Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.contributor.advisorRamírez Heredia, Ricardo Emiro
dc.contributor.authorQuitian Niño, Luis Carlos
dc.date.accessioned2022-12-05T20:24:50Z
dc.date.available2022-12-05T20:24:50Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82845
dc.descriptionilustraciones, fotografías a color, gráficas
dc.description.abstractUna opción para el control automático de dispositivos mecánicos es obtener los parámetros que conforman la ecuación que describe su movimiento. Es por esto que bajo el planteamiento del modelo dinámico de Newton–Euler aplicado a drones de máximo 25 kg se hace necesario determinar los parámetros inerciales para el sistema completo tales como masa, dimensiones, centro de gravedad y momentos de inercia, además de parámetros de fricción para motores brushless tales como fuerza de empuje, torque de arrastre y velocidad angular. En el presente trabajo se realiza el diseño y construcción de bancos de prueba que permiten la medición de los parámetros del modelo dinámico de drones, partiendo de la identificación del parámetro a medir, ideando mecanismos de medición que sean viables desde el punto de vista constructivo, funcional y económico. Se proyectan los diseños con la premisa de que los ensayos o mediciones sean replicables y ofrezcan resultados confiables con la exactitud requerida para las pruebas con los drones y a un bajo costo de mantenimiento. Adicionalmente, para los bancos de medición de parámetros de fricción se implementa un sistema de adquisición de datos bajo un entorno de trabajo diseñado en AppDesigner de MATLAB, el cual permite de manera semiautomática la determinación de la ecuación de relación entre velocidad angular y empuje y la relación entre velocidad angular y torque de arrastre para motores brushless mediante regresión. (Texto tomado de la fuente)
dc.description.abstractAn option for the automatic control of mechanical devices is to obtain the parameters that make up the equation that describes their movement. This is why, under the approach of the Newton-Euler dynamic model applied to drones of maximum 25 kg, it is necessary to determine the inertial parameters for the complete system such as mass, dimensions, center of gravity and moments of inertia, as well as parameters of friction for brushless motors such as thrust force, drag torque and angular velocity. In the present work, the design and construction of test benches that allow the measurement of the parameters of the dynamic model of drones is carried out, starting from the identification of the parameter to be measured, devising a measurement mechanism that is viable from the constructive, functional and economic point of view. The designs are designed with the premise that the tests or measurements are replicable and offer reliable results with the accuracy required at a low maintenance cost. Additionally, for the friction parameter measurement benches, a data acquisition system is implemented under a work environment designed in MATLAB AppDesigner, which allows semi-automatic determination of the relationship equation between angular velocity vs. thrust and angular velocity vs. drag torque for brushless motors using regression.
dc.format.extentxii, 97 páginas
dc.format.mimetypeapplication/pdf
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleConstrucción de bancos de prueba para la medición experimental de los parámetros del modelo dinámico de Drones - UAS (Unmanned Aerial System)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupUn-Robot­ Grupo de Plataformas Robóticas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaAutomatización, Control y Mecatrónica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesW. Mizouri, S. Najar, M. Aoun, L. Bouabdallah, “Modelling, Identification and Control of a Quadrator UAV”, in Systems, Signals & Devices (SSD), 2018 15th IEEE International Multi-Conference on. IEEE, 2018, pp. 1017-1022.
dc.relation.referencesPeter Corke., “Robotics, Vision and Control Fundamental Algorithms in MATLAB”, Springer Tracts in Advanced Robotics, Volume 73, Springer-Verlag Berlin Heidelberg, first edition 2011, corrected second printing, 2013.
dc.relation.referencesD. M. Filatov, A. V. Devyatkin and A. I. Friedrich, "Quadrotor parameters identification and control system design," 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017, pp. 826-830.
dc.relation.referencesShakoori, A., Betin, A., & Betin, D.A. “Comparison of Three Methods to Determine the Inertial Properties of Free-Flying Dynamically Similar Models”, Volume 11 No 10, Journal of Engineering Science and Technology, 2016, pp. 1360-1372.
dc.relation.referencesHou, Z. C., Lu, Y. ning, Lao, Y. xin, & Liu, D. (2009). A new trifilar pendulum approach to identify all inertia parameters of a rigid body or assembly. Mechanism and Machine Theory, 44(6), 2009, pp. 1270–1280.
dc.relation.referencesGiorgio Previati, Massimiliano Gobbi, Gianpiero Mastinu, Measurement of the mass properties of rigid bodies by means of multi-filar pendulums – Influence of test rig flexibility, Mechanical Systems and Signal Processing, Volume 121, 2019, pp 31-43, ISSN 0888-3270
dc.relation.referencesR Core Team (2019). R A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relation.referencesMelo M, O., Lopez P, L. and Melo M, S. (2007). Diseño de experimentos. Bogota: Universidad Nacional de Colombia, Facultad de Ciencias.
dc.relation.referencesM. Elsamanty, A. Khalifa, M. Fanni, A. Ramadan and A. Abo-Ismail, "Methodology for identifying quadrotor parameters, attitude estimation and control," 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2013, pp. 1343-1348, doi: 10.1109/AIM.2013.6584281.
dc.relation.referencesW. Gracey, “The experimental determination of the moments of inertia of airplanes by a simplified compound-pendulum method,” NACA-TN-1629, NASA, 1948.
dc.relation.referencesS. Patankar, D. Schinstock, and R. Caplinger, “Application of pendulum method to UAV momental ellipsoid estimation,” 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO), 2006.
dc.relation.referencesE. Capello and G. Guglieri, “Modeling and Experimental Parameter Identification of a Multicopter via a Compound Pendulum Test Rig”, Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), 2015.
dc.relation.referencesCarl R. Russell and Martin K. Sekula, “Comprehensive Analysis Modeling of Small-Scale UAS Rotors”, NASA Langley Research Center, AHS International 73rd Annual Forum & Technology Display, Fort Worth, Texas, USA, May 9-11, 2017.
dc.relation.referencesL. Derafa, T. Madani, A. Benallegue, “Dynamic modelling and experimental identification of four rotors helicopter parameters”, in: Proc. IEEE International Conference on Industrial Technology, Mumbai, India, pp. 1834-1839, 2006.
dc.relation.referencesHuynh P. T., Taufiq M., Hari M. and Shinji S., “Mathematical Modeling and Experimental Identification of Micro Coaxial Helicopter Dynamics”, International Journal of Basic & Applied Sciences IJBAS-IJENS Vol: 12 No: 02, 2012.
dc.relation.referencesKimon P. Valavanis, Paul Oh and Les Piegl., “Unmanned Aircraft Systems”, Journal of Intelligent and Robotic Systems, Volume 54, Nos 1–3,2. Springer Science+ Business Media B.V. 2008.
dc.relation.referencesWayne L. Peterson., “Mass Properties Measurement in the X-38 Project”, NASA Johnson Space Center, 63rd Annual Conference of the Society of Allied Weight Engineers, Inc. Newport Beach, California, 17-19 May 2004.
dc.relation.referencesN. Leonard W., “Measurement of Aircraft Moments of Inertia”, Advisory Group for Aeronautical Research and Development, 50th Meeting of the Flight Test Techniques and Instrumentation Panel, held from 21st to 23rd September, Aachen, Germany, 1959.
dc.relation.referencesKorr, A. L., Paul Hyer (1962) “A trifilar pendulum for the determination of moments or inertia”. Frakford Arsenal research and development group pitmandunn laboratories. Philadelphia 37. PA.
dc.relation.referencesDouglas C. Montgomery, “Diseño y Análisis de Experimentos”, 2da edición, Editorial LIMUSA, S.A. de C.V., GRUPO NORIEGA EDITORES, Balderas 95, México, D.F., 2004.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembIndustria de instrumentos de medición
dc.subject.lembMeasuring instruments industry
dc.subject.proposalDrones
dc.subject.proposalBancos de prueba
dc.subject.proposalvelocidad angular
dc.subject.proposalfuerza de empuje
dc.subject.proposaltorque de arrastre
dc.subject.proposalmomento de inercia
dc.subject.proposalcentro de gravedad
dc.subject.proposalDrones
dc.subject.proposaltest bench
dc.subject.proposalangular velocity
dc.subject.proposalthrust force
dc.subject.proposaldrag torque
dc.subject.proposalmoment of inertia
dc.subject.proposalcenter of gravity
dc.title.translatedConstruction of test benches for the experimental measurement of the parameters of the dynamic model of Drones - UAS (Unmanned Aerial System)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dc.contributor.orcid0000-0001-6018-1673


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito