Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorPrieto Gómez, Germán Andrés
dc.contributor.authorMoyano Nieto, Ismael Enrique
dc.date.accessioned2023-01-12T15:02:34Z
dc.date.available2023-01-12T15:02:34Z
dc.date.issued2021-11-19
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82891
dc.descriptionilustraciones, graficas, mapas
dc.description.abstractEl Cratón Amazónico es una de las áreas cratónicas más grandes del mundo. El modelo geológico del Cratón en Colombia es poco conocido, principalmente porque una gran porción de las rocas asociadas a este cratón se encuentra cubiertas por secuencias sedimentarias y depósitos recientes, sumado a poca accesibilidad y densa cobertura selvática. Los modelos más aceptados para el Cratón amazónico indican que este evolucionó por acreción múltiple de cinturones/terrenos alrededor de un núcleo antiguo, pero estudios recientes sugieren que la evolución de la porción Noroccidental puede haber sido diferente de las áreas en donde se formularon dichos modelos. En el presente trabajo utilizamos datos geofísicos (magnéticos/gravimétricos), aplicando metodologías de detección multi-escala de bordes y modelado 3D que permitieron identificar y delinear las principales discontinuidades corticales para el Cratón amazónico en territorio colombiano, además de otras características geológicas. Se identificaron lineamientos geofísicos primarios (PGL), interpretados como posibles límites de la corteza. A partir de la interpretación geofísica, integrada con información geológica, geocronológica e isotópica, se proponen cinco dominios tectónicos: Ventuari-Tapajós, Cinturón de Atabapo, Cinturón de Vaupés, Rift Apaporis y Putumayo. Se presenta una nueva edad de cristalización de circón U-Pb para la Formación Piraparaná, que indica que es significativamente más antigua de lo que se pensaba anteriormente, implicando que la extensión en el Rift de Apaporis comenzó al menos en el Mesoproterozoico tardío, transformando así por completo su significado tectónico. Los límites estructurales propuestos corroboran y proporcionan una ubicación más precisa de los límites sugeridos previamente y que estaban difusamente delineados a partir de la información geológica y geocronológica disponible. Este trabajo presenta por primera vez un modelo geológico regional a escala cortical para el noroeste del Cratón Amazónico en Suramérica a partir de la integración de información geofísica, mejorando la comprensión de la estructura regional de esta parte del continente (Texto tomado de la fuente)
dc.description.abstractThe Amazon Craton is one of the largest cratonic areas in the world. The geological evolution of the Craton in Colombia is not well constrained, mainly because a large portion of the rocks associated with this craton are covered by sedimentary sequences and recent deposits, in addition to low accessibility and dense forest cover. The most accepted models for the Amazon Craton indicate that it evolved by multiple accretion of belts / terrains around an ancient nucleus. Recent studies suggest that the evolution of the Northwestern portion may have been different from the areas where these models were formulated. In the present work geophysical data (magnetic / gravimetric) were used, applying multi-scale edge detection methodology and 3D modeling that allowed to identify and delineate the main cortical discontinuities for the Amazon Craton in Colombia and other geological characteristics. Primary geophysical lineaments (PGL) were identified, interpreted as possible crustal boundaries. From geophysical interpretation, integrated with geology, geochronology and isotopic information, five tectonic domains are proposed: Ventuari-Tapajós, Atabapo Belt, Vaupés Belt, Apaporis Rift and Putumayo. A new U-Pb zircon crystallization age is presented for the Piraparaná Formation, indicating that it is significantly older than previously thought, and that the extension into the Apaporis Rift began at least in the late Mesoproterozoic, thus transforming its full tectonic significance. The proposed structural boundaries are in agreement and provide a more precise location of the previously suggested boundaries, loosely constrained to available geological and geochronological information. This work presents the first regional geological model at a cortical scale for the northwest of the Amazon Craton in South America using geophysical methods, improving the understanding of the regional structure of this part of the continent.
dc.format.extentxviii, 117 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titleModelo lito-geofísico del Cratón Amazónico en el Oriente Colombiano a partir de la integración de información geofísica
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Geociencias
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Geociencias
dc.description.researchareaGeofísica aplicada a modelos geológicos regionales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlfonso, M., Herrera, J., Alzate, L., Arciniegas, E., Casas, R., Duarte, P., Marín, E., Méndez, C., Montaña, J., 2014. Memoria explicativa de la plancha 220 Río Tuparro. Servicio Geológico Colombiano. Bogotá, 222 pp.
dc.relation.referencesAllaby, M., 2013. A Dictionary of Geology & Earth Sciences. Oxford University Press. Oxford, UK.
dc.relation.referencesAmaya López, C., Restrepo Álvarez, J. J., Weber Scharff, M., Cuadros Jiménez, F. A., Botelho, N. F., Ibáñez Mejía, M., Maya Sánchez, M., Pérez Parra, O. M., &Ramírez Cárdenas, C. (2020). The Guaviare Complex: new evidence of Mesoproterozoic (ca. 1.3 Ga) crust in the Colombian Amazonian Craton. Boletín Geológico, 47, 5-34, https://doi.org/10.32685/0120-1425/boletingeo.47.2020.502.
dc.relation.referencesArminio, J., Yoris, F., Quijada, C., Lugo, J., Shaw, D., Keegan, J., Marshall, J., (2013). Evidence for Precambrian Stratigraphy in Graben Basins below the Eastern Llanos Foreland, Colombia. Search and Discovery Article #50874
dc.relation.referencesBaines, G., Giles, D., Betts, P., Backe, G. 2009. Geophysically imaging Paleoproterozoic terrane boundaries in the unexposed northern Gawler Craton, Marla region. ASEG Extended abstracts – 20th Geophysical Conference, pp 1-5.
dc.relation.referencesBaines, G., Giles, D., Betts, P., Backe, G., (2009). Geophysically imaging Paleoproterozoic terrane boundaries in the unexposed northern Gawler Craton, Marla region. ASEG Extended abstracts – 20th Geophysical Conference, pp 1-5.
dc.relation.referencesBaines, G., Giles, D., Betts, P., (2010). 3D Geophysical modelling of the northern Gawler Craton, South Australia. Geoscience Australia, Record, 39, 95-107.
dc.relation.referencesBaranov, V., 1964. Numerical calculation of the formula of reduction to the magnetic pole. Geophysics, Vol. XXIX, No. 1, pp. 6i-79.
dc.relation.referencesBarrios, F., Cordani, U. & Kawashita, K. (1985). Caracterización geocronológica del Territorio Federal de Amazonas, Venezuela. Memorias VI Congreso Geológico Venezolano. Tomo III, 1432-1480.
dc.relation.referencesBettencourt, J. S., Leite, W. B., Jr., Ruiz, A. S., Matos, R., Payolla, B. L., & Tosdal, R. M. (2010). The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Sciences, 29(1), 28–46. http://doi.org/10.1016/j.jsames.2009.08.006.
dc.relation.referencesBird, D., 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The leading edge, February 2001, pp 150-159.
dc.relation.referencesBlakely, R., Simpson, R., (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics. Vol. I. No. 7. pp 1494- 1498.
dc.relation.referencesBonilla, A., (2019). Origen y evolución de los granitoides proterozoicos del oriente colombiano, noroeste del Cratón Amazónico. Tesis de Doctorado en Geociencias. Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Geociencias. Bogotá, Colombia.
dc.relation.referencesBonilla-Perez, A., Frantz, J.C., Char˜ao-Marques, J., Cramer, T., Franco-Victoria, J.A., Mulocher, E., Amaya-Perea, Z., (2013). Petrografía, Geoquímica y Geocronología del Granito de Parguaza en Colombia. Boletin de Geología 35 (2), 83–104. https://doi.org/10.18273/revbol.
dc.relation.referencesBonilla, A., Frantz, J.C., Charão-Marques, J., Cramer, T., Franco, J.A., Amaya, Z. (2016). Magmatismo rapakivi en la cuenca media del río Inírida, departamento de Guainía, Colombia. Boletín de Geología, 38 (1): 17-32.
dc.relation.referencesBonilla A., Franco, J., Cramer, T., Poujol, M., Cogné, N., Nachtergaele, S., De Gravé, J., (2020). Apatite LA-ICP-MS U–Pb and fission-track geochronology of the Caño Viejita gabbro in E-Colombia: Evidence for Grenvillian intraplate rifting and Jurassic exhumation in the NW Amazonian Craton. Journal of South American Earth Sciences 98 102438. https://doi.org/10.1016/j.jsames.2019.102438.
dc.relation.referencesBonilla, A., Cramer, T., De Grave, K., Alessio, B., Glorie, S., Kroonenberg, S. (2021). The NW Amazonian Craton in Guainía and Vaupes departments, Colombia: Transition between orogenic to anorogenic environments during the Paleo-Mesoproterozoic. Precambrian Research 360 (2021) 106223. https://doi.org/10.1016/j.precamres.2021.106223.
dc.relation.referencesBlakely, R., Simpson, R., 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics I (7), 1494–1498.
dc.relation.referencesBlakely, R, Connard, G., Curto, J., 2016. Tilt Derivative Made Easy. Geosoft. www.geosoft.com/media/uploads/resources/tilt_derivative_made_easy_07-2016.pdf
dc.relation.referencesBrito, B., (2011). The Paleoproterozoic in the South American continent: Diversity in the geologic time. Journal of South American Earth Sciences, 32, 270-286.
dc.relation.referencesBruneton, P.; Pallard, B.; Duselier, E.; Varney, E.; Bogotá, J.; Rodríguez, E. & Martín, E., (1983). Contribución a la geología del oriente de las comisarías del Vichada y del Guainía (Colombia). Geología Norandina, (6), 3-12.
dc.relation.referencesCardozo, A., Cubides, J., Zárate, A., Melo, L., (2009). Memoria explicativa de las planchas 162, 162 bis, 182 y 182 bis Puerto Carreño, Vichada. Instituto Colombiano de Geología y Minería- INGEOMINAS. 107 pp.
dc.relation.referencesCawood, P. A., & Pisarevsky, S. A. (2017). Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research, 292, 386–397. http://doi.org/10.1016/j.precamres.2017.01.031.
dc.relation.referencesCediel, F., (2019). Phanerozoic Orogens of Northwestern South America: Cordilleran-Type Orogens. Taphrogenic Tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá Indenter. In: Cediel F., & Shaw R. (Ed.), Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction (pp 3-95). Switzerland. Springer.
dc.relation.referencesCelada C., Garzón M., Gómez E., Khurama S., López J., Mora M., Navas O., Pérez R., Vargas O., Westerhof A., (2006). Potencial de recursos minerales en el Oriente colombiano: compilación y análisis de la información geológica disponible fase 0 versión 1.0. Ingeominas, 233 pp.
dc.relation.referencesClark, D., 1997. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics, 17(2), 83–103.
dc.relation.referencesCordani, U & Teixeira, W., (2007). Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher Jr, R.D., Carlson, M.P., McBride, J.H. & Martínez–Catalá, J.R. (editors), 4–D Framework of continental crust. Geological Society of America, Memoir 200, p. 297–320. https://doi.org/10.1130/2007.1200(14).
dc.relation.referencesCordani U., Fraga, L., Reis, N., Tassinari, C. & Brito-Neves, B. (2010). On the origin and tectonic significance of the intra-plate events of Grenvillian-type age in South America: A discussion. Journal of South American Earth Sciences 29 (2010) 143–159.
dc.relation.referencesCordani, U., Ramos, V., Fraga, L., Cegarra, M., Delgado, I., De Souza, K., Gomes, F., Schobenhaus, C., (2016a). Explanatory Notes: Tectonic Map of South America, Second Edition scale 1:5 000 000. CGMW.
dc.relation.referencesCordani, H., Sato, K., Sproessner, W., Santos, F., (2016b). U-Pb zircon ages of rocks from the Amazonas Territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazil. J. Geol. 46, 5–35.
dc.relation.referencesCordell, L. (1979) Gravimetric Expression of Graben Faulting in Santa Fe Country and the Espanola Basin, New Mexico. In: Ingersoll, R.V., Ed., Guidebook to Santa Fe Country, New Mexico Geological Society, Socorro, 59-64.
dc.relation.referencesCrawford, B., Betts, P., Ailleres, L., 2010. A Potential Field Approach to Defining Major Lithospheric Structures along the Margin of the West Australian Craton. ASEG 2010. Sydney, Australia.
dc.relation.referencesDe Boorder H., (1981) Structural-geological interpretation of SLAR imagery of the Colombian Amazones. Trans Inst Min Metall 90, B145–B152.
dc.relation.referencesDe Boorder, H., (2019). The La Trampa wedge (SE Colombia) revisited. 11th Inter Guiana Geological Conference, Paramaribo, 19-20 February 2019.
dc.relation.referencesDe Castro, D, et ál. 2013. Using airborne gravity and magnetic data to recognize crustal domains concealed un-derneath the Parnaíba basin. 13th International Congress of the Brazilian Geophysical Society, Brazil, August 26-29, 2013.
dc.relation.referencesDe Castro, D. L., Fuck, R. A., Phillips, J. D., Vidotti, R. M., Bezerra, F. H. R., & Dantas, E. L. (2014). Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics, 614, 128–145. http://doi.org/10.1016/j.tecto.2013.12.009.
dc.relation.referencesDe la Espriella, R., Flórez, R., Galvis, J., González, C.F., Mariño, J. & Pinto, H., (1990). Geología Regional del Norte de la Comisaría del Vichada. Geología Colombiana, (17), 93-106.
dc.relation.referencesDenith, M & Mudge, S. 2014. Geophysics for the mineral exploration geoscientist. Cambridge University Press. ISBN 9780521809511.
dc.relation.referencesDobrin, M.B. and Savit, C.H. (1998) Introduction to Geophysical Prospecting. 4th Edition, McGraw Hill, New York. ISBN 0-07-01719-3.
dc.relation.referencesEllis, R., Wet, B., Macleod, I. (2012). Inversion of Magnetic Data from Remanent and Induced Sources. ASEG Extended Abstracts, 1-4. doi:10.1071/ASEG2012ab117.
dc.relation.referencesENCAL S.A. - Consultoria e Aerolevantamentos, (1988). "Projeto Extremo Noroeste do Brasil (Levantamento Aeromagnético e Aerogamaespectrométrico)". Ministério das Minas e Energia, Departamento Nacional da Produção Mineral - DNPM, Companhia de Pesquisa de Recursos Minerais – CPRM. Convênio DNPM/CPRM, Relatório Final de Aquisição e Processamento de Dados, Fase II, 7 vol., texto e anexos, Rio de Janeiro.
dc.relation.referencesEtayo, F., Barrero, D., Lozano, H., Espinoza, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano, F., Duque-Caro, H., Vargas, R., Nuñez, A., Alvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Albers, J., Case, J., Greenwood, W., Singer, R., Berger, B., Cox, D., Hodges, C. (1983). Mapa de Terrenos Geológicos de Colombia. Publ. Geol. Esp. INGEOMINAS, pp 139.
dc.relation.referencesEtayo, F., Buenaventura, J., Vargas, R., Espinosa, A., Nuñez, A., González, H., Orrego, A. (1986). Mapa Geológico de Colombia, scale 1:1’000,000. INGEOMINAS. Bogotá
dc.relation.referencesFerreira, M., Dantas, E., Nogueira, M., Vitória, R., (2011). Aeromagnetometria na Caracterização do rifte intracontinental na Faixa Paraguai. Twelfth International Congress of the Brazilian Geophysical Society, pp 709-714.
dc.relation.referencesFitzGerald, D., Milligan, P. 2013. Defining a deep fault network for Australia, using 3D “worming”. SEG annual meeting. Houston (TX), USA. pp 1126-1130.
dc.relation.referencesFörste, C; Bruinsma, S., Abrikosov, O., Lemoine, J., Marty, J., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R., (2014). EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. http://doi.org/10.5880/icgem.2015.1.
dc.relation.referencesGalvis J, Huguett A, Ruge P (1979) Geología de la Amazonia Colombiana. Boletín Geológico INGEOMINAS 22(3):3–86.
dc.relation.referencesGeng, M., Welford, J., Farquharson, C., Hu, X., (2019). Gravity modeling for crustal-scale models of rifted continental margins using a constrained 3D inversion method. Geophysics, Vol. 84, No. 4 (July-August 2019); pp. G25–G39.
dc.relation.referencesGernigon, L., Fichler, C., Marello, L., Olesen, O., 2011. Magnetic expression of salt diapir-related structures in the Nordkapp Basin, western Barents Sea. Geology 39(2):135-138.
dc.relation.referencesGómez, J., Montes, N., Nivia, A., Diederix, H., (compiladores). (2015). Atlas Geológico de Colombia 2015. Escala 1:500 000. Servicio Geológico Colombiano, Bogotá.
dc.relation.referencesGómez, J., Schobbenhaus, C., Montes, N., (2019). Geological Map of South America 2019. Scale 1:5 000 000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey and Geological Survey of Brazil, Paris.
dc.relation.referencesGonzález C., Pinto H., (1990). Petrografía del Granito de Parguaza y otras rocas precámbricas en el Oriente de Colombia. Geología Colombiana 17, 107–121.
dc.relation.referencesGonzález, H., Escobar, A., Cáceres, C., Correa, R., Ayala, L., Fernández, F., Villada, I., López, F., (2014). Plancha 219 – Parque nacional natural El Tuparro: Memoria explicative. Servicio Geológico Colombiano, 113 pp.
dc.relation.referencesGonzález, W., Sigismondi, M., Graterol, V., Jácome, M., Izarra, C., (2017). Magnetic characterization and signature of the basement of Eastern Venezuela: Espino Graben. SEG International Exposition and 87th Annual Meeting. Houston. pp 1589-1864.
dc.relation.referencesGraterol, V, Vargas, A., (2010). Mapa de Anomalía de Intensidad Magnética Total y de Intensidad Magnética Total Reducida al Polo de la República de Colombia y Mapa de Anomalía de Bouguer total de la República de Colombia. Agencia Nacional de Hidrocarburos (ANH).
dc.relation.referencesGraterol, V., 2009. Levantamiento Aerogravimétrico y Aeromagnético de los sectores Norte y Oriental de la Cuenca de los llanos Orientales, Colombia Contrato No.034-2008. Informe final de Interpretación. Agencia Nacional de Hidrocarburos (ANH) (51 pp.).
dc.relation.referencesGusmao, R, De Medeiros, W., Pessoa, A.. 2005. Expressão gravimétrica e aeromagnética dos compartimentos e limites tectônicos da Província Borborema, Nordeste do Brasil. 9th International Congress of the Brazilian Geophysical Society, Brazil, September 11-14, 2005.
dc.relation.referencesGusmao, R., Freitas, J., 2014. Interpretação geofísica dos principais domínios tectônicos brasileiros. In: Serviço Geológico do Brasil (CPRM), Metalogênese das províncias tectônicas brasileiras (pp 21-40). Belo Horizonte.
dc.relation.referencesHackley, P., Urbani, F., Karlsen, A., Garrity, C., (2005). Geologic shaded relief map of Venezuela. USGS Open-file report 2005-1038.
dc.relation.referencesHeath, P, Dhu, T., Reed, G., Fairclough, M. (2009). Geophysical modelling of the Gawler Craton,SA - interpreting geophysics with geology. ASEG Extended abstracts – 20th Geophysical Conference.
dc.relation.referencesHolden, D., Archibald, N., Boschetti, F., Jessell, M., 2000. Inferring geological structures using wavelet-based multiscale edge analysis and forward models. Explor. Geophys. 31, 67–71.
dc.relation.referencesHornby, P., Boschetti, F., Horowitz, F., (1999). Analysis of potential field data in the wavelet domain. Geophys. J. Int. 137, pp 175–196.
dc.relation.referencesHorowitz, F., Strykowski, G., Boschetti, F., Hornby, P., Archibald, N., Holden, D., Ketelaar, P., Woodcock, R., (2000). Earthworms; “multiscale” edges in the EGM96 global gravity field. SEG expanded abstracts. Alberta, Canadá.
dc.relation.referencesIbáñez-Mejía M., Ruiz J., Valencia V., Cardona A., Gehrels G., Mora A., (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: new U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Res, 191, 58–77.
dc.relation.referencesIbañez–Mejia, M., Pullen, A., Arenstein, J., Gehrels, G.E., Valley, J., Ducea, M.N., Mora, A.R., Pecha, M. & Ruiz, J. (2015). Unraveling crustal growth and reworking processes in complex zircons from orogenic lower–crust: The Proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267: 285–310. http://doi.org/10.1016/j.precamres.2015.06.014.
dc.relation.referencesIbañez-Mejia, M., Bloch, E. M., & Vervoort, J. D. (2018). Timescales of collisional metamorphism from Sm-Nd, Lu-Hf and U-Pb thermochronology: A case from the Proterozoic Putumayo Orogen of Amazonia. Geochimica Et Cosmochimica Acta, 235, 103–126. http://doi.org/10.1016/j.gca.2018.05.017
dc.relation.referencesIbañez-Mejia, M. (2020). The Putumayo Orogen of Amazonia: A synthesis. In J. Gomez & D. Mateus-Zabala (Eds.), The Geology of Colombia (Vol. 1, pp. 101–131). Bogotá: Servicio Geológico Colombiano. http://doi.org/10.32685/pub.esp.35.2019.06.
dc.relation.referencesIbañez–Mejia, M. & Cordani, U.G. (2020). Zircon U–Pb geochronology and Hf–Nd–O isotope geochemistry of the Paleo– to Mesoproterozoic basement in the westernmost Guiana Shield. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65–90. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.04.
dc.relation.referencesIsles, D., Rankin, L. (2013). Geological interpretation of aeromagnetic data. Australian society of Exploration Geophysicist. ISBN 0-521-33938-3.
dc.relation.referencesJacoby, W., Smilde, P. 2009. Gravity Interpretation: Fundamentals and Application of Gravity Inversion and Geological Interpretation. Springer. ISBN: 978-3-540-85328-2.
dc.relation.referencesJackson, D., 1972. Interpretation of inaccurate, Insufficient and Inconsistent data. Geophys, J. R. astr. Soc., 28, 97-109.
dc.relation.referencesKearey, P., Brooks, M. 1991. An Introduction to Geophysical Exploration, 2nd Edition. Blackwell scientific publications. Oxford.
dc.relation.referencesKohanpour, F., Lindsay, M., Occhipinti, S., Gorczyyk, W. (2018). Structural controls on proterozoic nickel and gold mineral systems identified from geodynamic modelling and geophysical interpretation, east Kimberley, Western Australia. Ore Geology Reviews 95 (2018), pp 552-568. Elsevier.
dc.relation.referencesKroonemberg, S., De Roever E., (2010). Geological Evolution of the Amazonian Craton, in: Amazonia, Landscape and Species Evolution. Edited by C. Hoorn and F Wesselingh. Wiley, p. 9-28.
dc.relation.referencesKroonenberg, S., Reeves, C., 2012. Geology and petroleum potential, Vaupés-Amazonas Basin, Colombia. In: Cediel, F. (Ed.), Petroleum Geology of Colombia, 15. Universidad EAFIT, Medellín (92 pp.).
dc.relation.referencesKroonenberg, S., 2019. The Proterozoic basement of the Western Guiana shield and the Northern Andes. In: Cediel, F., Shaw, R. (Eds.), Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction. Springer, Switzerland, pp. 115–192
dc.relation.referencesKumar, K. (2008) Potential Theory in Applied Geophysics. Springer, New York. ISBN 978-3-540-72089-8.
dc.relation.referencesLahti, I. & Karinen, T. 2010. Tilt derivative multiscale edges of magnetic data. The Leading Edge. Volume 29, issue 1. DOI 10.1190/1.3284049.
dc.relation.referencesLi, Y., Melo, A., Martinez, C., Sun, J., (2019). Geology differentiation: A new frontier in quantitative geophysical interpretation in mineral exploration. The Leading Edge, January 2019, p 60-66. https://doi.org/10.1190/tle38010060.1.
dc.relation.referencesLópez J., Mora B., Jiménez D., Khurama S., Marín E., Obando G., Páez T., Carrillo L., Bernal V., Celada C., (2010). Cartografía geológica y muestreo geoquímico de las Planchas 297 – Puerto Inírida, 297 Bis – Merey Y 277 Bis – Amanaven, Departamento del Guainia. Ingeominas, Bogotá. 158 pp.
dc.relation.referencesMacLeod, I., Ellis, R., (2013). Magnetic Vector Inversion, a simple approach to the challenge of varying direction of rock magnetization. ASEG-PESA 23rd International Geophysical Conference and Exhibition. Melbourne, Australia.
dc.relation.referencesMeyer, B., Saltus, R., Chulliat, A., (2017). EMAG2: Earth Magnetic Anomaly Grid (2-arc-minute resolution) Version 3. National Centers for Environmental Information, NOAA. Model. doi:10.7289/V5H70CVX.
dc.relation.referencesMiller, H., Singh, V. 1994. Potential field tilt – a new concept for the location of potential field sources. Journal of Applied Geophysics, 32, 213–217.
dc.relation.referencesMoyano, I., Lara, N., Ospina, D., Salamanca, A., Arias, H., Gómez E., Puentes, M., Rojas, O., (2018). Mapa de anomalías Geofísicas de Colombia para Recursos Minerales, Versión 2018. Bogotá: Servicio Geológico Colombiano.
dc.relation.referencesMoyano, I, Cordani, R., Cárdenas, L., Lara, N., Rojas, O, Puentes, M., Ospina, D., Salamanca, A. & Prieto, G. (2020). Contribution of new airborne geophysical information to the geological knowledge of eastern Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 17–36. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.02
dc.relation.referencesMoyano, I & Prieto, G. (2021a). Structural signatures of the Amazonian Craton in eastern Colombia from gravity and magnetometry data interpretation. Tectonophysics 800(2021) 228705. https://doi.org/10.1016/j.tecto.2020.228705.
dc.relation.referencesMoyano, I, Prieto, G., Ibáñez-Mejía, M. (2021b). Tectonic domains in the NW Amazonian Craton from geophysical and geological data. Precambrian Research (en revision)
dc.relation.referencesNabighian, M, 1972. The analytic signal of two - dimensional magnetic bodies with polygonal cross - sections: it´s properties and use for automated anomaly interpretation. Geophysics, 507-517.
dc.relation.referencesOchoa, A., Ríos, P., Cardozo, A., Cubides, J., Giraldo, D., Rincón, H., Mendivelso, D., (2012). Cartografia geologica y muestreo geoquimico de las planchas 159, 160, 161, 179, 180 y 181 Puerto Carreño, Vichada. Memoria explicativa. Servicio Geológico Colombiano. Bogotá. 127 pp.
dc.relation.referencesOchoa, A., Ríos, P., Oviedo, J., Cardozo, A., Cubides, J., (2014). “Cartografía geológica y muestreo geoquimico de las planchas 237 y 256 Departamento de Vichada”: Memoria explicativa. Memoria explicativa. Servicio Geológico Colombiano. Bogotá. 85 pp.
dc.relation.referencesPark, Y., Rim, H., Lim, M., Hong, Y, Jeon, T., (2013). Magnetic characteristics of tectonic provinces of Korea. Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan. pp 146-149.
dc.relation.referencesParker, R., 1977. Understanding inverse theory. Ann. Rev. Earth Planet. Sci., 5, 35-64.
dc.relation.referencesRodríguez G, Sepúlveda J, Ortiz F., Ramírez C, Ramos K, Bermúdez J., Sierra M., (2010). Mapa Geológico Plancha 443 Mitú – Vaupés. Ingeominas.
dc.relation.referencesPérez-Aguirre, X., Chávez-Cabello, G., Ramírez-Peñaa, C., Méndez-Delgado, S., Romero-de la Cruz, O. (2021). Geophysical modeling of the crustal boundary between the Central and Oaxaquia terranes in northern Mexico. Journal of South American Earth Sciences 110 (2021) 103288. https://doi.org/10.1016/j.jsames.2021.103288.
dc.relation.referencesPessano, P. C., Ganade, C. E., Tupinambá, M., & Teixeira, W. (2021). Updated map of the mafic dike swarms of Brazil based on airborne geophysical data. Journal of South American Earth Sciences, 107(1–2), 103076. http://doi.org/10.1016/j.jsames.2020.103076.
dc.relation.referencesPriem HNA, Andriessen PAM, Boelrijk NAIM, De Boorder H, Hebeda EH, Huguett A et al (1982). Geochronology of the precambrian in the Amazonas region of southwestern Colombia western Guiana shield. Geologie & Mijnbouw:229–242
dc.relation.referencesReeves, C. 2005. Aeromagnetic Surveys: Principles, Practice & Interpretation. Geosoft. www.geosoft.com/media/uploads/resources/technical-papers/Aeromagnetic_Survey_Reeves.pdf
dc.relation.referencesRestrepo, P. & Cediel, F. 2010. Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences 29 (2010) 764–771.
dc.relation.referencesRodríguez G, Sepúlveda J, Ortiz F., Ramírez C, Ramos K, Bermúdez J., Sierra M., (2011). Geología de la Plancha 443 Mitú – Vaupés. Escala 1:100.000. Servicio Geológico Colombiano. Bogotá.
dc.relation.referencesRodriguez-Corcho, A., Rojas-Agramonte, Y., Barrera-Gonzalez, J., Marroquin-Gomez, M., Bonilla-Correa, S., Izquierdo-Camacho, D., Delgado-Balaguera, S., Cartwright-Buitrago, D., Muñoz-Granados, M., Carantón-Mateus, W., Corrales-García, A., Laverde-Martinez, A., Cuervo-Gómez, A., Rodriguez-Ruiz, M., Marin-Jaramillo, J., Salazar-Cuellar, N., Esquivel-Arenales, L., Daroca, M., Carvajal, S., Perea-Pescador, A., Solano-Acosta, J., Diaz, S., Guillen, A., Bayona, G., Cardona-Molina, A., Eglington, B., Montes, C. (2021): The Colombian geochronological database (CGD), International Geology Review, DOI:10.1080/00206814.2021.1954556
dc.relation.referencesSantos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J., Fletcher, I.R. (2000). A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Res. 3, 453–488.
dc.relation.referencesSoares, L., Da Costa, M., (2013). New concepts of continental passive margins: gravity and magnetic interpretation in Western Iberia. Thirteenth International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil. pp 344-349.
dc.relation.referencesTassinari, C., Cordani, U. G., Nutman, A., van Schmus, W., Bettencourt, J. S., & Taylor, P. (1996). Geochronological systematics on basement rocks from the Rio Negro-Juruena province (Amazonian Craton) and tectonic implications. International Geology Review, 38(2), 161–175.
dc.relation.referencesTassinari, C.C.G., Macambira, M.J.B. (1999). Geochronological provinces of the Amazonian Craton. Episodes 22, 174–182.
dc.relation.referencesTelford, W., Geldart, L., Sheriff, R. 1990. Applied Geophysics. 2nd edition. Cambridge University Press. ISBN 0-521-33938-3.
dc.relation.referencesTeixeira, W., Geraldes, M. C., Matos, R., Ruiz, A. S., Saes, G., & Vargas-Mattos, G. (2010). A review of the tectonic evolution of the Sunsás belt, SW Amazonian Craton. Journal of South American Earth Sciences, 29(1), 47–60. http://doi.org/10.1016/j.jsames.2009.09.007.
dc.relation.referencesThébault, E., Finlay, C, Beggan, D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., ; Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J., Lesur, V., Lowes, F., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., Zvereva, T. 2015 International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space, 67 (79). https://doi.org/10.1186/s40623-015-0228-9
dc.relation.referencesVanDecar, J., Snieder, R., 1994. Obtaining smooth solutions to large, linear, inverse problems. Geophysics, Vol. 59, No. 5; pp 818-829.
dc.relation.referencesVeras, R., Nascimento, R., Almeida, M., Paquette, J. & Carneiro, M. 2018. Paleoproterozoic basement of Içana Domain, Rio Negro Province, northwestern Amazonian Craton: Geology, geochemistry and geochronology (U–Pb and Sm–Nd). Journal of South American Earth Sciences, 86: 384–409. http://doi.org/10.1016/j.jsames.2018.07.003.
dc.relation.referencesYan, J., Lü, Q., Deng, Z., Meng, G., Liu, Y., Zhao, J. 2011. Gravity and Magnetic Multi-scale Edge Detection and Its Application on Tectonic Framework Research of the Lower and Middle Reaches of the Yangtze River Metallogenic Belt, China. GEM Beijing 2011: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications Beijing, China. October 10-13, 2011.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembGEOLOGIA-COLOMBIA
dc.subject.lembGeology - Colombia
dc.subject.lembGEOLOGIA-PROCESAMIENTO DE DATOS
dc.subject.lembGeology - data processing
dc.subject.proposalCratón Amazónico
dc.subject.proposalAmazon Craton
dc.subject.proposalIntegración geológica-geofísica
dc.subject.proposalMétodos Magnético y Gravimétrico
dc.subject.proposalModelos geológicos regionales
dc.subject.proposalGeophysical-geological integration
dc.subject.proposalMagnetic and gravity methods
dc.subject.proposalRegional geological models
dc.title.translatedLitho-geophysical model of the Amazon Craton in Eastern Colombia based on the integration of geophysical information
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito