Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorArzola de la Peña, Nelson
dc.contributor.authorSierra Daza, Carlos Arturo
dc.date.accessioned2022-12-13T16:42:43Z
dc.date.available2022-12-13T16:42:43Z
dc.date.issued2022-12-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82860
dc.descriptionilustraciones, diagramas
dc.description.abstractEl concepto de morfología aplicado a las alas de aeronaves está relacionado con la habilidad de una estructura de cambiar su geometría, para adaptarse a diferentes condiciones de vuelo. Esto con el fin de incrementar el rendimiento, reduciendo la cantidad de combustible y aumentando su tiempo de operación. Este trabajo tiene como propósito describir los procedimientos llevados a cabo para la generación y posterior evaluación del diseño conceptual y detallado de un perfil aerodinámico de morfología variable. Se toma como punto de inicio diseños creados con anterioridad por diferentes autores y se procede a realizar el desarrollo de conceptos propios de diseño. Después de esto, se realiza un proceso de decisión, utilizando diferentes requerimientos de ingeniería, se determina el concepto global dominante; el cual está basado en un mecanismo flexible para deformar el borde de fuga del perfil aerodinámico, para su posterior análisis por medios numéricos. Se genera una metodología de optimización de dos niveles para el desarrollo del mecanismo flexible. En el primer nivel, la mejor forma del perfil aerodinámico es obtenida por medio de un proceso de optimización multiobjetivo. En el segundo nivel, la mejor configuración estructural es obtenida por medio de optimización topológica. Por último, se realizan varios análisis por medio de dinámica de fluidos computacional usando el software OpenFoam, donde se hace uso del modelo de turbulencia K-Omega SST. (Texto tomado de la fuente)
dc.description.abstractThe concept of morphology applied to the wing of an aircraft is related to the capacity of a structure to change its geometry according to different flight conditions. The morphology is used to increase the performance of the aircraft in both, reducing the fuel consumption or increasing the endurance of a mission profile. This work describes the methods to generate and evaluate the conceptual and detailed design of a morphing airfoil. From a bibliographic review of design concepts previously created by different authors, the development of design concepts is carried out. After that, a decision process takes place; using different engineering requirements, the dominant global concept is determined, which is based on a compliant mechanism to deform the trailing edge of the airfoil, for subsequent numerical analysis. Furthermore, a two-level optimization methodology is elaborated for the development of the compliant mechanism. At the first level, the best aerodynamic shape is obtained through a multi-objective optimization process. At the second level, the best structural configuration is obtained using topological optimization. Finally, several analyzes are performed by means of computational fluid dynamics using the software OpenFoam, where the K-Omega SST turbulence model is used.
dc.format.extentxvii, 104 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDiseño de un perfil aerodinámico morfológicamente variable
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupDiseño Óptimo Multidisciplinario
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaDiseño de perfiles aerodinámicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAguirrebeitia, J., Avilés, R., Fernández, I., & Abasolo, M. (2013). Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications. Frontiers of Mechanical Engineering. https://doi.org/10.1007/s11465-013-0364-5
dc.relation.referencesAnderson, J. D. (1984). Fundamentals of aerodynamics. https://doi.org/10.2514/152157
dc.relation.referencesAnderson, W. K., & Venkatakrishnan, V. (1999). Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Computers and Fluids. https://doi.org/10.1016/S0045-7930(98)00041-3
dc.relation.referencesAntunes, A. P., & Azevedo, J. L. F. (2016). An aerodynamic optimization computational framework using genetic algorithms. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-015-0445-y
dc.relation.referencesArena, M., Concilio, A., & Pecora, R. (2019). Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.01.020
dc.relation.referencesBarbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., & Inman, D. J. (2011). A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X11414084
dc.relation.referencesBartl, J., Sagmo, K. F., Bracchi, T., & Sætran, L. (2019). Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models. European Journal of Mechanics, B/Fluids. https://doi.org/10.1016/j.euromechflu.2018.10.002
dc.relation.referencesBashir, M., Longtin-Martel, S., Botez, R. M., & Wong, T. (2021). Aerodynamic design optimization of a morphing leading edge and trailing edge airfoil–application on the uas-s45. Applied Sciences (Switzerland). https://doi.org/10.3390/app11041664
dc.relation.referencesBendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization. https://doi.org/10.1007/BF01650949
dc.relation.referencesBlank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2990567
dc.relation.referencesBoyd Rix, M. (2012). Cross-sectionally Morphing Airfoil. Retrieved from https://lens.org/118-159-656-815-741
dc.relation.referencesCakmakcioglu, S. C., Sert, I. O., Tugluk, O., & Sezer-Uzol, N. (2014). 2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/524/1/012028
dc.relation.referencesCampanile, L. F. (2008). Modal synthesis of flexible mechanisms for airfoil shape control. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X07080638
dc.relation.referencesCampanile, L. F., & Sachau, D. (2000). Belt-rib concept: a structronic approach to variable camber. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1106/6H4B-HBW3-VDJ8-NB8A
dc.relation.referencesCoello, C. A. C., & Lamont, G. B. (2004). Applications of Multi-Objective Evolutionary Algorithms. https://doi.org/10.1142/5712
dc.relation.referencesCoutu, D., Brailovski, V., & Terriault, P. (2010). Optimized design of an active extrados structure for an experimental morphing laminar wing. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2010.01.009
dc.relation.referencesde Castro, L. N. (2007). Fundamentals of natural computing: an overview. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2006.10.002
dc.relation.referencesDe Gaspari, A., & Ricci, S. (2011). A two-level approach for the optimal design of morphing wings based on compliant structures. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X11409081
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/4235.996017
dc.relation.referencesDella Vecchia, P., Daniele, E., & D’Amato, E. (2014). An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2013.11.006
dc.relation.referencesDu, S., & Ang, H. (2012). Design and Feasibility Analyses of Morphing Airfoil Used to Control Flight Attitude. Strojniski Vestnik, 58, 46–55. https://doi.org/10.5545/sv-jme.2011.189
dc.relation.referencesFincham, J. H. S., & Friswell, M. I. (2015). Aerodynamic optimisation of a camber morphing aerofoil. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2015.02.023
dc.relation.referencesFlux, A. W., & Pareto, V. (1897). Cours d’Economie Politique. The Economic Journal. https://doi.org/10.2307/2956966
dc.relation.referencesFusi, F., Congedo, P. M., Guardone, A., & Quaranta, G. (2018). Shape optimization under uncertainty of morphing airfoils. Acta Mechanica. https://doi.org/10.1007/s00707-017-2049-3
dc.relation.referencesGamboa, P., Vale, J., Lau, F. J. P., & Suleman, A. (2009). Optimization of a Morphing Wing Based on Coupled Aerodynamic and Structural Constraints. AIAA Journal, 47(9), 2087–2104. https://doi.org/10.2514/1.39016
dc.relation.referencesGandhi, F. (2010). Variable Chord Morphing Helicopter Rotor. Retrieved from https://lens.org/167-124-962-862-746
dc.relation.referencesGeuzaine, C.; Remacle, J. F. (2009). Gmsh: a Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-Processing. Facilities. Int. J. Numer. Meth. Eng.
dc.relation.referencesGrip, R. E., Brown, J. J., Harrison, N. A., Rawdon, B. K., & Vassberg, J. C. (2017). Morphing Airfoil Leading Edge. Retrieved from https://lens.org/083-739-017-820-942
dc.relation.referencesHaase, W., Aupoix, B., Bunge, U., & Schwamborn, D. (2006). FLOMANIA — A European Initiative on Flow Physics Modelling. In FLOMANIA — A European Initiative on Flow Physics Modelling. https://doi.org/10.1007/978-3-540-39507-2
dc.relation.referencesHassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences. https://doi.org/10.1016/j.paerosci.2017.04.003
dc.relation.referencesHetrick, J. A., Osborn, R. F., Kota, S., Flick, P. M., & Paul, D. B. (2007). Flight testing of Mission Adaptive Compliant Wing. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.2007-1709
dc.relation.referencesHetrick, J., Ervin, G., & Kota, S. (2019). Compliant Structure Design For Varying Surface Contours. Retrieved from https://lens.org/016-903-804-131-910
dc.relation.referencesHowell, L. L., Magleby, S. P., & Olsen, B. M. (2013). Handbook of Compliant Mechanisms. In Handbook of Compliant Mechanisms. https://doi.org/10.1002/9781118516485
dc.relation.referencesIATA. (2019). More Connectivity and Improved Efficiency - 2018 Airline Industry Statistics Released [Comunicado de prensa ]. Retrieved November 26, 2019, from https://www.iata.org/pressroom/pr/Pages/2019-07-31-01.aspx
dc.relation.referencesJaimes, A. L., & Coello, C. A. (2008). An introduction to multi-objective evolutionary algorithms and some of their potential uses in biology. Studies in Computational Intelligence. https://doi.org/10.1007/978-3-540-78534-7_4
dc.relation.referencesJuan-Mauricio, P.-S. (2006). Wing, Particularly Airfoil Of An Aircraft, Having Changeable Profile. Retrieved from https://lens.org/022-862-582-261-697
dc.relation.referencesKhurana, M. (2011). Development and application of an optimisation architecture with adaptive swarm algorithm for airfoil aerodynamic design
dc.relation.referencesKota, S., Ervin, G. F., Lo, J.-H., Lu, K.-J., Maric, D., Trost, M. R., & Tsang, R.-K. K. (2019). Edge Morphing Arrangement For An Airfoil. Retrieved from https://lens.org/018-081-077-068-857
dc.relation.referencesKudva, J. N. (2004). Overview of the DARPA smart wing project. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X04042796
dc.relation.referencesKulfan, B. M. (2008). Universal parametric geometry representation method. Journal of Aircraft. https://doi.org/10.2514/1.29958
dc.relation.referencesKumar, D., Ali, S. F., & Arockiarajan, A. (2018). Structural and Aerodynamics Studies on Various Wing Configurations for Morphing. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2018.05.084
dc.relation.referencesLeschziner, M. A., & Drikakis, D. (2002). Turbulence modelling and turbulent-flow computation in aeronautics. Aeronautical Journal
dc.relation.referencesLi, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y., … Breuker, R. De. (2018). A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences. https://doi.org/10.1016/j.paerosci.2018.06.002
dc.relation.referencesLu, K. J., & Kota, S. (2003). Design of compliant mechanisms for morphing structural shapes. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X03035563
dc.relation.referencesMark Drela. (2000). XFOIL Subsonic Airfoil Development System.
dc.relation.referencesMatyushenko, A. A., Kotov, E. V., & Garbaruk, A. V. (2017). Calculations of flow around airfoils using two-dimensional RANS: an analysis of the reduction in accuracy. St. Petersburg Polytechnical University Journal: Physics and Mathematics. https://doi.org/10.1016/j.spjpm.2017.03.004
dc.relation.referencesMcGhee, R. J., Walker, B. S., & Millard, B. F. (1988). Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley Low-Turbulence Pressure Tunnel. NASA Technical Memorandum.
dc.relation.referencesMeguid, S. A., Su, Y., & Wang, Y. (2017). Complete morphing wing design using flexible-rib system. International Journal of Mechanics and Materials in Design. https://doi.org/10.1007/s10999-015-9323-0
dc.relation.referencesMenter, F R, Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model Turbulence heat and mass transfer. Cfd.Spbstu.Ru.
dc.relation.referencesMenter, Florian R., & Esch, T. (2001). Elements of Industrial Heat Transfer Predictions. 16th Brazilian Congress of Mechanical Engineering.
dc.relation.referencesMolinari, G., Quack, M., Arrieta, A. F., Morari, M., & Ermanni, P. (2015). Design, realization and structural testing of a compliant adaptable wing. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/24/10/105027
dc.relation.referencesMonner, H. P. (2001). Realization of an optimized wing camber by using formvariable flap structures. Aerospace Science and Technology. https://doi.org/10.1016/S1270-9638(01)01118-X
dc.relation.referencesNie, R., Qiu, J., Ji, H., & Li, D. (2016). Aerodynamic characteristic of the active compliant trailing edge concept. International Journal of Modern Physics: Conference Series, 42, 1660173. https://doi.org/10.1142/S2010194516601733
dc.relation.referencesNygren, K. P., & Schulz, R. R. (1996). Breguet’s formulas for aircraft range & endurance an application of integral calculus. ASEE Annual Conference Proceedings. https://doi.org/10.18260/1-2--5901
dc.relation.referencesOhtake, T., Nakae, Y., & Motohashi, T. (2007). Nonlinearity of the Aerodynamic Characteristics of NACA0012 Aerofoil at Low Reynolds Numbers. JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 55(644), 439–445. https://doi.org/10.2322/jjsass.55.439
dc.relation.referencesOliver, J., Yago, D., Cante, J., & Lloberas-Valls, O. (2019). Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework. Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2019.06.038
dc.relation.referencesOsyczka, A. (1985). Multicriteria optimization for engineering design. In Design Optimization. https://doi.org/10.1016/b978-0-12-280910-1.50012-x
dc.relation.referencesPoonsong, P. (2004). Design and analysis of multi-section variable camber wing. ProQuest Dissertations and Theses.
dc.relation.referencesRodriguez, D. L., Aftosmis, M. J., Nemec, M., & Anderson, G. R. (2015). Optimized Off-Design Performance of Flexible Wings with Continuous Trailing-Edge Flaps. https://doi.org/10.2514/6.2015-1409
dc.relation.referencesRogalsky, T., Derksen, R. W., & Kocabiyik, S. (1999). Differential Evolution in Aerodynamic Optimization.
dc.relation.referencesSakurai, S., Fox, S. J., Beyer, K. W., Lacy, D. S., Johnson, P. L., Wells, S. L., … Gronenthal, E. W. (2007). Multi-function Trailing Edge Devices And Associated Methods. Retrieved from https://lens.org/143-768-204-159-624
dc.relation.referencesSheldahl, R. E., & Klimas, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines.
dc.relation.referencesSmart Intelligent Aircraft Structures (SARISTU). (2016). In M. Papadopoulos & P. C. Wölcken (Eds.), Smart Intelligent Aircraft Structures (SARISTU). https://doi.org/10.1007/978-3-319-22413-8
dc.relation.referencesSobieczky, H. (1999). Parametric Airfoils and Wings. https://doi.org/10.1007/978-3-322-89952-1_4
dc.relation.referencesSofla, A. Y. N., Meguid, S. A., Tan, K. T., & Yeo, W. K. (2010). Shape morphing of aircraft wing: Status and challenges. Materials and Design. https://doi.org/10.1016/j.matdes.2009.09.011
dc.relation.referencesSpirlet, G. B. (2015). Design of Morphing Leading and Trailing Edge Surfaces for Camber and Twist Control. University of Delft.
dc.relation.referencesSun, J., Scarpa, F., Liu, Y., & Leng, J. (2016). Morphing thickness in airfoils using pneumatic flexible tubes and Kirigami honeycomb. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X15580656
dc.relation.referencesTian, Y., Quan, J., Liu, P., Li, D., & Kong, C. (2018). Mechanism/structure/aerodynamic multidisciplinary optimization of flexible high-lift devices for transport aircraft. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2018.09.045
dc.relation.referencesUllman, G. (2020). The Mechanical Design Process Case Studies, 2nd Edition. Retrieved from https://books.google.com.co/books?id=7W-YzQEACAAJ
dc.relation.referencesUrnes, J., & Nguyen, N. (2013). A Mission Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift to Drag Ratios of Future N+3 Transport Aircraft. https://doi.org/10.2514/6.2013-214
dc.relation.referencesVan Dijk, N. P., Maute, K., Langelaar, M., & Van Keulen, F. (2013). Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-013-0912-y
dc.relation.referencesVersteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. In Pearson Education Limited.
dc.relation.referencesWang, Y. (2015). Development of flexible rib morphing wing system. University of Toronto.
dc.relation.referencesWeller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics. https://doi.org/10.1063/1.168744
dc.relation.referencesWoods, B. K., Bilgen, O., & Friswell, M. I. (2014). Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X14521700
dc.relation.referencesWoods, B. K. S., Parsons, L., Coles, A. B., Fincham, J. H. S., & Friswell, M. I. (2016). Morphing elastically lofted transition for active camber control surfaces. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2016.06.017
dc.relation.referencesXie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers and Structures. https://doi.org/10.1016/0045-7949(93)90035-C
dc.relation.referencesXinxing, T., Wenjie, G., Chao, S., & Xiaoyong, L. (2014). Topology optimization of compliant adaptive wing leading edge with composite materials. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2014.10.015
dc.relation.referencesYago, D., Cante, J., Lloberas-Valls, O., & Oliver, J. (2021). Topology optimization using the unsmooth variational topology optimization (UNVARTOP) method: an educational implementation in MATLAB. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-020-02722-0
dc.relation.referencesZhang, S., Li, H., & Abbasi, A. A. (2019). Design methodology using characteristic parameters control for low Reynolds number airfoils. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.01.003
dc.relation.referencesZhang, W., Yuan, J., Zhang, J., & Guo, X. (2016). A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-015-1372-3
dc.relation.referencesZhang, X., & Zhu, B. (2018). Topology Optimization of Compliant Mechanisms. https://doi.org/10.1007/978-981-13-0432-3
dc.relation.referencesZhao, A., Zou, H., Jin, H., & Wen, D. (2019). Structural design and verification of an innovative whole adaptive variable camber wing. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.02.032
dc.relation.referencesZhao, L., Di, C., Li, K., Li, J., & Liu, J. (2018). Compliant mechanism design of multiphase material wing leading edge. Proceedings - 2017 10th International Symposium on Computational Intelligence and Design, ISCID 2017, 2, 437–440. https://doi.org/10.1109/ISCID.2017.189
dc.relation.referencesZitzler, E., Brockhoff, D., & Thiele, L. (2007). The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-540-70928-2_64
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAerodynamics
dc.subject.lembAerodinámica
dc.subject.lembEstabilidad de los aviones
dc.subject.lembStability of airplanes
dc.subject.proposalMorphology, compliant mechanisms, topology optimization, genetic algorithms
dc.subject.proposalMorfología
dc.subject.proposalMecanismos flexibles
dc.subject.proposalOptimización topológica
dc.subject.proposalAlgoritmos genéticos
dc.subject.proposalMorphology
dc.subject.proposalCompliant mechanisms
dc.subject.proposalTopology optimization
dc.subject.proposalGenetic algorithms
dc.title.translatedDesign of a Variable Morphing Airfoil
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDiseño de un Perfil Aerodinámico Morfológicamente Variable
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito