FDA Center for Drug Evaluation and Research; 2014 [citado Mayo 2022]. Disponible desde: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020212s017lbl.pdf
dc.relation.referencesLoomis D, Guyton KZ, Straif K, Wild CP. Classification schemes for carcinogenicity based on hazard identification serve science and society. Regul Toxicol Pharmacol. 2017;88:356-357. doi:10.1016/j.yrtph.2017.02.010
dc.relation.referencesBoobis AR, Cohen SM, Dellarco VL, et al. Response to Loomis et al Comment on Boobis et al. Regul Toxicol Pharmacol. 2017;88:358-359. doi:10.1016/j.yrtph.2017.02.011
dc.relation.referencesU.S. NIOSH (United States of America National Institute for Occupational Safety and Health). What is an acceptable risk of cancer due to occupational exposure to a carcinogen? [internet]. Washington, D.C.: U.S. NIOSH Education and Information Division; 2015 [citado Mayo 2022]. Disponible desde: https://www.cdc.gov/niosh/nioshtic-2/20045880.html
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Freedom of Information Summary: Mecadox® 10 Type A Medicated Article (NADA 041-061) [internet]. Silver Spring: U.S. FDA Center for Veterinary Medicine; 1998 [citado Mayo 2022]. Disponible desde: https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/1673
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). T.A.L.K. antes de tratar [internet]. Silver Spring: U.S. FDA Center for Veterinary Medicine; 2018 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/animal-veterinary/animal-health-literacy/talk-antes-de-tratar
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). FDA Removes 7 Synthetic Flavoring Substances from Food Additives List [internet]. Silver Spring: U.S. FDA Center for Food Safety and Applied Nutrition; 2018 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/food/cfsan-constituent-updates/fda-removes-7-synthetic-flavoring-substances-food-additives-list
dc.relation.referencesMerrill RA. Food safety regulation: reforming the Delaney Clause. Annu Rev Public Health. 1997;18:313-340. doi:10.1146/annurev.publhealth.18.1.313
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). MACRODANTIN - nitrofurantoin, macrocrystalline capsule (prescribing information) [internet]. Silver Spring: U.S. FDA Center for Drug Evaluation and Research; 2009 [citado Mayo 2022]. Disponible desde: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/016620s068lbl.pdf
dc.relation.referencesWishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-D1082. doi:10.1093/nar/gkx1037
dc.relation.referencesEFSA (European Food Safety Authority) Panel on Food Additives and Nutrient Sources added to Food (ANS), Younes M, Aggett P, et al. Re-evaluation of aluminium sulphates (E 520-523) and sodium aluminium phosphate (E 541) as food additives. EFSA J. 2018;16(7):e05372. doi:10.2903/j.efsa.2018.5372. Disponible desde: https://www.efsa.europa.eu/en/efsajournal/pub/5372
dc.relation.referencesEFSA (European Food Safety Authority). Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids, and Food Contact Materials on a request from the European Commission on the Safety of Aluminium from Dietary Intake. The EFSA Journal (2008) 754, 1-34. Disponible desde: https://www.efsa.europa.eu/es/efsajournal/pub/754
dc.relation.referencesOECD (Organisation for Economic Co-operation and Development). The OECD QSAR Toolbox (v.4.4.1) [internet]. Paris: Organisation for Economic Co-operation and Development; 2020 [citado Mayo 2022]. Disponible desde: https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
dc.relation.referencesBenigni R, Bossa C. Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res. 2008;659(3):248-261. doi:10.1016/j.mrrev.2008.05.003
dc.relation.referencesJung R, Steinle D, Anliker R. A compilation of genotoxicity and carcinogenicity data on aromatic aminosulphonic acids. Food Chem Toxicol. 1992;30(7):635-660. doi:10.1016/0278-6915(92)90199-u
dc.relation.referencesU.S. NLM (United States of America National Library Medicine). PubChem (The Open Chemistry Database at the U.S. NIH) [internet]. Bethesda: U.S. National Institutes of Health; 2021 [citado Mayo 2022]. Disponible desde: https://pubchem.ncbi.nlm.nih.gov/
dc.relation.referencesCAS (Chemical Abstract Service of the American Chemical Society) Common Chemistry. Search by chemical compound name, SMILES, InChl, or CAS Registry Number® (CASRN®) [internet]. Washington, D.C: American Chemical Society; 2021 [citado Mayo 2022]. Disponible desde: https://commonchemistry.cas.org/
dc.relation.referencesEMA (European Medicines Agency). Abamectin Summary Report (1) Updated [internet]. Amsterdam: European Medicines Agency, Committee for Veterinary Medicinal Products; 2002 [citado Mayo 2022]. Disponible desde: https://www.ema.europa.eu/en/documents/mrl-report/abamectin-summary-report-1-updated-committee-veterinary-medicinal-products_en.pdf
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Pesticide residues in food – Evaluations 2015. Part II, Toxicological: Abamectin [Internet]. Rome: Joint FAO/WHO Meeting on Pesticide Residues; 2015 [citado Mayo 2022]. Disponible desde: https://www.who.int/publications/i/item/9789241655316
dc.relation.referencesEMA (European Medicines Agency). Emamectin Summary Report (1) [internet]. Amsterdam: European Medicines Agency, Committee for Veterinary Medicinal Products; 1999 [citado Mayo 2022]. Disponible desde: https://www.ema.europa.eu/en/documents/mrl-report/emamectin-summary-report-1-committee-veterinary-medicinal-products_en.pdf
dc.relation.referencesEMA (European Medicines Agency). Eprinomectin Summary Report (1) [internet]. Amsterdam: European Medicines Agency, Committee for Veterinary Medicinal Products; 1996 [citado Mayo 2022]. Disponible desde: https://www.ema.europa.eu/en/documents/mrl-report/eprinomectin-summary-report-1-committee-veterinary-medicinal-products_en.pdf
dc.relation.referencesBradshaw PR, Wilson ID, Gill RU, Butler PJ, Dilworth C, Athersuch TJ. Metabolic Hydrolysis of Aromatic Amides in Selected Rat, Minipig, and Human In Vitro Systems. Sci Rep. 2018;8(1):2405. Published 2018 Feb 5. doi:10.1038/s41598-018-20464-4
dc.relation.referencesJECFA (Joint FAO/WHO Expert Committee on Food Additives). WHO Food Additives Series No. 41: Eprinomectin [internet]. Geneva (Switzerland): Joint FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization of the United Nations) Expert Committee on Food Additives; 1998 [citado Mayo 2022]. Disponible desde: https://inchem.org/pages/jecfa.html
dc.relation.referencesEMA (European Medicines Agency). Doramectin Summary Report (1) [internet]. Amsterdam: European Medicines Agency, Committee for Veterinary Medicinal Products; 1997 [citado Mayo 2022]. Disponible desde: https://www.ema.europa.eu/en/documents/mrl-report/doramectin-summary-report-1-committee-veterinary-medicinal-products_en.pdf
dc.relation.referencesJECFA (Joint FAO/WHO Expert Committee on Food Additives). WHO Food Additives Series No. 36: Doramectin [internet]. Geneva (Switzerland): Joint FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization of the United Nations) Expert Committee on Food Additives; 1996 [citado Mayo 2022]. Disponible desde: https://inchem.org/pages/jecfa.html
dc.relation.referencesEMA (European Medicines Agency). Ivermectin Summary Report (1) [internet]. Amsterdam: European Medicines Agency, Committee for Veterinary Medicinal Products; año de publicación desconocido (aprox., entre 1990 y 2000, a juzgar por otras publicaciones similares de esta agencia [citado Mayo 2022]. Disponible desde: https://www.ema.europa.eu/en/documents/mrl-report/ivermectin-summary-report-1-committee-veterinary-medicinal-products_en.pdf
dc.relation.referencesJECFA (Joint FAO/WHO Expert Committee on Food Additives). WHO Food Additives Series No. 27: Ivermectin [internet]. Geneva (Switzerland): Joint FAO/WHO (Food and Agriculture Organization of the United Nations / World Health Organization of the United Nations) Expert Committee on Food Additives; 1991 [citado Mayo 2022]. Disponible desde: https://inchem.org/pages/jecfa.html
dc.relation.referencesEFSA (European Food Safety Authority). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for milbemectin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10(3):2629. Disponible desde: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2012.2629
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). TRIFEXIS - Spinosad and milbemycin oxime tablet (prescribing information from the U.S. NLM DailyMed service [internet]. Silver Spring: U.S. FDA Center for Veterinary Medicine; 2018 [citado Mayo 2022]. Disponible desde: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=b9e40668-b913-47e2-8cf4-8b3d3d29c6d4&type=display
dc.relation.referencesEMA (European Medicines Agency). Scientific discussion: COMFORTIS (spinosad) (EMEA/V/C/002233) [internet]. Amsterdam: European Medicines Agency, Veterinary Medicines and Product Data Management; 2011 [citado Mayo 2022]. Disponible desde: https://www.ema.europa.eu/en/documents/scientific-discussion/comfortis-epar-scientific-discussion_en.pdf
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Pesticide residues in food – Evaluations 2006. Part II, Toxicological: Cyfluthrin/beta-Cyfluthrin [Internet]. Rome: Joint FAO/WHO Meeting on Pesticide Residues; 2006 [citado Mayo 2022]. Disponible desde: https://www.who.int/publications/i/item/9789241665223
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Pesticide residues in food – Evaluations 2007. Part II, Toxicological: lambda-Cyhalothrin [Internet]. Rome: Joint FAO/WHO Meeting on Pesticide Residues; 2007 [citado Mayo 2022]. Disponible desde: https://www.who.int/publications/i/item/9789241665230
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Pesticide residues in food – Evaluations 2006. Part II, Toxicological: Cypermethrins (including alpha- and zeta-cypermethrin) [Internet]. Rome: Joint FAO/WHO Meeting on Pesticide Residues; 2006 [citado Mayo 2022]. Disponible desde: https://www.who.int/publications/i/item/9789241665223
dc.relation.referencesEFSA (European Food Safety Authority). Scientific Opinion on the re-evaluation of Quinoline Yellow (E104) as a food additive. EFSA Journal 2009; 7(11):1329. doi:10.2903/j.efsa.2009.1329
dc.relation.referencesJMPR (Joint FAO/WHO Meeting on Pesticide Residues). Pesticide residues in food – Evaluations 2000. Part II, Toxicological: Deltamethrin [Internet]. Rome: Joint FAO/WHO Meeting on Pesticide Residues; 2000 [citado Mayo 2022]. Disponible desde: https://inchem.org/documents/jmpr/jmpmono/v00pr04.htm#_00042230
dc.relation.referencesU.S. NCI (United States of America National Cancer Institute). Bioassay of ICRF-159 for possible carcinogenicity. Natl Cancer Inst Carcinog Tech Rep Ser. 1978;78:1-113. PMID: 12830219
dc.relation.referencesU.S. FDA (United States of America Food and Drug Administration). Questions and Answers regarding Carbadox [internet]. Silver Spring: U.S. FDA Center for Veterinary Medicine; 2022 [citado Mayo 2022]. Disponible desde: https://www.fda.gov/animal-veterinary/product-safety-information/questions-and-answers-regarding-carbadox
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCarcinogenesis
dc.subject.lembCáncer
dc.subject.lembPatología
dc.subject.lembPathology
dc.subject.proposalBioensayo de carcinogénesis a 2-años
dc.subject.proposalCarcinogénesis química
dc.subject.proposalToxicología predictiva
dc.subject.proposalFarmacología traslacional
dc.subject.proposalRodent carcinogenesis bioassay
dc.subject.proposalRodent carcinogenicity bioassay
dc.subject.proposalRegulatory toxicology
dc.title.translatedTwo-year rodent carcinogenicity bioassay: Performance, and predictive values for several pharmaceuticals and other chemicals of interest
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación. República de Colombia
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidhttps://orcid.org/0000-0003-4696-8407
dc.contributor.scopus57210743673


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito