Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.authorFranco Rodríguez, César Germán
dc.date.accessioned2023-01-11T17:32:09Z
dc.date.available2023-01-11T17:32:09Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82878
dc.descriptionilustraciones, fotografías, graficas|
dc.description.abstractEste documento es el resultado del trabajo de obtención de óxido de grafeno usando como material de partida carbón semi antracita procedente de la mina San José del municipio de Boavita (Boyacá). El objetivo del proyecto es evaluar la obtención de óxido de grafeno por medio del método de exfoliación de fase líquida usando carbón de alto rango como materia prima. Se tienen en cuenta dos variables: el tamaño de partícula de inicio (mayor a 0,15 mm, 0,15 mm a 0,05 mm y menor a 0,05 mm) y el retiro de materia mineral por medio de un lavado básico de las muestras. Se diseña un protocolo de molienda y selección de tamaños de partícula, luego se procede a hacer el lavado básico de las muestras, se continúa con el proceso de oxidación por medio del Método de Hummers Modificado, para finalmente proceder a hacer la exfoliación en fase líquida (LPE) usando como surfactante el Pluronic 123. Se comparan rendimientos en la obtención de óxido de grafeno teniendo en cuenta el tamaño de partícula y la eliminación (o no) de materia mineral. Para evaluar la calidad del óxido de grafeno obtenido se usan técnicas de caracterización como la espectroscopía Raman, la espectroscopía UV-vis, la microscopía electrónica de barrido (SEM), la espectroscopía de rayos X de dispersión de energía (EDX) y la microscopía de fuerza atómica (AFM). En conclusión, es factible obtener óxido de grafeno multicapa a partir de carbón antracítico, obteniendo estructuras con altura promedio entre 10,8 nm y 184,6 nm. Así mismo es posible obtener estructuras con tamaños entre los 200 nm y las 10 µm. Finalmente, es factible obtener rendimientos cercanos al 30% de la masa inicial.
dc.description.abstractThis document shows the results to obtain graphene oxide using semi-anthracite coal as raw material from San José mine in Boavita (Boyacá). The main objective of the project is to evaluate the obtaining of graphene oxide through the liquid phase exfoliation method using high-rank coal as raw material. Two variables are taken into account: the initial particle size (0.15 to 0.09 mm, 0.09 to 0.05 mm and less than 0.05 mm) and the removal of mineral matter by basic washing method. A protocol for grinding and selection of particle sizes is designed, then the basic washing of the samples is carried out, the oxidation process continues by means of the Modified Hummers Method, and finally the in liquid phase exfoliation is carried out using Pluronic 123 as a surfactant. To evaluate the quality of the graphene oxide obtained, are used characterization techniques such as Raman Spectroscopy, Uv-Vis Spectroscopy, Scanning Electron mMicroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Atomic Force Microscopy (AFM). In conclusion, it is feasible to obtain multilayer graphene oxide from anthracite coal, obtaining structures with average height between 10.8 nm and 184.6 nm. Likewise, it is possible to obtain structures with sizes between 200 nm and 10 µm. Finally, it is feasible to obtain yields close to 30% of the initial mass.
dc.description.sponsorshipGobernación de Boyacá y al Ministerio de Ciencia Tecnología e Innovación por financiar mis estudios por medio de la Convocatoria 733 de 2015.
dc.format.extentxx, 161 páginas mas anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleExfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupAPRENA Aprovechamiento Energético de los Recursos Naturales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.researchareaNano materiales
dc.description.researchareaCarbones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesBritish Petroleum Company, “BP Energy Outlook 2022,” 2022. Accessed: Jul. 24, 2022.
dc.relation.referencesUnidad de Planeación Minero Energética, “Boletín Estadístico de Minas y Energía 2016-2020,” 2021.
dc.relation.referencesK. S. Novoselov et al., “Electric field in atomically thin carbon films,” Science (1979), vol. 306, no. 5696, pp. 666–669, Oct. 2004
dc.relation.referencesS. A. M. R. Clark, “Global Graphene Market - Forecast 2014-2021,” Porlant OR, Feb. 2016.
dc.relation.referencesBrodie B. C., “On the atomic weight of graphite,” Philos Trans R Soc Lond, vol. 149, pp. 249–259, Dec. 1859
dc.relation.referencesStaudenmaier L, “Verfahren zur Darstellung der Graphits€aure,” Ber. Dtsch. Chem. Ges., vol. 31, no. 2, pp. 1481–1487, 1898.
dc.relation.referencesW. Hummers and R. Offeman, “Preparation of Graphitic Oxide,” J Am Chem Soc, vol. 80, no. 6, p. 1339, Mar. 1958
dc.relation.referencesM. Inagaki, F. Kang, M. Toyoda, and H. Konno, Advanced materials science and engineering of carbon. 2013.
dc.relation.referencesR. Ye et al., “Coal as an abundant source of graphene quantum dots,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 1–7, Dec. 2013
dc.relation.referencesS. P. Sasikala et al., “High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids,” ACS Nano, vol. 10, no. 5, pp. 5293–5303, May 2016
dc.relation.referencesInternational Energy Agency, “Coal Information: Overview (2020 edition),” 2020.
dc.relation.referencesAgencia Nacional de Minería, “ANM Producción Nacional de Minerales y Contraprestaciones Económicas Trimestral | Datos Abiertos Colombia,” 2022.
dc.relation.referencesUnidad de Planeación Minero Energética, “Boletín Estadístico de Minas y Energía,” 2018. Accessed: Jun. 13, 2022
dc.relation.referencesUnidad de Planeación Minero Energética, “EL CARBÓN COLOMBIANO. Fuente de Energía para el Mundo.” pp. 1–52, 2005
dc.relation.referencesR. Kumar et al., “Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst,” Journal of Nanoparticle Research 2013 15:1, vol. 15, no. 1, pp. 1–11, Jan. 2013
dc.relation.referencesS. Awasthi, K. Awasthi, A. K. Ghosh, S. K. Srivastava, and O. N. Srivastava, “Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal,” Fuel, vol. 147, pp. 35–42, May 2015
dc.relation.referencesD. P. Savitskii, “Preparation and characterization of colloidal dispersions of graphene-like structures from different ranks of coals,” Journal of Fuel Chemistry and Technology, vol. 45, no. 8, pp. 897–907, Aug. 2017
dc.relation.referencesU. Sierra, P. Álvarez, C. Blanco, M. Granda, R. Santamaría, and R. Menéndez, “Cokes of different origin as precursors of graphene oxide,” Fuel, vol. 166, pp. 400–403, Feb. 2016
dc.relation.referencesT. Das, P. K. Boruah, M. R. Das, and B. K. Saikia, “Formation of onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coals: application in photocatalytic degradation of 2-nitrophenol,” RSC Adv, vol. 6, no. 42, pp. 35177–35190, Apr. 2016
dc.relation.referencesE. Senthil Kumar, V. Sivasankar, R. Sureshbabu, S. Raghu, and R. A. Kalaivani, “Facile synthesis of few layer graphene from bituminous coal and its application towards electrochemical sensing of caffeine,” Adv Mater Lett, vol. 8, no. 3, pp. 239–245, Mar. 2017
dc.relation.referencesJ. Zhu et al., “Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics,” Carbon N Y, vol. 129, pp. 54–62, Apr. 2018
dc.relation.referencesS. H. Vijapur, D. Wang, D. C. Ingram, and G. G. Botte, “An investigation of growth mechanism of coal derived graphene films,” Mater Today Commun, vol. 11, pp. 147–155, Jun. 2017
dc.relation.referencesX. Mu, Z. Xu, Y. Xie, H. Mi, and J. Ma, “Pt nanoparticles supported on Co embedded coal-based carbon nanofiber for enhanced electrocatalytic activity towards methanol electro-oxidation,” J Alloys Compd, vol. 711, pp. 374–380, Jul. 2017
dc.relation.referencesH. Zhao, L. Wang, D. Jia, W. Xia, J. Li, and Z. Guo, “Coal based activated carbon nanofibers prepared by electrospinning,” J Mater Chem A Mater, vol. 2, no. 24, pp. 9338–9344, May 2014
dc.relation.referencesT. Das, B. K. Saikia, and B. P. Baruah, “Formation of carbon nano-balls and carbon nano-tubes from northeast Indian Tertiary coal: Value added products from low grade coal,” Gondwana Research, vol. 31, pp. 295–304, Mar. 2016
dc.relation.referencesM. Guo et al., “Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors,” RSC Adv, vol. 7, no. 72, pp. 45363–45368, Sep. 2017
dc.relation.referencesS. Kang et al., “Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–7, Mar. 2019
dc.relation.referencesASTM International, “ASTM D121 − 09a Standard Terminology of Coal and Coke,” 2012.
dc.relation.referencesJ. G. Speight, “The chemistry and technology of coal, third edition,” The Chemistry and Technology of Coal, Third Edition, pp. 1–808, Jan. 2012
dc.relation.referencesD. Osborne, “The Coal Handbook: Towards Cleaner Production,” The Coal Handbook: Towards Cleaner Production, vol. 1, pp. 1–755, Oct. 2013
dc.relation.referencesI. Wender, “Catalytic Synthesis of Chemicals from Coal,” Catalysis Reviews, vol. 14, no. 1, pp. 97–129, Jan. 1976
dc.relation.referencesL. Lazarov and S. P. Marinov, “Modelling the structure of a coking coal,” Fuel Processing Technology, vol. 15, no. C, pp. 411–422, Jan. 1987
dc.relation.referencesPappano PJ, Mathews JP, and Schobert HH, “Structural Determinations of Pennsylvania Anthracites,” Acs Division of Fuel Chemistry, Preprints., vol. 44, pp. 567–568, 1999
dc.relation.referencesASTM International, “ASTM D 388 - 12 Standard Classification of Coals by Rank,” 2012.
dc.relation.referencesA. U. Agobi, A. J. Ekpunobi, A. I. Ikeuba, and H. Louis, “The effects of graphene oxide load on the optical, structural and electrical properties of ternary nanocomposites (Polyvinyl alcohol/copper/graphene oxide) for electronic and photovoltaic application,” Results in Optics, vol. 8, p. 100261, Aug. 2022
dc.relation.referencesA. Najim, O. Bajjou, M. Boulghallat, M. Khenfouch, K. Rahmani, and Y. Chrafih, “First-principles calculations to investigate the influence of porphyrin substitution on the structural, electronic and optical properties of graphene oxide,” Optik (Stuttg), vol. 257, p. 168874, May 2022
dc.relation.referencesS. Sahoo, M. Bhuyan, and D. Sahoo, “Tuning of dielectric and magnetic performance of graphene oxide via defect regulation by metal oxide nanoparticle for high temperature device,” J Alloys Compd, vol. 935, p. 168097, Feb. 2023
dc.relation.referencesK. Shiva, H. S. S. Ramakrishna Matte, H. B. Rajendra, A. J. Bhattacharyya, and C. N. R. Rao, “Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries,” Nano Energy, vol. 2, no. 5, pp. 787–793, Sep. 2013
dc.relation.referencesH. Yang et al., “Tin indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability,” Electrochim Acta, vol. 91, pp. 275–281, Feb. 2013
dc.relation.referencesV. C. Hoang, M. Hassan, and V. G. Gomes, “Coal derived carbon nanomaterials – Recent advances in synthesis and applications,” Appl Mater Today, vol. 12, pp. 342–358, Sep. 2018
dc.relation.referencesInternational Energy Agency, “World Energy Outlook 2018 | Enhanced Reader,” 2018
dc.relation.referencesC. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (1979), vol. 321, no. 5887, pp. 385–388, Jul. 2008
dc.relation.referencesT. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, “Recent advances in graphene based polymer composites,” Prog Polym Sci, vol. 35, no. 11, pp. 1350–1375, Nov. 2010
dc.relation.referencesY. Cui, S. I. Kundalwal, and S. Kumar, “Gas barrier performance of graphene/polymer nanocomposites,” Carbon N Y, vol. 98, pp. 313–333, Mar. 2016
dc.relation.referencesL. Sun, M. Xiao, J. Liu, and K. Gong, “A study of the polymerization of styrene initiated by K–THF–GIC system,” Eur Polym J, vol. 42, no. 2, pp. 259–264, Feb. 2006
dc.relation.referencesY. Zhu et al., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, Sep. 2010
dc.relation.referencesS. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, “Solution properties of graphite and graphene,” J Am Chem Soc, vol. 128, no. 24, pp. 7720–7721, Jun. 2006
dc.relation.referencesA. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of Graphite Oxide Revisited,” Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477–4482, Jun. 1998
dc.relation.referencesF. Pendolino and N. Armata, Graphene Oxide in Environmental Remediation Process. Cham: Springer International Publishing, 2017
dc.relation.referencesS. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon N Y, vol. 50, no. 9, pp. 3210–3228, Aug. 2012
dc.relation.referencesB. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, “Graphene and graphene oxide and their uses in barrier polymers,” J Appl Polym Sci, vol. 131, no. 1, Jan. 2014
dc.relation.referencesC. Cheng, S. Li, A. Thomas, N. A. Kotov, and R. Haag, “Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications,” Chem Rev, vol. 117, no. 3, pp. 1826–1914, Feb. 2017
dc.relation.referencesC. Cheng, S. Li, A. Thomas, N. A. Kotov, and R. Haag, “Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications,” Chem Rev, vol. 117, no. 3, pp. 1826–1914, Feb. 2017
dc.relation.referencesB. Tan and N. L. Thomas, “A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites,” J Memb Sci, vol. 514, pp. 595–612, Sep. 2016
dc.relation.referencesF. A. Ghauri, M. A. Raza, M. S. Baig, and S. Ibrahim, “Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings,” Mater Res Express, vol. 4, no. 12, p. 125601, Dec. 2017
dc.relation.referencesR. K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, “Graphene oxide: the new membrane material,” Appl Mater Today, vol. 1, no. 1, pp. 1–12, Nov. 2015
dc.relation.referencesK. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, “A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution,” Angewandte Chemie International Edition, vol. 53, no. 27, pp. 6929–6932, Jul. 2014
dc.relation.referencesS. Sun and P. Wu, “A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks,” J Mater Chem, vol. 21, no. 12, pp. 4095–4097, Mar. 2011
dc.relation.referencesY. Chen et al., “Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics,” Adv Funct Mater, vol. 24, no. 28, pp. 4386–4396, Jul. 2014
dc.relation.referencesS. Thakur and N. Karak, “Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites,” J Mater Chem A Mater, vol. 2, no. 36, pp. 14867–14875, Aug. 2014
dc.relation.referencesN. J. Huang et al., “Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons,” RSC Adv, vol. 7, no. 36, pp. 22045–22053, Apr. 2017
dc.relation.referencesP. Zhang et al., “Fracture toughness of graphene,” Nat Commun, vol. 5, Apr. 2014
dc.relation.referencesJ. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, “Mechanical properties of monolayer graphene oxide,” ACS Nano, vol. 4, no. 11, pp. 6557–6564, Nov. 2010
dc.relation.referencesC. Gómez-Navarro, M. Burghard, and K. Kern, “Elastic properties of chemically derived single graphene sheets,” Nano Lett, vol. 8, no. 7, pp. 2045–2049, Jul. 2008
dc.relation.referencesS. Jiang et al., “Effect of carbon fiber-graphene oxide multiscale reinforcements on the thermo-mechanical properties of polyurethane elastomer,” Polym Compos, vol. 40, no. S2, pp. E953–E961, Mar. 2019
dc.relation.referencesH. Kim, A. A. Abdala, and C. W. MacOsko, “Graphene/polymer nanocomposites,” Macromolecules, vol. 43, no. 16, pp. 6515–6530, Aug. 2010
dc.relation.referencesT. Cheng-An, Z. Hao, W. Fang, Z. Hui, Z. Xiaorong, and W. Jianfang, “Mechanical Properties of Graphene Oxide/Polyvinyl Alcohol Composite Film:,” vol. 25, no. 1, pp. 11–16, Jan. 2017
dc.relation.referencesC. Bao et al., “Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending,” J Mater Chem, vol. 22, no. 13, pp. 6088–6096, Mar. 2012
dc.relation.referencesK. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 2012 490:7419, vol. 490, no. 7419, pp. 192–200, Oct. 2012
dc.relation.referencesS. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology 2009 4:4, vol. 4, no. 4, pp. 217–224, Mar. 2009
dc.relation.referencesS. Stankovich et al., “Graphene-based composite materials,” Nature 2006 442:7100, vol. 442, no. 7100, pp. 282–286, Jul. 2006
dc.relation.referencesE. Jaafar, M. Kashif, S. K. Sahari, and Z. Ngaini, “Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO),” in Materials Science Forum, 2018, vol. 917 MSF, pp. 112–116
dc.relation.referencesG. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat Nanotechnol, vol. 3, no. 5, pp. 270–274, May 2008
dc.relation.referencesS. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids,” Carbon N Y, vol. 48, no. 15, pp. 4466–4474, Dec. 2010
dc.relation.referencesA. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry 2010 2:7, vol. 2, no. 7, pp. 581–587, Jun. 2010
dc.relation.referencesS. Stankovich et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558–1565, Jun. 2007
dc.relation.referencesI. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nature Communications 2010 1:1, vol. 1, no. 1, pp. 1–6, Sep. 2010
dc.relation.referencesP. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, “Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness,” Carbon N Y, vol. 94, pp. 494–500, Nov. 2015
dc.relation.referencesL. L. Zhang et al., “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors,” Nano Lett, vol. 12, no. 4, pp. 1806–1812, Apr. 2012
dc.relation.referencesM. Kim, C. Lee, and J. Jang, “Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity,” Adv Funct Mater, vol. 24, no. 17, pp. 2489–2499, May 2014
dc.relation.referencesM. Hou, M. Xu, and B. Li, “Enhanced Electrical Conductivity of Cellulose Nanofiber/Graphene Composite Paper with a Sandwich Structure,” ACS Sustain Chem Eng, vol. 6, no. 3, pp. 2983–2990, Mar. 2018
dc.relation.referencesS. Wan, J. Peng, Y. Li, H. Hu, L. Jiang, and Q. Cheng, “Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan,” ACS Nano, vol. 9, no. 10, pp. 9830–9836, Oct. 2015
dc.relation.referencesH. bin Zhang et al., “Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding,” Polymer (Guildf), vol. 51, no. 5, pp. 1191–1196, Mar. 2010
dc.relation.referencesS. Song, Y. Zhai, and Y. Zhang, “Bioinspired Graphene Oxide/Polymer Nanocomposite Paper with High Strength, Toughness, and Dielectric Constant,” ACS Appl Mater Interfaces, vol. 8, no. 45, pp. 31264–31272, Nov. 2016
dc.relation.referencesF. Li, J. Chen, X. Wang, M. Xue, and G. F. Chen, “Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes,” Adv Funct Mater, vol. 25, no. 29, pp. 4601–4606, Aug. 2015
dc.relation.referencesS. Wang et al., “Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs,” ACS Nano, vol. 11, no. 2, pp. 2066–2074, Feb. 2017
dc.relation.referencesJ. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv Funct Mater, vol. 25, no. 29, pp. 4664–4672, Aug. 2015
dc.relation.referencesS. Stankovich et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558–1565, Jun. 2007
dc.relation.referencesC. bin Kim, J. Lee, J. Cho, and M. Goh, “Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation,” Carbon N Y, vol. 139, pp. 386–392, Nov. 2018
dc.relation.referencesJ. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv Funct Mater, vol. 25, no. 29, pp. 4664–4672, Aug. 2015
dc.relation.referencesJ. Kim, H. Im, J. M. Kim, and J. Kim, “Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites,” Journal of Materials Science 2011 47:3, vol. 47, no. 3, pp. 1418–1426, Sep. 2011
dc.relation.referencesH. Im and J. Kim, “Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite,” Carbon N Y, vol. 50, no. 15, pp. 5429–5440, Dec. 2012
dc.relation.referencesS. Kim, J. Shimazu, T. Fukaminato, T. Ogata, and S. Kurihara, “Thermal conductivity of graphene oxide-enhanced polyvinyl alcohol composites depending on molecular interaction,” Polymer (Guildf), vol. 129, pp. 201–206, Oct. 2017
dc.relation.referencesG. Xue, J. Zhong, S. Gao, and B. Wang, “Correlation between the free volume and thermal conductivity of porous poly(vinyl alcohol)/reduced graphene oxide composites studied by positron spectroscopy,” Carbon N Y, vol. 96, pp. 871–878, Jan. 2016
dc.relation.referencesS. Song and Y. Zhang, “Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber,” Carbon N Y, vol. 123, pp. 158–167, Oct. 2017
dc.relation.referencesM. A. Rafiee et al., “Graphene nanoribbon composites,” ACS Nano, vol. 4, no. 12, pp. 7415–7420, Dec. 2010
dc.relation.referencesJ. H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, “Printed Graphene Circuits,” Advanced Materials, vol. 19, no. 21, pp. 3623–3627, Nov. 2007
dc.relation.referencesZ. U. Khan, A. Kausar, H. Ullah, A. Badshah, and W. U. Khan, “A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques:,” Journal of Plastic Film & Sheeting, vol. 32, no. 4, pp. 336–379, Nov. 2015
dc.relation.referencesX. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett, vol. 8, no. 1, pp. 323–327, Jan. 2008
dc.relation.referencesA. Bianco et al., “All in the graphene family – A recommended nomenclature for two-dimensional carbon materials,” Carbon N Y, vol. 65, pp. 1–6, Dec. 2013
dc.relation.referencesY. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, “Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films,” Advanced Materials, vol. 25, no. 4, pp. 503–508, Jan. 2013
dc.relation.referencesY. Su, V. G. Kravets, S. L. Wong, J. Waters, A. K. Geim, and R. R. Nair, “Impermeable barrier films and protective coatings based on reduced graphene oxide,” Nature Communications 2014 5:1, vol. 5, no. 1, pp. 1–5, Sep. 2014
dc.relation.referencesI. H. Tseng, Y. F. Liao, J. C. Chiang, and M. H. Tsai, “Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property,” Mater Chem Phys, vol. 136, no. 1, pp. 247–253, Sep. 2012
dc.relation.referencesL. Sun, W. J. Boo, A. Clearfield, H. J. Sue, and H. Q. Pham, “Barrier properties of model epoxy nanocomposites,” J Memb Sci, vol. 318, no. 1–2, pp. 129–136, Jun. 2008
dc.relation.referencesSun L. and Sue H.-J., “Permeation properties of epoxy nanocomposites,” in Barrier Properties of Polymer Clay Nanocomposites, New York: Nova Science Publishers, 2010, pp. 73–93.
dc.relation.referencesH. J. Sue, K. T. Gam, N. Bestaoui, A. Clearfield, M. Miyamoto, and N. Miyatake, “Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites,” Acta Mater, vol. 52, no. 8, pp. 2239–2250, May 2004
dc.relation.referencesW. J. Boo et al., “Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites,” J Polym Sci B Polym Phys, vol. 45, no. 12, pp. 1459–1469, Jun. 2007
dc.relation.referencesJ. Liu, “Nanostructured Multi-functional Hybrid Nanocoatings from One-Step Coassembly,” 2018. Accessed: Jun. 15, 2022
dc.relation.referencesA. Kausar, “Composite coatings of polyamide/graphene: microstructure, mechanical, thermal, and barrier properties”, vol. 25, no. 2, pp. 109–125, Feb. 2017
dc.relation.referencesD. Pierleoni et al., “Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers,” ACS Appl Mater Interfaces, vol. 10, no. 13, pp. 11242–11250, Apr. 2018
dc.relation.referencesM. Hu and B. Mi, “Enabling graphene oxide nanosheets as water separation membranes,” Environ Sci Technol, vol. 47, no. 8, pp. 3715–3723, Apr. 2013
dc.relation.referencesR. R. Nair, H. A. Wu, P. N. Jayaram, I. v. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science (1979), vol. 335, no. 6067, pp. 442–444, Jan. 2012
dc.relation.referencesH. Huang et al., “Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 1–9, Dec. 2013
dc.relation.referencesC. N. Yeh, K. Raidongia, J. Shao, Q. H. Yang, and J. Huang, “On the origin of the stability of graphene oxide membranes in water,” Nature Chemistry 2014 7:2, vol. 7, no. 2, pp. 166–170, Jan. 2015
dc.relation.referencesK. H. Thebo, X. Qian, Q. Zhang, L. Chen, H. M. Cheng, and W. Ren, “Highly stable graphene-oxide-based membranes with superior permeability,” Nature Communications 2018 9:1, vol. 9, no. 1, pp. 1–8, Apr. 2018
dc.relation.referencesB. Tansel, “Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects,” Sep Purif Technol, vol. 86, pp. 119–126, Feb. 2012
dc.relation.referencesJ. Abraham et al., “Tunable sieving of ions using graphene oxide membranes,” Nature Nanotechnology 2017 12:6, vol. 12, no. 6, pp. 546–550, Apr. 2017
dc.relation.referencesF. Perreault, H. Jaramillo, M. Xie, M. Ude, L. D. Nghiem, and M. Elimelech, “Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes,” Environ Sci Technol, vol. 50, no. 11, pp. 5840–5848, Jun. 2016
dc.relation.referencesM. Ma, L. Guo, D. G. Anderson, and R. Langer, “Bio-inspired polymer composite actuator and generator driven by water gradients,” Science (1979), vol. 339, no. 6116, pp. 186–189, Jan. 2013
dc.relation.referencesH. Arazoe et al., “An autonomous actuator driven by fluctuations in ambient humidity,” Nature Materials 2016 15:10, vol. 15, no. 10, pp. 1084–1089, Jul. 2016
dc.relation.referencesY. Qiu, M. Wang, W. Zhang, Y. Liu, Y. V. Li, and K. Pan, “An asymmetric graphene oxide film for developing moisture actuators,” Nanoscale, vol. 10, no. 29, pp. 14060–14066, Jul. 2018
dc.relation.referencesY. Zhang et al., “Graphene oxide based moisture-responsive biomimetic film actuators with nacre-like layered structures,” J Mater Chem A Mater, vol. 5, no. 28, pp. 14604–14610, Jul. 2017
dc.relation.referencesG. Wang, B. Wang, J. Park, J. Yang, X. Shen, and J. Yao, “Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method,” Carbon N Y, vol. 47, no. 1, pp. 68–72, Jan. 2009
dc.relation.referencesC. W. Lo, D. Zhu, and H. Jiang, “An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite,” Soft Matter, vol. 7, no. 12, pp. 5604–5609, Jun. 2011
dc.relation.referencesE. Wang, M. S. Desai, and S. W. Lee, “Light-controlled graphene-elastin composite hydrogel actuators,” Nano Lett, vol. 13, no. 6, pp. 2826–2830, Jun. 2013
dc.relation.referencesZ. Wang et al., “Aqueous phase preparation of graphene with low defect density and adjustable layers,” Chemical Communications, vol. 49, no. 92, pp. 10835–10837, Oct. 2013
dc.relation.referencesJ. T. Robinson et al., “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J Am Chem Soc, vol. 133, no. 17, pp. 6825–6831, May 2011
dc.relation.referencesZ. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites,” ACS Appl Mater Interfaces, vol. 7, no. 49, pp. 27494–27501, Dec. 2015
dc.relation.referencesH. Kim et al., “Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide,” ACS Appl Mater Interfaces, vol. 10, no. 38, pp. 32760–32764, Sep. 2018
dc.relation.referencesJ. Kim, J. H. Jeon, H. J. Kim, H. Lim, and I. K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano, vol. 8, no. 3, pp. 2986–2997, Mar. 2014
dc.relation.referencesM. Stratmann, R. Feser, and A. Leng, “Corrosion protection by organic films,” Electrochim Acta, vol. 39, no. 8–9, pp. 1207–1214, Jun. 1994
dc.relation.referencesX. Luo, J. Zhong, Q. Zhou, S. Du, S. Yuan, and Y. Liu, “Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity,” ACS Appl Mater Interfaces, vol. 10, no. 21, pp. 18400–18415, May 2018
dc.relation.referencesC. Cui, A. T. O. Lim, and J. Huang, “A cautionary note on graphene anti-corrosion coatings,” Nature Nanotechnology 2017 12:9, vol. 12, no. 9, pp. 834–835, Sep. 2017
dc.relation.referencesM. Wang et al., “All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method,” ACS Appl Mater Interfaces, vol. 7, no. 2, pp. 1348–1354, Jan. 2015
dc.relation.referencesW. K. Chee et al., “Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration,” Electrochim Acta, vol. 157, pp. 88–94, Mar. 2015
dc.relation.referencesX. Cao et al., “Reduced Graphene Oxide-Wrapped MoO3 Composites Prepared by Using Metal–Organic Frameworks as Precursor for All-Solid-State Flexible Supercapacitors,” Advanced Materials, vol. 27, no. 32, pp. 4695–4701, Aug. 2015
dc.relation.referencesA. Lamberti et al., “Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors,” Carbon N Y, vol. 105, pp. 649–654, Aug. 2016
dc.relation.referencesJ. Cao et al., “A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for High-Performance Lithium–Sulfur Batteries with Unconventional Configurations,” Advanced Materials, vol. 28, no. 43, pp. 9629–9636, Nov. 2016
dc.relation.referencesJ. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, and F. Wei, “Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries,” ACS Nano, vol. 9, no. 3, pp. 3002–3011, Mar. 2015
dc.relation.referencesD. Lin et al., “Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes,” Nature Nanotechnology 2016 11:7, vol. 11, no. 7, pp. 626–632, Mar. 2016
dc.relation.referencesK. Fu et al., “Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries,” Advanced Materials, vol. 28, no. 13, pp. 2587–2594, Apr. 2016
dc.relation.referencesK. S. Kim et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 2009 457:7230, vol. 457, no. 7230, pp. 706–710, Jan. 2009
dc.relation.referencesH. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, and J. H. Ahn, “Graphene-Based Flexible and Stretchable Electronics,” Advanced Materials, vol. 28, no. 22, pp. 4184–4202, Jun. 2016
dc.relation.referencesJ. Xu et al., “A Hierarchical Carbon Derived from Sponge-Templated Activation of Graphene Oxide for High-Performance Supercapacitor Electrodes,” Advanced Materials, vol. 28, no. 26, pp. 5222–5228, Jul. 2016
dc.relation.referencesR. S. Dey, H. A. Hjuler, and Q. Chi, “Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks,” J Mater Chem A Mater, vol. 3, no. 12, pp. 6324–6329, Mar. 2015
dc.relation.referencesY. Chen, Z. Liu, L. Sun, Z. Lu, and K. Zhuo, “Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte,” J Power Sources, vol. 390, pp. 215–223, Jun. 2018
dc.relation.referencesM. Shabani-Nooshabadi and F. Zahedi, “Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications,” Electrochim Acta, vol. 245, pp. 575–586, Aug. 2017
dc.relation.referencesX. L. Su, L. Fu, M. Y. Cheng, J. H. Yang, X. X. Guan, and X. C. Zheng, “3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors,” Appl Surf Sci, vol. 426, pp. 924–932, Dec. 2017
dc.relation.referencesK. Le et al., “Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors,” Dalton Transactions, vol. 48, no. 16, pp. 5193–5202, 2019
dc.relation.referencesX. Chen, X. Chen, F. Zhang, Z. Yang, and S. Huang, “One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor,” J Power Sources, vol. 243, pp. 555–561, 2013
dc.relation.referencesM. T. U. Malik, A. Sarker, S. M. S. Mahmud Rahat, and S. B. Shuchi, “Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review,” Materials Today Communications, vol. 28. Elsevier Ltd, Sep. 01, 2021
dc.relation.referencesC. Rodríguez González and O. V. Kharissova, “Propiedades y aplicaciones del grafeno,” Ingenierías, vol. XI, no. 38, pp. 17–23, 2008
dc.relation.referencesX.-Y. Wang, A. Narita, and K. Müllen, “Precision synthesis versus bulk-scale fabrication of graphenes,” Nature Reviews Chemistry 2017 2:1, vol. 2, no. 1, pp. 1–10, Dec. 2017
dc.relation.referencesC. K. Chua and M. Pumera, “Chemical reduction of graphene oxide: a synthetic chemistry viewpoint,” Chem Soc Rev, vol. 43, no. 1, pp. 291–312, Dec. 2013
dc.relation.referencesS. A. M. Zobir, S. A. Rashid, and T. Tan, “Recent Development on the Synthesis Techniques and Properties of Graphene Derivatives,” Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 77–107, Jan. 2019
dc.relation.referencesS. Kellici, J. Acord, J. Ball, H. S. Reehal, D. Morgan, and B. Saha, “A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities,” RSC Adv, vol. 4, no. 29, pp. 14858–14861, Mar. 2014
dc.relation.referencesA. C. Ferrari et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, no. 11, pp. 4598–4810, Mar. 2015
dc.relation.referencesR. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology. John Wiley and Sons, 2005
dc.relation.referencesM. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf Sci, vol. 82, no. 1, pp. 228–236, Mar. 1979
dc.relation.referencesB. Y. Cao and Y. W. Li, “A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics,” Journal of Chemical Physics, vol. 133, no. 2, Jul. 2010
dc.relation.referencesJ. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf Sci, vol. 43, no. 2, pp. 493–520, Jun. 1974
dc.relation.referencesS. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst,” Nano Lett, vol. 10, no. 10, pp. 4128–4133, Oct. 2010
dc.relation.referencesY. Lee et al., “Wafer-scale synthesis and transfer of graphene films,” Nano Lett, vol. 10, no. 2, pp. 490–493, Feb. 2010
dc.relation.referencesV. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog Mater Sci, vol. 56, no. 8, pp. 1178–1271, Oct. 2011
dc.relation.referencesJ. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 323202, Jul. 2008
dc.relation.referencesV. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog Mater Sci, vol. 56, no. 8, pp. 1178–1271, Oct. 2011
dc.relation.referencesF. Varchon et al., “Electronic structure of epitaxial graphene layers on SiC: effect of the substrate,” Phys Rev Lett, vol. 99, no. 12, Sep. 2007
dc.relation.referencesJ. Penuelas et al., “Surface morphology and characterization of thin graphene films on SiC vicinal substrate,” Phys Rev B Condens Matter Mater Phys, vol. 79, no. 3, p. 033408, Jan. 2009
dc.relation.referencesX. Li and R. B. Kaner, “Graphene-Based Materials,” Science (1979), vol. 320, no. 5777, pp. 1170–1171, May 2008
dc.relation.referencesY. Hernandez et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology 2008 3:9, vol. 3, no. 9, pp. 563–568, Aug. 2008
dc.relation.referencesM. Lotya et al., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J Am Chem Soc, vol. 131, no. 10, pp. 3611–3620, Mar. 2009
dc.relation.referencesA. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett, vol. 9, no. 12, pp. 4031–4036, Dec. 2009
dc.relation.referencesM. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv Phys, vol. 51, no. 1, pp. 1–186, Jan. 2002
dc.relation.referencesY. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, “Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges,” Nanomaterials, vol. 8, no. 11. MDPI AG, Nov. 09, 2018
dc.relation.referencesN. Mishra, J. Boeckl, N. Motta, and F. Iacopi, “Graphene growth on silicon carbide: A review (Phys. Status Solidi A 9∕2016),” Physica Status Solidi (A) Applications and Materials Science, vol. 213, no. 9. Wiley-VCH Verlag, p. 2269, Sep. 01, 2016
dc.relation.referencesR. M. Jacobberger, R. Machhi, J. Wroblewski, B. Taylor, A. L. Gillian-Daniel, and M. S. Arnold, “Simple Graphene Synthesis via Chemical Vapor Deposition,” J Chem Educ, vol. 92, no. 11, pp. 1903–1907, Nov. 2015
dc.relation.referencesA. Ciesielski and P. Samorì, “Graphene via sonication assisted liquid-phase exfoliation,” Chemical Society Reviews, vol. 43, no. 1. Royal Society of Chemistry, pp. 381–398, Jan. 07, 2014
dc.relation.referencesR. Narayan and S. O. Kim, “Surfactant mediated liquid phase exfoliation of graphene,” Nano Converg, vol. 2, no. 1, Dec. 2015
dc.relation.referencesA. S. Pavlova, E. A. Obraztsova, A. v. Belkin, C. Monat, P. Rojo-Romeo, and E. D. Obraztsova, “Liquid-phase exfoliation of flaky graphite,” J. of Nanophotonics, vol. 10, no. 1, p. 012525, Feb. 2016
dc.relation.referencesK. H. Choi, A. Ali, and J. Jo, “Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique,” Journal of Materials Science: Materials in Electronics 2013 24:12, vol. 24, no. 12, pp. 4893–4900, Sep. 2013
dc.relation.referencesD. Nuvoli et al., “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid,” J Mater Chem, vol. 21, no. 10, pp. 3428–3431, Feb. 2011
dc.relation.referencesUniversidad Nacional de Colombia, “Reglamento Interno Laboratorio de Química General.” pp. 1–5, 2021.
dc.relation.referencesV. Alzari et al., “Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization,” J Mater Chem, vol. 21, no. 24, pp. 8727–8733, Jun. 2011
dc.relation.referencesC. Gómez-Navarro et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett, vol. 7, no. 11, pp. 3499–3503, Nov. 2007
dc.relation.referencesA. Mianowski, “Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids,” Chemik, vol. 67, no. 4, pp. 267–274, 2013
dc.relation.referencesR. Verdejo, F. Barroso-Bujans, M. A. Rodriguez-Perez, J. A. de Saja, and M. A. Lopez-Manchado, “Functionalized graphene sheet filled silicone foam nanocomposites,” J Mater Chem, vol. 18, no. 19, pp. 2221–2226, Apr. 2008
dc.relation.referencesW. Cai et al., “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science, vol. 321, no. 5897, pp. 1815–1817, Sep. 2008
dc.relation.referencesW. Gao, L. Alemany, L. Ci, and P. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat Chem, vol. 1, no. 5, pp. 403–408, Aug. 2009
dc.relation.referencesT. Szabó et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater., vol. 18, no. 11, pp. 2740–2749, 2006
dc.relation.referencesA. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, vol. 19, no. 15, pp. 6050–6055, Jul. 2003
dc.relation.referencesC. G. Lee, S. Park, R. S. Ruoff, and A. Dodabalapur, “Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer,” Appl Phys Lett, vol. 95, no. 2, p. 023304, Jul. 2009
dc.relation.referencesH. J. Shin et al., “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance,” Adv Funct Mater, vol. 19, no. 12, pp. 1987–1992, Jun. 2009
dc.relation.referencesD. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology 2008 3:2, vol. 3, no. 2, pp. 101–105, Jan. 2008
dc.relation.referencesS. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J Mater Chem, vol. 16, no. 2, pp. 155–158, Dec. 2006
dc.relation.referencesS. Wang et al., “Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets,” Advanced Materials, vol. 20, no. 18, pp. 3440–3446, Sep. 2008
dc.relation.referencesZ. S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H. M. Cheng, “Synthesis of high-quality graphene with a pre-determined number of layers,” Carbon N Y, vol. 47, no. 2, pp. 493–499, Feb. 2009
dc.relation.referencesX. Fan et al., “Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation,” Advanced Materials, vol. 20, no. 23, pp. 4490–4493, Dec. 2008
dc.relation.referencesM. McAllister et al., “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chemistry of Materials, vol. 19, no. 18, pp. 4396–4404, Sep. 2007
dc.relation.referencesB. Manoj and A. G. Kunjomana, “Systematic investigations of graphene layers in sub-bituminous coal,” Russian Journal of Applied Chemistry 2014 87:11, vol. 87, no. 11, pp. 1726–1733, Mar. 2015
dc.relation.referencesQ. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou, and J. Qiu, “Graphene Sheets from Graphitized Anthracite Coal: Preparation, Decoration, and Application,” Energy and Fuels, vol. 26, no. 8, pp. 5186–5192, Aug. 2012
dc.relation.referencesP. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu, and B. D. Pandey, “Demineralization of low grade coal – A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745–761, Jan. 2015
dc.relation.referencesH. Dhawan and D. K. Sharma, “Advances in the chemical leaching (inorgano-leaching), bio-leaching and desulphurisation of coals,” Int J Coal Sci Technol, vol. 6, no. 2, pp. 169–183, Jun. 2019
dc.relation.referencesK. M. Steel, J. Besida, T. A. O’Donnell, and D. G. Wood, “Production of Ultra Clean Coal: Part II—Ionic equilibria in solution when mineral matter from black coal is treated with aqueous hydrofluoric acid,” Fuel Processing Technology, vol. 70, no. 3, pp. 193–219, Jul. 2001
dc.relation.referencesR. A. Meyers, Coal Desulfurization: High-efficiency Preparation Methods. New York: Marcel Dekker Inc., 1977. Accessed: Jun. 16, 2022
dc.relation.referencesK. M. Steel and J. W. Patrick, “The production of ultra clean coal by sequential leaching with HF followed by HNO3,” Fuel, vol. 82, no. 15–17, pp. 1917–1920, Oct. 2003
dc.relation.referencesASTM International, “ASTM D2234 - 10 Standard Practice for Collection of a Gross Sample of Coal,” 2010
dc.relation.referencesASTM International, “ASTM D2013 -10 Standard Practice for Preparing Coal Samples for Analysis,” 2010
dc.relation.referencesASTM International, “ASTM D3172-07 Proximate Analysis of Coal and Coke,” 2007.
dc.relation.referencesASTM International, “ASTM D3173-11 Standard Test Method for Moisture in the Analysis Sample of Coal and Coke,” 2011
dc.relation.referencesASTM International, “ASTM D3174-11 Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal,” 2011
dc.relation.referencesASTM International, “ASTM D3175-11 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke,” 2011
dc.relation.referencesASTM International, “ASTM D4239-12 Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion,” 2012
dc.relation.referencesASTM International, “ASTM D3176-09 Standard Practice for Ultimate Analysis of Coal and Coke,” 2009.
dc.relation.referencesASTM International, “ASTM D5373-16 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke,” 2016.
dc.relation.referencesASTM International, “ASTM D2799-13 Standard Test Method for Microscopical Determination of the Maceral Composition of Coal,” 2013.
dc.relation.referencesM. C. Stopes, “On the petrology of bandes bituminous coals,” Fuel, vol. 14, pp. 4–13, 1935.
dc.relation.referencesASTM International, “ASTM D2797-11 Standard Practice for Preparing Coal Samples for Microscopical Analysis by Reflected Light,” 2011.
dc.relation.referencesASTM International, “ASTM D2798-11 Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal,” 2011.
dc.relation.referencesASTM International, “ASTM D3302-07 Standard Test Method for Total Moisture in Coal,” 2007. doi: 10.1520/D3302_D3302M-12.
dc.relation.referencesJ. Saiz, “Ingeniería Siderúrgica. Proceso de baterías de coke,” 2015.
dc.relation.referencesM. J. Burgess and R. V. Wheeler, “The Volatile Constituents of Coal,” J. Chem. Soc., vol. 97, pp. 1917–1935, 1910.
dc.relation.referencesA. Nabeel, T. A. Khan, and D. K. Sharma, “Studies on the Production of Ultra-clean Coal by Alkali-acid Leaching of Low-grade Coals,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 31, no. 7, pp. 594–601, 2009,
dc.relation.referencesN. Toro Vélez, “Proceso de biodesulfurización del azufre orgánico presente enun carbón colombiano, mediante el usode una cepa pura de Rhodococcus Rhodochrous IGTS8,” Tesis para optar por el título de Magíster en Ingeniería - Materiales y Procesos, Universidad Nacional de Colombia, Medellín, 2014.
dc.relation.referencesPrayuenyong P., “Coal biodesulfurization processes | Semantic Scholar,” J. Sci. Tecnol., vol. 24, no. 3, pp. 493–507, 2002,
dc.relation.referencesGómez-Navarro et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett, vol. 7, no. 11, pp. 3499–3503, Nov. 2007
dc.relation.referencesD. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, Aug. 2010
dc.relation.referencesK. Parvez, S. Yang, X. Feng, and K. Müllen, “Exfoliation of graphene via wet chemical routes,” Synth Met, vol. 210, pp. 123–132, Dec. 2015
dc.relation.referencesW. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J Am Chem Soc, vol. 80, no. 6, p. 1339, Mar. 1958
dc.relation.referencesX. Hangxun, B. W. Zeiger, and K. S. Suslick, “Sonochemical synthesis of nanomaterials,” Chem Soc Rev, vol. 42, no. 7, pp. 2555–2567, Mar. 2013
dc.relation.referencesJ. H. Bang and K. S. Suslick, “Applications of Ultrasound to the Synthesis of Nanostructured Materials,” Advanced Materials, vol. 22, no. 10, pp. 1039–1059, Mar. 2010
dc.relation.referencesP. v. Kamat and K. Vinodgopal, “Sonochromic effect in WO3 colloidal suspensions,” Langmuir, vol. 12, no. 23, pp. 5739–5741, Nov. 1996
dc.relation.referencesK. S. Suslick and G. J. Price, “Applications of Ultrasound to Materials Chemistry,” Annual Review of Materials Science, vol. 29, pp. 295–326, Nov. 2003
dc.relation.referencesJ. Shen et al., “Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets,” J Colloid Interface Sci, vol. 352, no. 2, pp. 366–370, Dec. 2010
dc.relation.referencesW. Zhang, W. He, and X. Jing, “Preparation of a stable graphene dispersion with high concentration by ultrasound,” Journal of Physical Chemistry B, vol. 114, no. 32, pp. 10368–10373, Aug. 2010
dc.relation.referencesV. Štengl, J. Henych, M. Slušná, and P. Ecorchard, “Ultrasound exfoliation of inorganic analogues of graphene,” Nanoscale Res Lett, vol. 9, no. 1, pp. 1–14, Apr. 2014
dc.relation.referencesH. Yang, H. Li, J. Zhai, L. Sun, and H. Yu, “Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite,” Ind Eng Chem Res, vol. 53, no. 46, pp. 17878–17883, Nov. 2014
dc.relation.referencesT. Soltani and B. K. Lee, “Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide,” Ultrason Sonochem, vol. 38, pp. 693–703, Sep. 2017
dc.relation.referencesZ. S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, and H. M. Cheng, “Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets,” Nano Research 2010 3:1, vol. 3, no. 1, pp. 16–22, Mar. 2010
dc.relation.referencesA. Abulizi, K. Okitsu, and J. J. Zhu, “Ultrasound assisted reduction of graphene oxide to graphene in l-ascorbic acid aqueous solutions: Kinetics and effects of various factors on the rate of graphene formation,” Ultrason Sonochem, vol. 21, no. 3, pp. 1174–1181, May 2014
dc.relation.referencesT. Soltani and B. Kyu Lee, “A benign ultrasonic route to reduced graphene oxide from pristine graphite,” J Colloid Interface Sci, vol. 486, pp. 337–343, Jan. 2017
dc.relation.referencesD. A. Skoog, J. J. Holler, and S. R. Crouch, “An Introduction to Ultraviolet-Visible Molecular Absorption Spectrometry,” in Principles of Instrumental Analysis, Seventh Edition., no. 3, Boston MA: Cengage Learning, 2016, pp. 304–330
dc.relation.referencesR. Gandhimathi, S. Vijayaraj, and M. P. Jyothirmaie, “Analytical Process of Drugs by Ultraviolet (UV) Spectroscopy-A Review,” International Journal of Pharmaceutical Research & Analysis, vol. 2, no. 2, pp. 72–78, 2012, Accessed: Jun. 24, 2022
dc.relation.referencesY. R. Sharma, “Ultraviolet and Visible Spectroscopy,” in Elementary Organic Spectroscopy, First Edition., New Delhi, 2004, pp. 9–60. Accessed: Jun. 24, 2022
dc.relation.referencesThermo Spectronic, “Basic UV-Vis Theory, Concepts and Applications.” pp. 1–28. Accessed: Jun. 24, 2022.
dc.relation.referencesG. H. Jeffery, J. Basset, J. Mendham, and R. C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, Fifth Edition. New York: Longman Scientific & Technical, 1989.
dc.relation.referencesD. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction to Spectroscopy, Fifth Edition. Cengage Learning, 2013. Accessed: Jun. 24, 2022
dc.relation.referencesB. J. Clark, T. Frost, and M. A. Rusell, UV Spectroscopy: Techniques, Instrumentation and Data Handling, vol. 4. Springer, 1993
dc.relation.referencesSheffield Hallam University, “UV-Vis Absorption Spectroscopy - Instrumentation.”
dc.relation.referencesThe Royal Society of Chemistry, “Modern Chemical Techniques | Ultraviolet/visible spectroscopy.”
dc.relation.referencesChemical Dictionary, “Definition of spectronic_20 - Chemistry Dictionary.”
dc.relation.referencesW. Gong, M. Kraft, H. Morgan, and M. Mowlem, “A Simple, Low-Cost Double Beam Spectrophotometer for Colorimetric Detection of Nitrite in Seawater,” IEEE Sens J, vol. 9, no. 7, pp. 862–869, 2009,
dc.relation.referencesU. Sierra, P. Álvarez, C. Blanco, M. Granda, R. Santamaría, and R. Menéndez, “Cokes of different origin as precursors of graphene oxide,” Fuel, vol. 166, pp. 400–403, Feb. 2016,
dc.relation.referencesD. A. Long, Raman spectroscopy. New York: McGraw-Hill, 1977.
dc.relation.referencesC. v. Raman and K. S. Krishnan, “Polarisation of Scattered Light-quanta,” Nature 1928 122:3066, vol. 122, no. 3066, pp. 169–169, 1928,
dc.relation.referencesE. v. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal Chim Acta, vol. 606, no. 2, pp. 119–134, Jan. 2008,
dc.relation.referencesR. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib Spectrosc, vol. 57, no. 2, pp. 163–176, Nov. 2011,
dc.relation.referencesE. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci Technol, vol. 7, no. 11, pp. 361–370, Nov. 1996,
dc.relation.referencesS. A. Asher, “UV Resonance Raman Spectroscopy for Analytical, Physical, and Biophysical Chemistry,” Anal Chem, vol. 65, no. 4, pp. 201A-210A, Feb. 2012,
dc.relation.referencesA. Kudelski, “Raman spectroscopy of surfaces,” Surf Sci, vol. 603, no. 10–12, pp. 1328–1334, Jun. 2009,
dc.relation.referencesA. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta, vol. 76, no. 1, pp. 1–8, Jun. 2008,
dc.relation.referencesC. L. Haynes, A. D. McFarland, and R. P. van Duyne, “Surface-enhanced: Raman spectroscopy,” Anal Chem, vol. 77, no. 17, Sep. 2005,
dc.relation.referencesX. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, and Y. Huang, “In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO42-,” Eng Fail Anal, vol. 18, no. 8, pp. 1981–1989, Dec. 2011
dc.relation.referencesB. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. van Duyne, “SERS: Materials, applications, and the future,” Materials Today, vol. 15, no. 1–2, pp. 16–25, Jan. 2012,
dc.relation.referencesD. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem Phys Lett, vol. 283, no. 5–6, pp. 381–385, Feb. 1998,
dc.relation.referencesR. A. Halvorson and P. J. Vikesland, “Surface-enhanced Raman spectroscopy (SERS) for environmental analyses,” Environ Sci Technol, vol. 44, no. 20, pp. 7749–7755, Oct. 2010
dc.relation.referencesN. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem Soc Rev, vol. 45, no. 8, pp. 2263–2290, Apr. 2016,
dc.relation.referencesW. H. Li, X. Y. Li, and N. T. Yu, “Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study,” Chem Phys Lett, vol. 312, no. 1, pp. 28–36, Oct. 1999
dc.relation.referencesK. Kneipp et al., “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys Rev Lett, vol. 78, no. 9, p. 1667, Mar. 1997
dc.relation.referencesK. F. Gibson and S. G. Kazarian, “Tip-enhanced Raman Spectroscopy,” Encyclopedia of Analytical Chemistry, pp. 1–30, Sep. 2014
dc.relation.referencesB. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman Spectroscopy – Its status, challenges and future directions,” Chem Phys Lett, vol. 472, no. 1–3, pp. 1–13, Apr. 2009
dc.relation.referencesN. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl Phys Lett, vol. 85, no. 25, p. 6239, Dec. 2004
dc.relation.referencesB. Pettinger, “Single-molecule surface- and tip-enhanced Raman spectroscopy,” Mol Phys, vol. 108, no. 16, pp. 2039–2059, Aug. 2010
dc.relation.referencesR. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem Phys Lett, vol. 318, no. 1–3, pp. 131–136, Feb. 2000
dc.relation.referencesE. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem Soc Rev, vol. 37, no. 5, pp. 921–930, Apr. 2008
dc.relation.referencesN. Hayazawa, A. Tarun, A. Taguchi, and K. Furusawa, “Tip-enhanced Raman spectroscopy,” in Raman Spectroscopy for Nanomaterials Characterization, Kumar C S S R, Ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 2012
dc.relation.referencesD. Cialla et al., “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Analytical and Bioanalytical Chemistry 2011 403:1, vol. 403, no. 1, pp. 27–54, Dec. 2011
dc.relation.referencesA. J. Driscoll, M. H. Harpster, and P. A. Johnson, “The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges,” Physical Chemistry Chemical Physics, vol. 15, no. 47, pp. 20415–20433, Nov. 2013
dc.relation.referencesA. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys Rev Lett, vol. 90, no. 9, p. 4, Mar. 2003
dc.relation.referencesY. Okuno, Y. Saito, S. Kawata, and P. Verma, “Tip-enhanced raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube,” Phys Rev Lett, vol. 111, no. 21, p. 216101, Nov. 2013
dc.relation.referencesY. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, “Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1434–1440, Oct. 2009
dc.relation.referencesW. Su and D. Roy, “Visualizing graphene edges using tip-enhanced Raman spectroscopy,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 4, p. 041808, Jul. 2013
dc.relation.referencesA. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys Rev Lett, vol. 82, no. 20, p. 4142, May 1999
dc.relation.referencesJ. P. R. Day et al., “Quantitative coherent anti-stokes raman scattering (CARS) microscopy,” Journal of Physical Chemistry B, vol. 115, no. 24, pp. 7713–7725, Jun. 2011
dc.relation.referencesD. Kopf, F. Ganikhanov, M. Katz, S. Carrasco, W. Seitz, and X. S. Xie, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Optics Letters, Vol. 31, Issue 9, pp. 1292-1294, vol. 31, no. 9, pp. 1292–1294, May 2006
dc.relation.referencesJ. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” Journal of Physical Chemistry B, vol. 108, no. 3, pp. 827–840, Jan. 2004
dc.relation.referencesJ. W. Chan, H. Winhold, S. M. Lane, and T. Huser, “Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 11, no. 4, pp. 858–863, Jul. 2005
dc.relation.referencesC. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl Phys Lett, vol. 84, no. 5, p. 816, Jan. 2004
dc.relation.referencesN. Djaker, P. F. Lenne, D. Marguet, A. Colonna, C. Hadjur, and H. Rigneault, “Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications,” Nucl Instrum Methods Phys Res A, vol. 571, no. 1–2, pp. 177–181, Feb. 2007
dc.relation.referencesM. Müller and A. Zumbusch, “Coherent anti-Stokes Raman Scattering Microscopy,” ChemPhysChem, vol. 8, no. 15, pp. 2156–2170, Oct. 2007
dc.relation.referencesM. H. F. Kox et al., “Label-Free Chemical Imaging of Catalytic Solids by Coherent Anti-Stokes Raman Scattering and Synchrotron-Based Infrared Microscopy,” Angewandte Chemie International Edition, vol. 48, no. 47, pp. 8990–8994, Nov. 2009
dc.relation.referencesD. Schafer, J. A. Squier, J. van Maarseveen, D. Bonn, M. Bonn, and M. Müller, “In situ quantitative measurement of concentration profiles in a microreactor with submicron resolution using multiplex CARS microscopy,” J Am Chem Soc, vol. 130, no. 35, pp. 11592–11593, Sep. 2008
dc.relation.referencesW. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem Soc Rev, vol. 45, no. 8, pp. 2075–2089, Apr. 2016
dc.relation.referencesD. Zhang, P. Wang, M. N. Slipchenko, and J. X. Cheng, “Fast vibrational imaging of single cells and tissues by stimulated raman scattering microscopy,” Acc Chem Res, vol. 47, no. 8, pp. 2282–2290, Aug. 2014
dc.relation.referencesK. Y. Bliokh, A. Y. Bekshaev, F. Nori, C. Zhang, and J. A. Aldana-Mendoza, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J Phys, vol. 11, no. 3, p. 033026, Mar. 2009
dc.relation.referencesP. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal Chem, vol. 78, no. 17, pp. 5952–5959, Sep. 2006
dc.relation.referencesB. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal Bioanal Chem, vol. 387, no. 5, pp. 1691–1703, Mar. 2007
dc.relation.referencesD. P. Strommen and K. Nakamoto, “Resonance raman spectroscopy,” J Chem Educ, vol. 54, no. 8, pp. 474–478, 1977
dc.relation.referencesN. Everall, “Depth Profiling with Confocal Raman Microscopy,” Spectroscopy, vol. 19, no. 10, pp. 22–28, 2004, Accessed: Jun. 24, 2022
dc.relation.referencesM. Etienne, M. Dossot, J. Grausem, and G. Herzog, “Combined raman microspectrometer and shearforce regulated SECM for corrosion and self-healing analysis,” Anal Chem, vol. 86, no. 22, pp. 11203–11210, Nov. 2014
dc.relation.referencesPrinceton Instruments, “Confocal Raman Microscopy, General Overview - Application Note.”
dc.relation.referencesHoriba Scientific, “Raman Imaging and Spectrometers - HORIBA.”
dc.relation.referencesM. Wall, “The Raman Spectroscopy of Graphene and the Determination of Layer Thickness,” 2011. Accessed: Jun. 24, 2022.
dc.relation.referencesK. Alam et al., “In-situ deposition of graphene oxide catalyst for efficient photoelectrochemical hydrogen evolution reaction using atmospheric plasma,” Materials, vol. 13, no. 1, Jan. 2020
dc.relation.referencesA. Wróblewska et al., “Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping,” Journal of Physics: Condensed Matter, vol. 29, no. 47, p. 475201, Nov. 2017
dc.relation.referencesP. S. Rawat, R. C. Srivastava, G. Dixit, and K. Asokan, “Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation,” Vacuum, vol. 182, Dec. 2020
dc.relation.referencesI. M. Vyshkvorkina, Y. v. Stebunov, A. v. Arsenin, V. S. Volkov, and S. M. Novikov, “Comparison of CVD-grown and exfoliated graphene for biosensing applications,” in AIP Conference Proceedings, Jun. 2021,
dc.relation.referencesG. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys Rev Lett, vol. 56, no. 9, pp. 930–933, Mar. 1986
dc.relation.referencesY. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nature Reviews Microbiology 2008 6:9, vol. 6, no. 9, pp. 674–680, Jul. 2008
dc.relation.referencesA. Engel and D. J. Müller, “Observing single biomolecules at work with the atomic force microscope,” Nature Structural Biology 2000 7:9, vol. 7, no. 9, pp. 715–718, Sep. 2000
dc.relation.referencesS. Liu and Y. Wang, “Application of AFM in microbiology: a review,” Scanning, vol. 32, no. 2, pp. 61–73, Mar. 2010
dc.relation.referencesY. F. Dufrêne, “AFM for nanoscale microbe analysis,” Analyst, vol. 133, no. 3, pp. 297–301, 2008
dc.relation.referencesY. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J Appl Phys, vol. 61, no. 10, p. 4723, Jun. 1998
dc.relation.referencesS. Y. Lee and R. L. Mahajan, “A facile method for coal to graphene oxide and its application to a biosensor,” Carbon N Y, vol. 181, pp. 408–420, Aug. 2021
dc.relation.referencesFederal Highway Administration, “Guidelines for Detection, Analysis, and Treatment of Materials-Related Distress in Concrete Pavements Volume 1,” McLean VA, Mar. 2002
dc.relation.referencesMicroscopy Australia, “Scanning Electron Microscopy.”
dc.relation.referencesJ. I. Goldstein et al., “Scanning Electron Microscopy and X-ray Microanalysis,” 2003
dc.relation.referencesCAEN Group, “Inorganic Scintillator Detectors.”
dc.relation.referencesR. Zhang and B. D. Ulery, “Synthetic vaccine characterization and design,” Journal of Bionanoscience, vol. 12, no. 1, pp. 1–11, Feb. 2018
dc.relation.referencesB. Das, R. Kundu, and S. Chakravarty, “Preparation and characterization of graphene oxide from coal,” Mater Chem Phys, vol. 290, p. 126597, Oct. 2022
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalÓxido de Grafeno
dc.subject.proposalCarbón
dc.subject.proposalNano materiales
dc.subject.proposalGraphene Oxide
dc.subject.proposalCoal
dc.subject.proposalNano materials
dc.title.translatedLiquid Phase Exfoliation (LPE) of high rank coal to obtain graphene oxide
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleExfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidFranco, Cesar [0000000332944498]
dc.contributor.cvlacFranco Rodríguez, César Germán [0000025336]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito