Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRincón Joya, Miryam
dc.contributor.authorCárdenas Flechas, Leydi Julieta
dc.date.accessioned2023-01-12T19:31:22Z
dc.date.available2023-01-12T19:31:22Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82901
dc.descriptionilustraciones. fotografías, graficas
dc.description.abstractEn la presente investigación se realizó la síntesis del Co3O4, Co3-xNixO4 x = 1 a 16% y Co3-xNixO4 + rGO x = 0 y 4% por las técnicas sol-gel e hidrotermal analizando la influencia de la temperatura de 400 °C a 1000 °C, así como el efecto de la concentración de níquel sobre la morfología y composición química del compuesto. A su vez, se fabricaron electrodos nanoestructurados de óxido de cobalto y óxido de cobalto con níquel por el método anodización electroquímica. Las muestras que presentaron mayor área superficial específica se seleccionaron como sensores de acetona y etanol, eficiencia bactericida de E. Coli / S. Aureus, y absorción fotocatalítica de azul de metileno. La caracterización estructural y morfología de las muestras se realizó por medio de las técnicas de difracción de rayos X (DRX) y microscopía electrónica de transmisión respectivamente. Las propiedades ópticas fueron determinadas por medio de la técnica de espectroscopía Raman, espectrofotometría ultravioleta - visible (UV-Vis) y espectroscopía infrarroja con transformada de Fourier (FTIR). Medidas de magnetización se llevaron a cabo en función al campo magnético. La resistividad eléctrica del material se evalúo empleando el método de cuatro puntas. Se identificaron cambios en las características térmicas de las muestras por medio de calorimetría diferencial de barrido. La composición superficial de algunas muestras se determinó mediante de espectroscopía de fotoelectrones emitidos por rayos X (XPS). A través de sortometría se evalúo el área superficial específica de las muestras con el fin de determinar las mejores condiciones de síntesis para las aplicaciones señaladas. Los resultados de DRX obtenidos indican la formación de la fase pura espinela Co3O4 con transición de fase a 917 °C a CoO, óxidos de Co3-xNixO4 con estructura espinela se obtuvieron por las dos técnicas de síntesis calcinados hasta 600 °C, a 800 °C se evidenció la aparición de una fase secundaria de NiO. La sustitución generó un corrimiento en los picos DRX hacia mayores ángulos y un desplazamiento en las bandas Raman donde los picos disminuyen la intensidad y aumentan su ensanchamiento con el aumento de la concentración de Ni generado por la diferencia de radios iónicos. Los óxidos sintetizados mostraron cambios en los modos vibratorios Raman relacionados con defectos y distorsiones en la red cristalina del material resultado del aumento de temperatura y adición de níquel. A 1000 °C se evidencia la formación de heteroestructuras compuestas por Co3O4, NiCo2O4 y CoO posiblemente resultado de la sustitución y temperatura. Análisis de sortometría indican que las muestras con mayor área superficial son Co3-xNixO4 x = 4% y Co3-xNixO4 x = 4% + rGO obtenidas por ambas técnicas. Se prepararon sensores por dos métodos a partir de estas muestras y fueron expuestos a vapor de metanol, etanol y acetona donde se evidenció una respuesta a la exposición a estos vapores por el cambio en su resistividad. Análisis bactericidas señalan que la muestra Co3-xNixO4 x = 4% + rGO tuvo la mejor respuesta frente a S. Aureus y E.Coli; este comportamiento se mejoró principalmente por la incorporación del rGO, un tamaño de partícula menor y la mayor área superficial. Esta muestra también mostró el mejor comportamiento en la aplicación para la absorción de azul de metileno. Los electrodos obtenidos por anodización depositados en láminas de cobalto presentan morfologías en forma de microcubos cavidades microtriangulares y aglomerados, la mayoría con longitudes desde ±0.19 µm hasta ±3.24 µm en función a la solución química empleada (Texto tomado de la fuente)
dc.description.abstractIn the present investigation, the synthesis of Co3O4, Co3-xNixO4 x = 1 to 16% and Co3-xNixO4 + rGO x = 0 and 4% was carried out by sol-gel and hydrothermal techniques, analyzing the influence of temperature from 400 °C to 1000 °C, as well as the effect of nickel concentration on the morphology and chemical composition of the compound. At the same time, nanostructured electrodes of cobalt oxide and cobalt oxide with nickel were manufactured by the electrochemical anodization method. The samples that presented the highest specific surface area were selected as sensors for acetone and ethanol, bactericidal efficiency of E. Coli / S. Aureus, and photocatalytic degradation of methylene blue. The microstructural and morphological characterization of the samples was carried out using X-ray diffraction (XRD) and transmission electron microscopy techniques, respectively. The optical properties were determined using the Raman spectroscopy technique, ultraviolet-visible spectrophotometry (UV-Vis) and Fourier transform infrared spectroscopy (FTIR). Magnetization measurements were carried out as a function of the magnetic field. The electrical resistivity of the material was evaluated using the four-point method. Changes in the thermal characteristics of the samples were identified by means of differential scanning calorimetry. The surface composition of some samples was determined by X-ray photoelectron spectroscopy (XPS). Through sortometry, the specific surface area of the samples was evaluated in order to determine the best synthesis conditions for the indicated applications. The obtained XRD results indicate the formation of the pure Co3O4 spinel phase with phase transition at 917 °C to CoO, Co3-xNixO4 oxides with spinel structure were obtained by the two synthesis techniques calcined up to 600 °C, at 800 °C the appearance of a secondary phase of NiO was evidenced. The substitution generated a shift in the XRD peaks towards greater angles and a shift in the Raman bands where the peaks decrease in intensity and increase in broadening with the increase in Ni concentration generated by the difference in ionic radius. The synthesized oxides showed changes in the Raman vibrational modes related to defects and distortions in the crystal lattice of the material as a result of the increase in temperature and the addition of nickel. At 1000°C, the formation of heterostructures composed of Co3O4, NiCo2O4 and CoO, possibly the result of substitution and temperature, is evident. Sortometry analysis indicates that the samples with the highest surface area are Co3-xNixO4 x = 4% and Co3-xNixO4 x = 4% + rGO obtained, which were by both techniques. Sensors were prepared by two methods from these samples and were exposed to methanol, ethanol and acetone vapor where a response to exposure to these vapors was evidenced by the change in their resistivity. Bactericidal analyzes indicate that the Co3-xNixO4 x = 4% + rGO sample had the best response against S. Aureus and E.Coli; this behavior was improved mainly by the incorporation of rGO, a smaller particle size and a larger surface area. This sample also showed the best behavior in the application for the photodegradation of methylene blue. The electrodes obtained by anodization deposited on cobalt sheets present morphologies in the form of microtubes, microcubes and agglomerates, most with lengths from ±0.19 µm to ±3.24 µm depending on the chemical solution used.
dc.format.extent206 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.subject.otherCobalt oxide
dc.titleSíntesis y caracterización de nanoestructuras de Co3O4 dopadas con Ni para aplicación en detección de gases
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo de Física Mesoscópica
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaMateriales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesS. Mehmood, “Synthesis and Characterization of Co3O4 based nanocomposite for electrochemical sensor applications,” University of Malaya, 2018.
dc.relation.referencesV. Mini, K. Archana, S. Raghu, C. Sharanappa, and H. Devendrappa, “Nanostructured multifunctional core/shell ternary composite of polyaniline-chitosan-cobalt oxide: Preparation, electrical and optical properties,” Mater. Chem. Phys., vol. 170, pp. 90–98, 2016.
dc.relation.referencesM. Mehmood Shahid, P. Rameshkumar, W. Jeffrey Basirun, J. Joon Ching, and N. Ming Huang, “Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium,” Electrochim. Acta, vol. 237, pp. 61–68, 2017.
dc.relation.referencesI. A. Abdel-Latif, M. M. Rahman, and S. B. Khan, “Neodymium cobalt oxide as a chemical sensor,” Results Phys., vol. 8, pp. 578–583. 2018.
dc.relation.referencesW. Li et al., “Evaluation of the physiochemical properties and catalytic performance of mixed metal oxides-carbon nanotubes nanohybrids containing carbon nanotubes with different diameters,” Appl. Clay Sci., vol. 135, pp. 95–102, 2017.
dc.relation.referencesA. J. Cinthia, G. S. Priyanga, R. Rajeswarapalanichamy, and K. Iyakutti, “Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba),” J. Phys. Chem. Solids, vol. 79, pp. 23–42, 2015.
dc.relation.referencesY. Cho, N. S. Parmar, S. Nahm, and J. W. Choi, “Full range optical and electrical properties of Zn-doped SnO2 and oxide/metal/oxide multilayer thin films deposited on flexible PET substrate,” J. Alloys Compd., vol. 694, pp. 217–222, 2017.
dc.relation.referencesA. Abdelkrim, S. Rahmane, O. Abdelouahab, A. Hafida, and K. Nabila, “Optoelectronic properties of SnO2 thin films sprayed at different deposition times,” Chinese Phys. B, vol. 25, no. 4, 2016.
dc.relation.referencesH. Palneedi et al., “Laser Irradiation of Metal Oxide Films and Nanostructures : Applications and Advances,” vol. 1705148, no. 30, pp. 1–38, 2018.
dc.relation.referencesA. Srivastava, Oxide nanostructures: Growth, microstructures, and properties, 1st. Editi. New York: Jenny Stanford Publishing, 2014.
dc.relation.referencesS. B. Ogale, T. V. Venkatesan, and M. G. Blamire, Functional metal oxides: New science and novel applications. John Wiley & Sons., 2013.
dc.relation.referencesT. Nakajima, K. Shinoda, and T. Tsuchiya, “UV-assisted nucleation and growth of oxide films from chemical solutions,” Chem. Soc. Rev., vol. 43, no. 7, pp. 2027–2041, 2014.
dc.relation.referencesM. M. Rahman, J. Z. Wang, X. L. Deng, Y. Li, and H. K. Liu, “Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery,” Electrochim. Acta, vol. 55, no. 2, pp. 504–510, 2009.
dc.relation.referencesR. J. Aitken, M. Q. Chaudhry, A. B. A. Boxall, and M. Hull, “Manufacture and use of nanomaterials: Current status in the UK and global trends,” Occup. Med. (Chic. Ill)., vol. 56, no. 5, pp. 300–306, 2006.
dc.relation.referencesZ. Gu, S. Zhu, L. Yan, F. Zhao, and Y. Zhao, “Graphene-Based Smart Platforms for Combined Cancer Therapy,” Advanced Materials, vol. 31, no. 9. Wiley-VCH Verlag, 2019.
dc.relation.referencesS. Li, K. Wu, L. Li, L. Suo, and Y. Zhu, “An architecture of dandelion-type Ni- Co3O4 microspheres on carbon nanotube films toward an efficient catalyst for oxygen reduction in zinc-air batteries,” Appl. Surf. Sci., vol. 481, pp. 40–51, 2019.
dc.relation.referencesG. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires.,” J. Mater. Chem., vol. 19, pp. 828–839, 2008.
dc.relation.referencesD. J. Joe et al., “Laser–Material Interactions for Flexible Applications,” Adv. Mater., vol. 29, no. 26, 2017.
dc.relation.referencesK. Cvejin, M. Śliwa, L. Manjakkal, J. “Impedancemetric NO sensor based on YSZ/perovskite neodymium cobaltite operating at high temperatures,” Sens. Actuators, B, vol. 228, pp. 612–624, 2016.
dc.relation.referencesX. Zhang et al., “Novel Co3O4 nanocrystalline chain material as a high performance gas sensor at room temperature,” J. Alloys Compd., vol. 768, pp. 190–197, 2018.
dc.relation.referencesQ. Zhou and W. Zeng, “Shape control of Co3O4 micro-structures for high-performance gas sensor,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 95, pp. 121–124, 2018.
dc.relation.referencesA. Numan, N. Duraisamy, F. Saiha Omar, Y. K. Mahipal, K. Ramesh, and S. Ramesh, “Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application,” RSC Adv., vol. 6, no. 41, pp. 34894–34902, 2016.
dc.relation.referencesY. Hakat, T. Kotbagi. “Silver supported on hierarchically porous SiO2 and Co3O4 monoliths: Efficient heterogeneous catalyst for oxidation of cyclohexene,” J. Mol. Catal., vol. 411, pp. 61–71, 2016.
dc.relation.referencesC. Han et al., “Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange,” Appl. Catal. B Environ., vol. 147, pp. 546–553. 2014.
dc.relation.referencesM. M. Shahid et al., “A cobalt oxide nanocubes interleaved reduced graphene oxide nanocomposite modified glassy carbon electrode for amperometric detection of serotonin,” Mater. Sci. Eng. C, vol. 100, pp. 388–395, 2019.
dc.relation.referencesJ. M. Xu and J. P. Cheng, “The advances of Co3O4 as gas sensing materials: A review,” Journal of Alloys and Compounds, vol. 686. pp. 753–768, 2016.
dc.relation.referencesJ. Mei, Y. Zhang, T. Liao, Z. Sun, and S. X. Dou, “Strategies for improving the lithium-storage performance of 2D nanomaterials,” National Science Review, v. Oxford University Press, pp. 389–416. 2018.
dc.relation.referencesJ. Macak, H. Tsuchiya, S. Ghicov. “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications,” Curr. Opin. Solid State Mater. Sci., vol. 11, no. 1–2, pp. 3–18, 2007.
dc.relation.referencesP. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: Synthesis and applications,” Angewandte Chemie - International Edition, vol. 50, no. 13. American Chemical Society, pp. 2904–2939. 2011.
dc.relation.referencesJ. Mei, T. Liao, G. A. Ayoko, J. Bell, and Z. Sun, “Cobalt oxide-based nanoarchitectures for electrochemical energy applications,” Prog. Mater. Sci., vol. 103, pp. 596–677, 2019.
dc.relation.referencesM. G. Blamire, Edited by Satishchandra B. Ogale, Thirumalai V. Venkatesan, and Mark G. Blamire Functional metal oxides: new science and novel applications. John Wiley & Sons, 2013.
dc.relation.referencesU. P. M. Ashik, S. Kudo, and J. Hayashi, An Overview of Metal Oxide Nanostructures. Elsevier. 2018.
dc.relation.referencesY. K. Gautam, K. Sharma, S. Tyagi, A. K. Ambedkar, M. Chaudhary, and B. Pal Singh, “Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges,” R. Soc. Open Sci., vol. 8, no. 3, 2021.
dc.relation.referencesG. Eranna, Metal Oxide nanostructures as gas sensing devices. India: Taylor & Francis, 2012.
dc.relation.referencesJ. Chen, M. Seki, M. S. Sarker, H. Yamahara, and H. Tabata, “Self-organized nanostructures in magnetic CoGa0.8Mn1.2O4 thin films fabricated by pulsed laser deposition,” J. Cryst. Growth, vol. 563, no. January, p. 126103, 2021.
dc.relation.referencesJ. Cardenas, J. Leon, and J. J. Olaya, “Synthesis and high-temperature corrosion resistance of Ti-Zr-Si-N coatings deposited by means of sputtering,” Corros. Eng. Sci. Technol., vol. 54, no. 3, pp. 233–240, 2019.
dc.relation.referencesL.J. Cardenas Flechas, “Resistencia a la corrosión de recubrimientos nanoestructurados de Ti-Zr-Si-N,” Universidad Nacional de Colombia, 2018.
dc.relation.referencesM. Kang et al., “Low-Temperature and High-Quality Growth of Bi2O2 Se Layered Semiconductors via Cracking Metal-Organic Chemical Vapor Deposition,” ACS Nano, vol. 15, no. 5, pp. 8715–8723, 2021.
dc.relation.referencesM. Farahmandjou and P. Khalili, “ZnO nanoparticles synthesized by co-precipitation method; Morphology and optoelectronic study.,” Asian J. Chem., vol. 5, pp. 219–226, 2021.
dc.relation.referencesK. Adib, E. Sohouli, M. Ghalkhani, H. R. Naderi, Z. Rezvani, and M. Rahimi-Nasrabadi, “Sonochemical synthesis of Ag2WO4/RGO-based nanocomposite as a potential material for supercapacitors electrodes,” Ceram. Int., vol. 47, no. 10, pp. 14075–14086, 2021.
dc.relation.referencesL.J. Cardenas Flechas, C.P Mejía Villagrán, M. Rincón Joya, J.J Olaya Florez, "Synthesis of nanostructured (Ti-Zr-Si) N coatings deposited on Ti6A14V alloy" Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 45 no. 175, pp. 570-581, 2021.
dc.relation.referencesP. N. Shanbhag, R. K. Biswas, S. K. Pati, A. Sundaresan, and C. N. R. Rao, “Elusive Co2O3: A Combined Experimental and Theoretical Study,” ACS Omega, vol. 5, no. 45, pp. 29009–29016, 2020.
dc.relation.referencesS. C. Petitto, E. M. Marsh, G. A. Carson, and M. A. Langell, “Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4 (1 1 1) with oxygen and water,” J. Mol. Catal. A Chem., vol. 281, no. 1–2, pp. 49–58, 2008.
dc.relation.referencesA. El Abed, S. E. Elqebbaj, M. Zakhour, M. Champeaux, J. M. Perez-Mato, and J. Darriet, “Crystal structure of a modulated composite structure with two subsystems: Ba1.1064CoO3,” J. Solid State Chem., vol. 161, no. 2, pp. 300–306, 2001.
dc.relation.referencesS. Saito, Nakahigashi, K., Shimomura, Y. X-ray diffraction study on CoO. J. Phys. Soc. Japan, vol. 21, pp. 850–860, 1966.
dc.relation.referencesJ. M. Tarascon et al., “In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry,” J. Solid State Chem., vol. 147, no. 1, pp. 410–420, 1999.
dc.relation.referencesL. J. Cardenas-Flechas, P. T. C. Freire, E. C. Paris, L. C. Moreno, and M. R. Joya, “Temperature-induced structural phase transformation in samples of Co3O4 and Co3-xNixO4 for CoO,” Materialia, vol. 18, no. March, p. 101155, 2021.
dc.relation.referencesZ. Chang et al., “Co3O4 nanoneedle arrays as a multifunctional ‘super-reservoir’ electrode for long cycle life Li-S batteries,” J. Mater. Chem. A, vol. 5, no. 1, pp. 250–257, 2017.
dc.relation.referencesK. Wang et al., “N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media,” Int. J. Hydrogen Energy, vol. 40, no. 10, pp. 3875–3882, 2015.
dc.relation.referencesJ. Wang et al., “Recent advances in solid sorbents for CO2 capture and new development trends,” Prog. Energy Combust. Sci., vol. 7, pp. 3478–3518, 2014.
dc.relation.referencesL. Bao et al., “3D Graphene Frameworks/ Co3O4 Composites Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection,” Small, vol. 13, no. 5, 2017.
dc.relation.referencesX. H. Xia, J. P. Tu, Y. J. Mai, X. L. Wang, C. D. Gu, and X. B. Zhao, “Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance,” J. Mater. Chem., vol. 21, no. 25, pp. 9319–9325, 2011.
dc.relation.referencesY. P. Zhu, T. Y. Ma, M. Jaroniec, and S. Z. Qiao, “Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis,” Angew. Chemie - Int. Ed., vol. 56, no. 5, pp. 1324–1328, 2017.
dc.relation.referencesL. Li, M. Liu, S. He, and W. Chen, “Freestanding 3D mesoporous Co3O4 @carbon foam nanostructures for ethanol gas sensing,” Anal. Chem., vol. 86, no. 15, pp. 7996–8002, 2014.
dc.relation.referencesJ. Wang et al., “Recent advances in solid sorbents for CO2 capture and new development trends,” Energy Environ. Sci., vol. 7, pp. 3478–3518, 2014.
dc.relation.referencesM. Zhou et al., “Enhancing Catalytic CO Oxidation over Co3O4 Nanowires by Substituting Co2+ with Cu2+,” ACS Catal., vol. 5, no. 8, pp. 4485–4491, 2015.
dc.relation.referencesB. Varghese et al., “Co3O4 nanostructures with different morphologies and their field-emission properties,” Adv. Funct. Mater., vol. 17, no. 12, pp. 1932–1939, 2007.
dc.relation.referencesK. Il Choi, H. R. Kim, K. M. Kim, D. Liu, G. Cao, and J. H. Lee, “C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction,” Sensors Actuators, B Chem., vol. 146, no. 1, pp. 183–189, 2010.
dc.relation.referencesG. Bai et al., “Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene,” Appl. Catal. A Gen., vol. 450, pp. 42–49, 2013
dc.relation.referencesW. B. and T. T. Lin Liu, “Isothermal Compressions of a Spinel Phase of CoSiO4 and Magnesian Ilmenite,” J. Geophys. Res., vol. 79, no. 8, pp. 1171–1174, 1974.
dc.relation.referencesI. P. Muthuselvam and R. N. Bhowmik, “Structural phase stability and magnetism in Co2FeO4 spinel oxide,” Solid State Sci., vol. 11, no. 3, pp. 719–725, 2009.
dc.relation.referencesC. Mu et al., “Rational Design of Spinel Cobalt Vanadate Oxide Co2VO4 for Superior Electrocatalysis,” Adv. Mater., vol. 32, no. 10, pp. 1–8, 2020.
dc.relation.referencesX. Wang, W. Tian, T. Zhai, Y. B.-J. of M. Zhi, and U. 2012, “Cobalt (II, III) oxide hollow structures: fabrication, properties and applications,” J. Mater. Chem., vol. 44, 2012.
dc.relation.referencesQ. Tang and R. Dieckmann, “Floating-zone growth and characterization of single crystals of cobalt orthosilicate, Co2SiO4,” J. Cryst. Growth, vol. 317, no. 1, pp. 119–127, 2011.
dc.relation.referencesD. Bauer et al., “Continuous Hydrothermal Synthesis of Metal Germanates ( M2GeO4 ; M ¼ Co , Mn , Zn ) for High-Capacity Negative Electrodes in Li-Ion Batteries,” Energy Technol., vol. 1900692, pp. 1–11, 2019.
dc.relation.referencesY. Feng et al., “Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation,” Chem. Eng. J., vol. 280, pp. 514–524, 2015.
dc.relation.referencesN. H. Perry et al., “Journal of Solid State Chemistry Co3O4 – Co2ZnO4 spinels : The case for a solid solution,” J. Solid State Chem., vol. 190, pp. 143–149, 2012.
dc.relation.referencesO. Lico, O. Co, D. Mohanty, and H. Gabrisch, “Comparison of magnetic properties in LixCoO2 and its decomposition products,” Solid State Ionics, vol. 194, no. 1, pp. 41–45, 2011.
dc.relation.referencesJ. Xiong., J. Yang, X. Chi., K. Wu, Song, L., Li, T Ye, D. Pd-Promoted Co2NiO4 with lattice CoONi and interfacial PdO activation for highly efficient methane oxidation. Applied Catalysis B: Environmental, 292, 120201, 2021.
dc.relation.referencesA. Zakutayev et al., “Cation off-stoichiometry leads to high p -type conductivity and enhanced transparency in Co2ZnO4 and Co2NiO4 thin films,” Phys. Rev. B, vol. 085204, pp. 1–8, 2012
dc.relation.referencesJ. M. Xu and J. P. Cheng, “The advances of Co3O4 as gas sensing materials : A review,” vol. 686, 2016.
dc.relation.referencesV. E. H. and P. A. Cox, “The Surface Science of Metal Oxides,” Cambridge Univ. Press, vol. 191, no. Part_1, pp. 138–138, 1995.
dc.relation.referencesN. Li, Y. Li, Q. Li, Y. Zhao, C. Sen Liu, and H. Pang, “NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage,” J. Colloid Interface Sci., vol. 581, pp. 709–718, 2021.
dc.relation.referencesM. Sethi, U. S. Shenoy, and D. K. Bhat, “Hassle-free solvothermal synthesis of NiO nanoflakes for supercapacitor application,” Phys. B Condens. Matter, vol. 611, pp. 1–7, 2021.
dc.relation.referencesH. A. Ariyanta, T. A. Ivandini, and Y. Yulizar, “Novel NiO nanoparticles via phytosynthesis method: Structural, morphological and optical properties,” J. Mol. Struct., vol. 1227, p. 129543, 2021.
dc.relation.referencesL. Lin, T. Liu, B. Miao, and W. Zeng, “Synthesis of NiO nanostructures from 1D to 3D and researches of their gas-sensing properties,” Mater. Res. Bull., vol. 48, no. 2, pp. 449–454, 2013
dc.relation.referencesL. E. F. Foa Torres, S. Roche, and J.-C. Charlier, Introduction to Graphene-Based Nanomaterials. 2020.
dc.relation.referencesX. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol., vol. 3, no. 8, pp. 491–495, 2008.
dc.relation.referencesC. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (80-. )., vol. 321, no. 5887, pp. 385–388, 2008.
dc.relation.referencesA. K. Geim and K. S. Novoselov, “The rise of graphene,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific Publishing Co., pp. 11–19, 2009.
dc.relation.referencesW. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A, vol. 1, no. 35, p. 10078, 2013.
dc.relation.referencesS. P. Jovanović et al., “Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy,” ACS Appl. Mater. Interfaces, vol. 7, no. 46, pp. 25865–25874, 2015.
dc.relation.referencesH. Zhou et al., “Surface deposition of graphene layer for bioactivity improvement of biomedical 316 stainless steel,” Mater. Lett., vol. 192, pp. 123–127, 2017.
dc.relation.referencesS. Luo et al., “Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode,” Solid. State. Electron., vol. 145, pp. 29–33, 2018.
dc.relation.referencesR. Ding et al., “A brief review of corrosion protective films and coatings based on graphene and graphene oxide,” Journal of Alloys and Compounds, vol. 764. pp. 1039–1055, 2018.
dc.relation.referencesH. Wu et al., “A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries,” Electrochim. Acta, vol. 278, pp. 83–92, 2018.
dc.relation.referencesQ. Xie, Y. Zhang, and P. Zhao, “Facile fabrication of honeycomb-like restacking-inhibited graphene architecture with superior electrochemical performance for energy storage,” Mater. Lett., vol. 225, pp. 93–96, 2018.
dc.relation.referencesH. P. Bei et al., “Graphene-based nanocomposites for neural tissue engineering,” Molecules, vol. 24, no. 4. 2019.
dc.relation.referencesC. F. Windisch, K. F. Ferris, G. J. Exarhos, and S. K. Sharma, “Conducting spinel oxide films with infrared transparency,” Thin Solid Films, vol. 420–421, pp. 89–99, 2002.
dc.relation.referencesZ. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy, vol. 1, no. 1, pp. 107–131, 2012.
dc.relation.referencesA. M. Dimiev, L. B. Alemany, and J. M. Tour, “Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model,” ACS Nano, vol. 7, no. 1, pp. 576–588, 2013.
dc.relation.referencesD. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, 2010.
dc.relation.referencesM. Sun and J. Li, “Graphene oxide membranes: Functional structures, preparation and environmental applications,” Nano Today, vol. 20. pp. 121–137, 2018.
dc.relation.referencesF. Savazzi, F. Risplendi, G. Mallia, N. M. Harrison, and G. Cicero, “Unravelling Some of the Structure-Property Relationships in Graphene Oxide at Low Degree of Oxidation,” J. Phys. Chem. Lett., vol. 9, no. 7, pp. 1746–1749, 2018.
dc.relation.referencesM. M. Stylianakis et al., “Updating the role of reduced graphene oxide ink on field emission devices in synergy with charge transfer materials,” Nanomaterials, vol. 9, no. 2, pp. 1–15, 2019.
dc.relation.referencesS. M. Majhi, A. Mirzaei, H. W. Kim, and S. S. Kim, “Nanofiber Gas Sensors : An Overview,” Sensors, vol. 21, no. 1352, pp. 4–19, 2021.
dc.relation.referencesB. Renganathan, D. Sastikumar, G. Gobi, N. Rajeswari Yogamalar, and A. Chandra Bose, “Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection,” Opt. Laser Technol., vol. 43, no. 8, pp. 1398–1404, 2011.
dc.relation.referencesG. Zhang and M. Liu, “Effect of particle size and dopant on properties of SnO2-based gas sensors,” Sensors Actuators, B Chem., vol. 69, no. 1, pp. 144–152, 2000.
dc.relation.referencesJ. M. Walker, S. A. Akbar, and P. A. Morris, “Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review,” Sensors Actuators, B Chem., vol. 286, pp. 624–640, 2019.
dc.relation.referencesH. Kim and J. Lee, “Sensors and Actuators B : Chemical Highly sensitive and selective gas sensors using p-type oxide semiconductors : Overview,” Sensors Actuators B. Chem., vol. 192, pp. 607–627, 2014.
dc.relation.referencesH. R. Kim, A. Haensch, I. D. Kim, N. Barsan, U. Weimar, and J. H. Lee, “The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: Synthesis strategies, and phenomenological and spectroscopic studies,” Adv. Funct. Mater., vol. 21, no. 23, pp. 4456–4463, 2011.
dc.relation.referencesH. R. Kim, K. Il Choi, K. M. Kim, I. D. Kim, G. Cao, and J. H. Lee, “Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates,” Chem. Commun., vol. 46, no. 28, pp. 5061–5063, 2010.
dc.relation.referencesT. C. Chou, T. R. Ling, M. C. Yang, and C. C. Liu, “Micro and nano scale metal oxide hollow particles produced by spray precipitation in a liquid-liquid system,” Mater. Sci. Eng. A, vol. 359, no. 1–2, pp. 24–30, 2003.
dc.relation.referencesS. W. Oh, H. J. Bang, Y. C. Bae, and Y. K. Sun, “Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis,” J. Power Sources, vol. 173, no. 1, pp. 502–509, 2007.
dc.relation.referencesC. Yan and D. Xue, “Solution growth of nano- to microscopic ZnO on Zn,” J. Cryst. Growth, vol. 310, no. 7–9, pp. 1836–1840, 2008.
dc.relation.referencesA. K. Srivastava, S. Pandey, K. N. Sood, S. K. Halder, and R. Kishore, “Novel growth morphologies of nano- and micro-structured cadmium oxide,” Mater. Lett., vol. 62, no. 4–5, pp. 727–730, 2008.
dc.relation.referencesX. P. Shen, S. K. Wu, H. Zhao, and Q. Liu, “Synthesis of single-crystalline Bi2O3 nanowires by atmospheric pressure chemical vapor deposition approach,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 39, no. 1, pp. 133–136, 2007.
dc.relation.referencesG. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, “A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination,” J. Mater. Res., vol. 19, no. 2, pp. 628–634, 2004.
dc.relation.referencesS. H. Wang, T. C. Chou, and C. C. Liu, “Nano-crystalline tungsten oxide NO2 sensor,” Sensors Actuators, B Chem., vol. 94, no. 3, pp. 343–351, 2003.
dc.relation.referencesK. Li et al., “Bimetallic metal–organic frameworks derived hierarchical flower-like Zn-doped Co3O4 for enhanced acetone sensing properties,” Appl. Surf. Sci., vol. 565, p. 150520, 2021.
dc.relation.referencesD. Liu et al., “Theoretical study on W- Co3O4 (111) surface: Acetone adsorption and sensing mechanism,” Appl. Surf. Sci., vol. 566, p. 150642, 2021.
dc.relation.referencesS. Li, X. Wei, S. Zhu, Q. Zhou, and Y. Gui, “Low temperature carbon monoxide gas sensor based on Co3O4@TiO2 nanocomposites: Theoretical and experimental analysis,” J. Alloys Compd., vol. 882, 2021.
dc.relation.referencesS. P. Keerthana, R. Yuvakkumar, P. S. Kumar, G. Ravi, D. V. N. Vo, and D. Velauthapillai, “Influence of tin (Sn) doping on Co3O4 for enhanced photocatalytic dye degradation,” Chemosphere, vol. 277, 2021.
dc.relation.referencesJ. M. Xu and J. P. Cheng, “The advances of Co3O4 as gas sensing materials: A review,” Journal of Alloys and Compounds, vol. 686. pp. 753–768, 2016.
dc.relation.referencesU. S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, “Sensing properties of Au-loaded SnO2- Co3O4 composites to CO and H2,” in Sensors and Actuators, B: Chemical, vol. 107, pp. 397–401, 2005.
dc.relation.referencesS. Bai, H. Liu, R. Luo, and A. Chen, “SnO 2@ Co3O4 p–n heterostructures fabricated by electrospinning and mechanism analysis enhanced acetone sensing,” pubs.rsc.org, pp. 3–5, 2014.
dc.relation.referencesL. Wang, Z. Lou, R. Zhang, T. Zhou, J. Deng, and T. Zhang, “Hybrid Co3O4/SnO2 Core-Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas,” ACS Appl. Mater. Interfaces, vol. 8, no. 10, pp. 6539–6545, 2016.
dc.relation.referencesU. S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, “Sensing properties of Au-loaded SnO2- Co3O4 composites to CO and H2,” in Sensors and Actuators, B: Chemical, vol. 107, no. 1 SPEC. ISS., pp. 397–401, 2005.
dc.relation.referencesC. Na, H. Woo, I. Kim, J. L.-C. Communications, and U. 2011, “Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor,” Chem. Commun., vol. 47, pp. 5148–5150, 2011.
dc.relation.referencesD. Bekermann et al., “Co3O4/ZnO nanocomposites: From plasma synthesis to gas sensing applications,” ACS Appl. Mater. Interfaces, vol. 4, no. 2, pp. 928–934, 2012.
dc.relation.referencesY. Liu et al., “Co3O4/ZnO nanocomposites for gas-sensing applications,” Appl. Surf. Sci., vol. 265, pp. 379–384, 2013.
dc.relation.referencesL. Zhang, X. Jing, J. Liu, J. Wang, and Y. Sun, “Facile synthesis of mesoporous ZnO/Co3O4 microspheres with enhanced gas-sensing for ethanol,” Sensors Actuators, B Chem., vol. 221, pp. 1492–1498, 2015.
dc.relation.referencesS. Park, S. Kim, H. Kheel, and C. Lee, “Oxidizing gas sensing properties of the n-ZnO/p- Co3O4 composite nanoparticle network sensor,” Sensors Actuators, B Chem., vol. 222, pp. 1193–1200, 2016.
dc.relation.referencesL. Wang, J. Deng, Z. Lou, and T. Zhang, “Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices,” J. Mater. Chem. A, vol. 2, no. 26, pp. 10022–10028, 2014.
dc.relation.referencesL. Zhang et al., “Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor,” J. Mater. Chem. A, vol. 3, no. 6, pp. 2794–2801, 2015.
dc.relation.referencesY. Li and N. Chopra, “Structural evolution of cobalt oxide-tungsten oxide nanowire heterostructures for photocatalysis,” J. Catal., vol. 329, pp. 514–521, 2015.
dc.relation.referencesS. Park, G. J. Sun, H. Kheel, S. K. Hyun, C. Jin, and C. Lee, “Hydrogen gas sensing of Co3O4 -Decorated WO3 nanowires,” Met. Mater. Int., vol. 22, no. 1, pp. 156–162, 2016.
dc.relation.referencesL. W. and T. Z. Jing Cao, Ziying Wang, Rui Wang, Sen Liu, Teng Fei, “Core–shell Co3O4/α-Fe2O3 heterostructure nanofibers with enhanced gas sensing properties,” RSC Adv., vol. 5, pp. 36340–36346, 2015.
dc.relation.referencesF. Qu et al., “Hierarchical Fe3O4 @Co3O4 core-shell microspheres: Preparation and acetone sensing properties,” Sensors Actuators B, vol. 199, pp. 346–353, 2014.
dc.relation.referencesJ. Wang et al., “Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection,” Nanoscale, vol. 6, pp. 11769–11776, 2014.
dc.relation.referencesY. Deng, Semiconducting Metal Oxides for Gas Sensing. 2019.
dc.relation.referencesA. Dey, “Semiconductor metal oxide gas sensors: A review,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 229, pp. 206–217, 2018.
dc.relation.referencesG. J. Owens et al., “Sol-gel based materials for biomedical applications,” Prog. Mater. Sci., vol. 77, pp. 1–79, 2016.
dc.relation.referencesQ. Nawaz et al., “Crystallization study of sol–gel derived 13-93 bioactive glass powder,” J. Eur. Ceram. Soc., vol. 41, no. 2, pp. 1695–1706, 2021.
dc.relation.referencesN. T. Nolan, “Sol-Gel Synthesis and Characterisation of Novel Metal Oxide Nanomaterials for Photocatalytic Applications,” School of Chemical and Pharmaceutical Sciences, 2010.
dc.relation.referencesM. M. Vijatović, J. D. Bobić, and B. D. Stojanović, “History and challenges of barium titanate: Part I,” Sci. Sinter., vol. 40, no. 2, pp. 155–165, 2008.
dc.relation.referencesA. C. Pierre, Introduction to Sol-Gel Processing. Springer Science Bus, 1998.
dc.relation.referencesD. Wang and G. P. Bierwagen, “Sol-gel coatings on metals for corrosion protection,” Prog. Org. Coatings, vol. 64, no. 4, pp. 327–338, 2009.
dc.relation.referencesG. N. Barry Carter, “Ceramic Materials,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
dc.relation.referencesS. Esposito, “‘Traditional’ sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts,” Materials (Basel)., vol. 12, no. 4, pp. 1–25, 2019.
dc.relation.referencesA. K. Mishra, Sol-gel based nanoceramic materials: Preparation, properties and applications. 2017.
dc.relation.referencesRosero, N., “Recubrimientos producidos por sol-gel con inhibidores de corrosión para la protección activa de aleaciones ligeras,” Universidad Autónoma de Madrid, 2011.
dc.relation.referencesL. Alferez, “Sintetizar y caracterizar de la resistencia a la corrosión de recubrimientos cerámicos de (SiO2-TiO2-ZrO2-Bi2O3) producidos mediante la técnica sol-gel y depositados sobre las aleaciones de acero inoxidable AISI 316L y de titanio Ti6Al4V.,” Unversidad Nacional de Colombia, 2017.
dc.relation.referencesC. J. Brinker and G. W. Scherer, Sol Gel Science. Elsevier B.V, 1990.
dc.relation.referencesM. T. Makhlouf and T. H. Mansoure, “Applied Surface Science Effect of calcination temperature on the H2O2 decomposition activity of nano-crystalline Co3O4 prepared by combustion method,” Appl. Surf. Sci., vol. 274, pp. 45–52, 2013.
dc.relation.referencesK. Byrappa, M. Yoshimura, and K. B. and M. Yoshimura, Handbook of Hydrothermal Technology. 2001.
dc.relation.referencesT. Mathimani and N. Mallick, “A review on the hydrothermal processing of microalgal biomass to bio-oil - Knowledge gaps and recent advances,” J. Clean. Prod., vol. 217, pp. 69–84, 2019.
dc.relation.referencesK. Byrappa and M. Yoshimura, Hydrothermal Technology—Principles and Applications. Noyes Publications, 2001.
dc.relation.referencesG. D. Sulka, Introduction to anodization of metals. Elsevier Inc., 2020
dc.relation.referencesB. Lucas-Granados, R. Sánchez-Tovar, R. M. Fernández-Domene, and J. García-Antón, “Iron oxide nanostructures for photoelectrochemical applications: Effect of applied potential during Fe anodization,” J. Ind. Eng. Chem., vol. 70, pp. 234–242, 2019.
dc.relation.referencesA. Ivanov, Silicon Anodization as a Structuring Technique. Germany: Springer Vieweg, 2017.
dc.relation.referencesL. J. Cardenas-Flechas, J. Barba-Ortega, and M. R.Joya, “Películas de óxido de cobre y hierro depositadas en Nanotubos de Titanio,” Rev. UIS Ing., vol. 19, no. 1, pp. 171–178, 2020.
dc.relation.referencesW. Jiang, J. He, J. Zhong, J. Lu, S. Yuan, and B. Liang, “Preparation and photocatalytic performance of ZrO2 nanotubes fabricated with anodization process,” Appl. Surf. Sci., vol. 307, pp. 407–413, 2014.
dc.relation.referencesW. Lee, “The anodization of aluminum for nanotechnology applications,” Jom, vol. 62, no. 6. pp. 57–63, 2010.
dc.relation.referencesA. Amiri, “Solid-phase microextraction-based sol-gel technique,” TrAC - Trends Anal. Chem., vol. 75, pp. 57–74, 2016.
dc.relation.referencesM. Yoshimura and K. Byrappa, “Hydrothermal processing of materials: Past, present and future,” J. Mater. Sci., vol. 43, no. 7, pp. 2085–2103, 2008.
dc.relation.referencesX. C. Dai, S. Hou, M. H. Huang, Y. B. Li, T. Li, and F. X. Xiao, “Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion,” JPhys Energy, vol. 1, no. 2, 2019.
dc.relation.referencesF. Fundamentals, X-Ray Diffraction for Materials Research: From Fundamentals to Applications Myeongkyu Lee, vol. 42, no. 02. 2017.
dc.relation.referencesC. Hammond, The Basics of Crystallography and Diffraction, Third Edit. Oxford Science Publications, 2009.
dc.relation.referencesJ. Greenberg, “X-Ray Diffraction Imaging Technology and Applications,” vol. 148, pp. 148–162.
dc.relation.referencesK. S. Yoshio Waseda, Eichiro Matsubara, X-Ray Diffraction Crystallography, vol. 46, no. 1. Springer Science Bus, 2016.
dc.relation.referencesSuryanarayana M. G. Norton, C. S, Practical Aspects of X-Ray Diffraction. Springer Boston, 1998.
dc.relation.referencesPANalytical, “X ’Pert Powder Let materials work for you Advancing materials research,” 2014.
dc.relation.referencesV. Grant, “Tuberous sclerosis (Bourneville’s disease).,” Journal of ophthalmic nursing & technology, vol. 8, no. 4. pp. 143–147, 1989.
dc.relation.referencesG. Will, Powder Diffraction: The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data. Springer, 2006.
dc.relation.referencesB. H. Toby and R. B. Von Dreele, “GSAS-II: The genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr., vol. 46, no. 2, pp. 544–549, 2013.
dc.relation.referencesB. M. Weckhuysen, “Ultraviolet-Visible Spectroscopy,” In-situ Spectrosc. Catal., pp. 255–270, 2004.
dc.relation.referencesF. Hinderer, UV/Vis-Absorptions- und Fluoreszenz-Spektroskopie. Springer Spektrum, 2020.
dc.relation.referencesM. Picollo, M. Aceto, and T. Vitorino, “UV-Vis spectroscopy,” Phys. Sci. Rev., vol. 4, no. 4, pp. 1–14, 2019.
dc.relation.referencesB. de Caravalho, “Raman Spectroscopy in MoS2-Type Transition-Metal Dichalcogenides,” Universidade Federal de MInas de Gerais, 2017.
dc.relation.referencesA. Chaichi, A. Prasad, and M. Ranjan Gartia, “Raman spectroscopy and microscopy applications in cardiovascular diseases: From molecules to organs,” Biosensors, vol. 8, no. 4, pp. 1–19, 2018.
dc.relation.referencesU. K. Sur, “Surface-Enhanced Raman Spectroscopy,” no. February, pp. 154–164, 2010.
dc.relation.referencesR. G. Burgess, “Series Editor’ S Preface,” Patterns Soc. Inequal. Essays Richard Brown, pp. vii–vii, 2014.
dc.relation.referencesB. C. Smith, Fundamentals of fourier transform infrared spectroscopy, second edition. 2011.
dc.relation.referencesS. J. . Reed., Electron Micropobe analysis an scaning electron microscopy in geology, Second edition, vol. 148. Cambridge University Press, 2005.
dc.relation.referencesA. Mohammed and A. Abdullah, “Scanning Electron Microscopy (SEM): A Review,” Int. Conf. Hydraul. Pneum., vol. 7, pp. 1–9, 2018.
dc.relation.referencesK. M. and R. M. Peter Klobes, “Porosity and Specific Surface Area Measurements for Solid Materials,” Nursing (Lond)., vol. 14, no. 11, pp. 89–93, 1984.
dc.relation.referencesF. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET theory for the characterization of meso and microporous MOFs,” Small Methods, vol. 2, no. 11, pp. 1–17, 2018.
dc.relation.referencesC. P. Landee and M. M. Turnbull, “Review: A gentle introduction to magnetism: Units, fields, theory, and experiment,” J. Coord. Chem., vol. 67, no. 3, pp. 375–439, 2014.
dc.relation.referencesJ. Cuervo, “Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX ( R = La , Nd , Sm , Eu ; A = Sr , Bi ; Producción y propiedades físicas de nuevas perovskitas complejas del M = Ti , Mn , Fe ),” 2021.
dc.relation.referencesH. M. Pinzón, “Cinética del crecimiento de nanoestructuras de TiO2 mediante procesos de anodización usando EG: Estudio de la Estructura y Estabilidad Térmica.,” Universidad Nacional de Colombia, 2017.
dc.relation.referencesJ. Wang, Y. Wang, D. Zhang, and C. Chen, “Intrinsic Oxidase-like Nanoenzyme Co4S3/Co(OH)2 Hybrid Nanotubes with Broad-Spectrum Antibacterial Activity,” ACS Appl. Mater. Interfaces, vol. 12, no. 26, pp. 29614–29624, 2020.
dc.relation.referencesP. Yang, F. Wu, L. Wang, X. Chen, and J. Xie, “Nanostructuring Co3O4 to Tune Capacitive Behaviors: From Low to High Dimensions,” ChemistrySelect, vol. 5, no. 12, pp. 3638–3643, 2020.
dc.relation.referencesJ. Cao, S. Wang, X. Zhao, Y. Xing, J. Li, and D. Li, “Facile synthesis and enhanced toluene gas sensing performances of Co3O4 hollow nanosheets,” Mater. Lett., vol. 263, p. 127215, 2020.
dc.relation.referencesR. Gao et al., “Enhancing the Catalytic Activity of Co3O4 for Li-O2 Batteries through the Synergy of Surface/Interface/Doping Engineering,” ACS Catal., vol. 8, no. 3, pp. 1955–1963, 2018.
dc.relation.referencesM. Y. Nassar, “Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method,” Mater. Lett., vol. 94, pp. 112–115, 2013.
dc.relation.referencesL. L. Jing Jiang, “Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route,” Mater. Lett., no. 27, pp. 4894–4896, 2007.
dc.relation.referencesS. Shadrokh, M. Farahmandjou, and T. P. Firozabadi, “Fabrication and characterization of nanoporous Co oxide (Co3O4) prepared by simple sol-gel synthesis,” Phys. Chem. Res., vol. 4, no. 2, pp. 153–160, 2016
dc.relation.referencesK. M. Ginell, C. Horn, R. B. Von Dreele, and B. H. Toby, “Materials for learning use of GSAS-II,” Powder Diffr., vol. 34, no. 2, pp. 184–188, 2019.
dc.relation.referencesT. C. Chang et al., “The Effect of Degrees of Inversion on the Electronic Structure of Spinel NiCo2O4: A Density Functional Theory Study,” ACS Omega, vol. 6, no. 14, pp. 9692–9699, 2021.
dc.relation.referencesK. E. Sickafus, J. M. Wills, and N. W. Grimes, “Structure of spinel,” J. Am. Ceram. Soc., vol. 82, no. 12, pp. 3279–3292, 1999.
dc.relation.referencesS. Hirai and W. L. Mao, “Novel pressure-induced phase transitions in Co3O4,” Appl. Phys. Lett., vol. 102, no. 4, pp. 4–8, 2013.
dc.relation.referencesA. F. Lima, “Interpretation of the optical absorption spectrum of Co3O4 with normal spinel structure from first principles calculations,” J. Phys. Chem. Solids, vol. 75, no. 1, pp. 148–152, 2014.
dc.relation.referencesL. J. Cardenas-Flechas, J. J. Barba-Ortega, and M. R. Joya, “Analysis and evaluation of structural properties of Co3O4 microparticles obtained at low temperature,” Ceramica, vol. 68, no. 385, pp. 52–59, 2022.
dc.relation.referencesB. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, and Q. Xu, “Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery,” J. Power Sources, vol. 195, no. 3, pp. 857–861, 2010.
dc.relation.referencesA. Umar et al., “Perforated Co3O4 nanosheets as high-performing supercapacitor material,” Electrochim. Acta, vol. 389, p. 138661, 2021.
dc.relation.referencesI. Lorite, J. J. Romero, and J. F. Fernández, “Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles,” J. Raman Spectrosc., vol. 43, no. 10, pp. 1443–1448, 2012.
dc.relation.referencesA. Diallo, A. C. Beye, T. B. Doyle, E. Park, and M. Maaza, “Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties,” Green Chemistry Letters and Reviews, vol. 8, no. 3–4. Taylor and Francis Ltd., pp. 30–36,.
dc.relation.referencesW. Shi et al., “Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting,” J. Mater. Chem. A, vol. 5, no. 37, pp. 19800–19807, 2017.
dc.relation.referencesJ. Pal and P. Chauhan, “Study of physical properties of cobalt oxide (Co3O4) nanocrystals,” Mater. Charact., vol. 61, no. 5, pp. 575–579, 2010.
dc.relation.referencesH. Zhang, W. Tian, L. Zhou, H. Sun, M. Tade, and S. Wang, “Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation,” Appl. Catal. B Environ., vol. 223, pp. 2–9, 2018.
dc.relation.referencesR. Tummala, R. K. Guduru, and P. S. Mohanty, “Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique,” J. Power Sources, vol. 209, pp. 44–51, 2012.
dc.relation.referencesL. J. Cardenas Flechas, E. Xuriguera Martín, J. A. Padilla Sanchez, J. M. Chimenos Ribera, and M. Rincón Joya, “Experimental comparison of the effect of temperature on the vibrational and morphological properties of NixCo3-xO4 nanostructures,” Mater. Lett., vol. 303, pp. 14–17, 2021.
dc.relation.referencesB. M. Abu-Zied, S. A. Soliman, and S. E. Abdellah, “Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition,” Cuihua Xuebao/Chinese J. Catal., vol. 35, no. 7, pp. 1105–1112, 2014.
dc.relation.referencesA. Iribarren, E. Hernández-Rodríguez, and L. Maqueira, “Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method,” Mater. Res. Bull., vol. 60, pp. 376–381, 2014.
dc.relation.referencesS. Zawar et al., “Ni-doped Co3O4 spheres decorated on CNTs nest-like conductive framework as efficiently stable hybrid anode for Na-ion batteries,” Ceram. Int., vol. 47, no. 19, pp. 27854–27862, 2021.
dc.relation.referencesJ. F. Marco et al., “Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4,” J. Mater. Chem., vol. 11, no. 12, pp. 3087–3093, 2001.
dc.relation.referencesD. Lim, H. Kong, C. Lim, N. Kim, S. E. Shim, and S. H. Baeck, “Spinel-type NiCo2O4 with abundant oxygen vacancies as a high-performance catalyst for the oxygen reduction reaction,” Int. J. Hydrogen Energy, vol. 44, no. 42, pp. 23775–23783, 2019.
dc.relation.referencesQ. Zhao et al., “Nanoclay-modulated oxygen vacancies of metal oxide,” Commun. Chem., vol. 2, no. 1, pp. 1–10, 2019.
dc.relation.referencesA. Singhal, A. Bisht, and S. Irusta, “Enhanced oxygen evolution activity of Co3−xNixO4 compared to Co3O4 by low Ni doping,” J. Electroanal. Chem., vol. 823, no. February, pp. 482–491, 2018.
dc.relation.referencesI. A. Fernandes de Medeiros, A. L. Lopes-Moriyama, and C. P. de Souza, “Effect of synthesis parameters on the size of cobalt ferrite crystallite,” Ceram. Int., vol. 43, no. 5, pp. 3962–3969, 2017.
dc.relation.referencesG. Anandha Babu, G. Ravi, Y. Hayakawa, and M. Kumaresavanji, “Synthesis and calcinations effects on size analysis of Co3O4 nanospheres and their superparamagnetic behaviors,” J. Magn. Magn. Mater., vol. 375, pp. 184–193, 2015.
dc.relation.referencesJ. Gupta and A. S. Ahmed, “Interfacial exchange coupling and defects driven magnetic and optical properties of Co3O4-NiO nanocomposites,” Phys. B Condens. Matter, vol. 599, p. 412383, 2020.
dc.relation.referencesF. Majid et al., “Cationic distribution of nickel doped NixCoX-1Fe2O4 nanparticles prepared by hydrothermal approach: Effect of doping on dielectric properties,” Mater. Chem. Phys., vol. 264, no. March, p. 124451, 2021.
dc.relation.referencesM. Adibi, S. M. Mirkazemi, and S. Alamolhoda, “The influence of citric acid on the microstructure and magnetic properties of cobalt ferrite nanoparticles synthesized by hydrothermal method,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 7, pp. 1–8, 2021.
dc.relation.referencesL. Yu and A. Sun, “Influence of different complexing agents on structural, morphological, and magnetic properties of Mg–Co ferrites synthesized by sol–gel auto-combustion method,” J. Mater. Sci. Mater. Electron., vol. 32, no. 8, pp. 10549–10563, 2021
dc.relation.referencesF. Wang, V. N. Richards, S. P. Shields, and W. E. Buhro, “Kinetics and mechanisms of aggregative nanocrystal growth,” Chem. Mater., vol. 26, no. 1, pp. 5–21, 2014.
dc.relation.referencesS. Mo et al., “Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation Hybrid arrays Macroporous Ni foam,” 2018.
dc.relation.referencesW. Zhang, P. Anguita, D. Javier, C. Descorme, J. L. Valverde, and A. Giroir-fendler, “Comparison of Di ff erent Metal Doping E ff ects on and Propane,” pp. 1–14, 2020.
dc.relation.referencesA. Sivakumar, S. Soundarya, S. S. Jude Dhas, K. K. Bharathi, and S. A. M. B. Dhas, “ Shock Wave Driven Solid State Phase Transformation of Co3O4 to CoO Nanoparticles ,” J. Phys. Chem. C, 2020.
dc.relation.referencesY. Zhang et al., “MOF-derived porous NiO- Co3O4 for high performance ultrafast pulse generation,” Opt. Laser Technol., vol. 155, p. 108358, 2022.
dc.relation.referencesM. Shkir, Z. R. Khan, A. Khan, K. V. Chandekar, M. A. Sayed, and S. AlFaify, “A comprehensive study on structure, opto-nonlinear and photoluminescence properties of Co3O4 nanostructured thin films: An effect of Gd doping concentrations,” Ceram. Int., vol. 48, no. 10, pp. 14550–14559, 2022.
dc.relation.referencesF. Chen, Y. Chi, H. Zhang, F. Ma, and F. Qin, “Band-gap shrinked NiO@ Co3O4 nanotubes as high-performance supercapacitor electrodes,” J. Alloys Compd., vol. 888, p. 161463, 2021.
dc.relation.referencesS. Kalasina, K. Kongsawatvoragul, N. Phattharasupakun, and M. Sawangphruk, “Thin-Film Photoelectrode of p-Type Ni-Doped Co3O4 Nanosheets for a Single Hybrid Energy Conversion and Storage Cell ,” J. Electrochem. Soc., vol. 166, no. 12, pp. A2444–A2452, 2019.
dc.relation.referencesD. K. Pathak, A. Chaudhary, M. Tanwar, U. K. Goutam, P. Mondal, and R. Kumar, “Nickel Cobalt Oxide Nanoneedles for Electrochromic Glucose Sensors,” ACS Appl. Nano Mater., vol. 4, no. 2, pp. 2143–2152, 2021.
dc.relation.referencesK. Agilandeswari and A. Rubankumar, “Synthesis, Characterization, Optical, and Magnetic Properties of Co3O4 Nanoparticles by Quick Precipitation,” Synth. React. Inorganic, Met. Nano-Metal Chem., vol. 46, no. 4, pp. 502–506, Apr. 2016.
dc.relation.referencesG. Rajeshkhanna and G. Ranga Rao, “Micro and nano-architectures of Co3O4 on Ni foam for electro-oxidation of methanol,” Int. J. Hydrogen Energy, vol. 43, no. 9, pp. 4706–4715, 2018
dc.relation.referencesL. F. Oton et al., “Catalytic acetalization of glycerol to biofuel additives over NiO and Co3O4 supported oxide catalysts: experimental results and theoretical calculations,” Mol. Catal., vol. 496, 2020.
dc.relation.referencesP. Cheng et al., “Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis,” Sensors Actuators, B Chem., vol. 328, pp. 1–12, 2021.
dc.relation.referencesH. Lee, M. Hong, S. Bae, H. Lee, E. Park, and K. Kim, “A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes,” J. Mater. Chem., vol. 13, no. 10, pp. 2626–2632, 2003.
dc.relation.referencesTang, B., Cao, L., Xu, K., Zhuo, L., Ge, J., Li, Q., & Yu, L. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry–A European Journal, 14(12), 3637-3644, 2008.
dc.relation.referencesM. Salavati-Niasari, N. Mir, and F. Davar, “Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate,” J. Phys. Chem. Solids, vol. 70, no. 5, pp. 847–852, 2009.
dc.relation.referencesS. R. Gawali et al., “Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: A thermal treatment approach to affecting phonon and magnetic properties,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018.
dc.relation.referencesB. B. Zhang et al., “Interfaces exchange bias and magnetic properties of ordered CoFe2O4/ Co3O4 nanocomposites,” Appl. Surf. Sci., vol. 355, pp. 531–535, 2015.
dc.relation.referencesS. Fareed, R. Medwal, J. V. Vas, I. A. Khan, R. S. Rawat, and M. A. Rafiq, “Tailoring oxygen sensing characteristics of Co3O4 nanostructures through Gd doping,” Ceram. Int., vol. 46, no. 7, pp. 9498–9506, 2020.
dc.relation.referencesM. Haneef, I. H. Gul, M. Hussain, and I. Hassan, “Investigation of Magnetic and Dielectric Properties of Cobalt Cubic Spinel Ferrite Nanoparticles Synthesized by CTAB-Assisted Co-precipitation Method,” J. Supercond. Nov. Magn., vol. 34, no. 5, pp. 1467–1476, 2021.
dc.relation.referencesW. Yu, S. Zhan, Z. Shen, and Q. Zhou, “A newly synthesized Au/GO- Co3O4 composite effectively inhibits the replication of tetracycline resistance gene in water,” Chem. Eng. J., vol. 345, no. December 2017, pp. 462–470, 2018.
dc.relation.referencesS. Thota, A. Kumar, and J. Kumar, “Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derived oxalates,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 164, no. 1, pp. 30–37, 2009.
dc.relation.referencesS. S. Li et al., “Engineering Co2+/Co3+ redox activity of Ni-mediated porous Co3O4 nanosheets for superior Hg(II) electrochemical sensing: Insight into the effect of valence change cycle and oxygen vacancy on electroanalysis,” Sensors Actuators B Chem., vol. 354, no. 131095, pp. 1–11, 2022.
dc.relation.referencesF. Zhan, B. Geng, and Y. Guo, “Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries,” Chem. - A Eur. J., vol. 15, no. 25, pp. 6169–6174, 2009.
dc.relation.referencesM. V. Zdorovets, A. E. Shumskaya, and A. L. Kozlovskiy, “Investigation of the effect of phase transformations on the magnetic and electrical properties of Co/ Co3O4 nanowires,” J. Magn. Magn. Mater., vol. 497, 2020.
dc.relation.referencesR. Rakshit et al., “Surface Electronic States Induced High Terahertz Conductivity of Co3O4 Microhollow Structure,” ACS Appl. Mater. Interfaces, vol. 10, no. 22, pp. 19189–19196, 2018.
dc.relation.referencesE. Thimsen, S. Biswas, C. S. Lo, and P. Biswas, “Predicting the band structure of mixed transition metal oxides: Theory and experiment,” J. Phys. Chem. C, vol. 113, no. 5, pp. 2014–2021, 2009.
dc.relation.referencesE. L. Salabaş, A. Rumplecker, F. Kleitz, F. Radu, and F. Schuth, “Exchange anisotropy in nanocasted Co3O4 nanowires,” Nano Lett., vol. 6, no. 12, pp. 2977–2981, 2006.
dc.relation.referencesG. A. El-Shobaky, M. A. Shouman, and S. M. El-Khouly, “Effect of silver oxide doping on surface and catalytic properties of Co3O4/Al2O3 system,” Mater. Lett., vol. 58, no. 1–2, pp. 184–190, 2004.
dc.relation.referencesH. Du, W. Pu, and C. Yang, “Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction,” Appl. Surf. Sci., vol. 541, p. 148221, 2021.
dc.relation.referencesB. Lu, D. Cao, P. Wang, G. Wang, and Y. Gao, “Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 72–78, 2010.
dc.relation.referencesL. Jin et al., “Hydrothermal synthesis of Co3O4 with different morphologies towards efficient Li-ion storage,” RSC Adv., vol. 4, no. 12, pp. 6083–6089, 2014.
dc.relation.referencesL. J. Cardenas-Flechas, A. M. Raba, and M. Rincón-Joya, “Synthesis and evaluation of nickel doped Co3O4 produced through hydrothermal technique,” DYNA, vol. 87, no. 213, pp. 184–191, 2020.
dc.relation.referencesV. Modafferi et al., “Transition metal oxides on reduced graphene oxide nanocomposites: Evaluation of physicochemical properties,” J. Nanomater., vol. 2019, 2019.
dc.relation.referencesS. Min, C. Zhao, G. Chen, and X. Qian, “One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors,” Electrochim. Acta, vol. 115, pp. 155–164, 2014.
dc.relation.referencesZ. Tong et al., “Fabrication of flower-like surface Ni@ Co3O4 nanowires anchored on RGO nanosheets for high-performance microwave absorption,” Appl. Surf. Sci., vol. 565, p. 150483, 2021.
dc.relation.referencesP. Sennu, H. S. Park, K. U. Park, V. Aravindan, K. S. Nahm, and Y. S. Lee, “Formation of NiCo2O4 rods over Co3O4 nanosheets as efficient catalyst for Li–O2 batteries and water splitting,” J. Catal., vol. 349, pp. 175–182, 2017.
dc.relation.referencesS. Mo et al., “Rich surface Co(III) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIII layered double hydroxide,” Nanoscale, vol. 8, no. 34, pp. 15763–15773, 2016.
dc.relation.referencesY. Gao et al., “Microwave-assisted synthesis of hierarchically porous Co3O4/rGO nanocomposite for low-temperature acetone detection,” J. Colloid Interface Sci., vol. 594, pp. 690–701, 2021.
dc.relation.referencesA. Mishra, “Effect of surface potential and charge transfer mechanism in reduced graphene oxide and magnetic nanocomposites,” Mater. Res. Bull., vol. 108, no. June, pp. 207–213, 2018.
dc.relation.referencesG. Anandhababu and G. Ravi, “Facile synthesis of quantum sized Co3O4 nanostructures and their magnetic properties,” Nano-Structures and Nano-Objects, vol. 15, pp. 1–9, 2018.
dc.relation.referencesC. Yao et al., “Au nanoparticles introduced to spinel Co3O4 thin films: Switching enhancement and magnetization modulation,” J. Magn. Magn. Mater., vol. 493, p. 165702, 2020.
dc.relation.referencesN. Bahlawane, P. H. T. Ngamou, V. Vannier, T. Kottke, J. Heberle, and K. Kohse-Höinghaus, “Tailoring the properties and the reactivity of the spinel cobalt oxide,” Phys. Chem. Chem. Phys., vol. 11, no. 40, pp. 9224–9232, 2009.
dc.relation.referencesY. Liu, J. W. Fergus, and C. Dela Cruz, “Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides,” J. Am. Ceram. Soc., vol. 96, no. 6, pp. 1841–1846, 2013.
dc.relation.referencesS. Iranshahi and S. Mosivand, “Cobalt/graphene oxide nanocomposites: Electro-synthesis, structural, magnetic, and electrical properties,” Ceram. Int., vol. 48, no. 9, pp. 12240–12254, 2022.
dc.relation.referencesC. Y. Lee, K. Lee, and P. Schmuki, “Anodic formation of self-organized cobalt oxide nanoporous layers,” Angew. Chemie - Int. Ed., vol. 52, no. 7, pp. 2077–2081, 2013.
dc.relation.referencesJ. F. Mir, S. Rubab, and M. A. Shah, “Photo-electrochemical ability of iron oxide nanoflowers fabricated via electrochemical anodization,” Chem. Phys. Lett., vol. 741, p. 137088, 2020.
dc.relation.referencesM. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta, vol. 62, pp. 424–432, 2012
dc.relation.referencesM. Kulkarni, A. Mazare, P. Schmuki, and A. Iglic, “Influence of anodization parameters on morphology of TiO2 nanostructured surfaces,” Adv. Mater. Lett., vol. 7, no. 1, pp. 23–28, 2016.
dc.relation.referencesC. Ni et al., “Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications,” Green Chem., vol. 20, no. 9, pp. 2101–2109, 2018.
dc.relation.referencesS. Li, K. Wu, L. Li, L. Suo, and Y. Zhu, “An architecture of dandelion-type Ni-Co3O4 microspheres on carbon nanotube films toward an efficient catalyst for oxygen reduction in zinc-air batteries,” Appl. Surf. Sci., vol. 481, pp. 40–51, 2019.
dc.relation.referencesS. Li, K. Wu, L. Li, L. Suo, and Y. Zhu, “An architecture of dandelion-type Ni-Co3O4 microspheres on carbon nanotube films toward an efficient catalyst for oxygen reduction in zinc-air batteries,” Appl. Surf. Sci., vol. 481, pp. 40–51, 2019.
dc.relation.referencesA. Staerz, U. Weimar, and N. Barsan, “Current state of knowledge on the metal oxide based gas sensing mechanism,” Sensors Actuators B Chem., vol. 358, 131531, 2022.
dc.relation.referencesA. Shakeel, K. Rizwan, U. Farooq, S. Iqbal, and A. A. Altaf, “Advanced polymeric/inorganic nanohybrids: An integrated platform for gas sensing applications,” Chemosphere, vol. 294, 2021, p. 133772, 2022.
dc.relation.referencesD. Lee et al., “Multimodal Gas Sensor Detecting Hydroxyl Groups with Phase Transition Based on Eco-Friendly Lead-Free Metal Halides,” Adv. Funct. Mater., vol. 32, no. 28, 2022.
dc.relation.referencesR. Zhang, S. Gao, T. Zhou, J. Tu, and T. Zhang, “Facile preparation of hierarchical structure based on p-type Co3O4 as toluene detecting sensor,” Appl. Surf. Sci., vol. 503, p. 144167, 2020.
dc.relation.referencesS. Ahmed and S. K. Sinha, “Studies on nanomaterial-based p-type semiconductor gas sensors,” Environ. Sci. Pollut. Res., no. 0123456789, 2022.
dc.relation.referencesN. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 63–75, 2003.
dc.relation.referencesG. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, vol. 10, no. 6, pp. 5469–5502, 2010
dc.relation.referencesW. Liu et al., “Facile synthesis of three-dimensional hierarchical NiO microflowers for efficient room temperature H2S gas sensor,” J. Mater. Sci. Mater. Electron., vol. 29, no. 6, pp. 4624–4631, 2018.
dc.relation.referencesS. Faculty and N. Singh, “2010 - Co3O4 and Co- Based Spinel Oxides Bifunctional Oxygen Electrodes - Unknown.pdf,” Int. J. Electrochem. Sci. Int. J. Electrochem. Sci., vol. 5, pp. 556–577, 2010.
dc.relation.referencesL. Sun et al., “rGO functionalized α-Fe2O3/ Co3O4 heterojunction for NO2 detection,” Sensors Actuators B Chem., vol. 354, no. 2, p. 131194, 2022.
dc.relation.referencesT. Lin, X. Lv, S. Li, and Q. Wang, “The morphologies of the semiconductor oxides and their gas-sensing properties,” Sensors (Switzerland), vol. 17, no. 12, pp. 1–30, 2017.
dc.relation.referencesS. Rathinavel, G. Balaji, and S. Vadivel, “High performance ethanol and acetone gas sensing behavior of FeCo2O4/graphene hybrid sensors prepared by facile hydrothermal route,” Optik (Stuttg)., vol. 223, p. 165571, 2020.
dc.relation.referencesP. Dey, S. S. Jana, F. Anjum, T. Bhattacharya, and T. Maiti, “Effect of semiconductor to metal transition on thermoelectric performance in oxide nanocomposites of SrTi0.85Nb0.15O3 with graphene oxide,” Appl. Mater. Today, vol. 21, p. 100869, 2020.
dc.relation.referencesX. Liu et al., “Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor,” Ceram. Int., vol. 44, no. 17, pp. 21091–21098, 2018.
dc.relation.referencesH. Moradpoor et al., “Optimisation of cobalt oxide nanoparticles synthesis as bactericidal agents,” Open Access Maced. J. Med. Sci., vol. 7, no. 17, pp. 2757–2762, 2019.
dc.relation.referencesS. Harbarth et al., “Global Priority List of Antibiotic-Resistant Bacteria To Guide Research , Discovery , and Development of,” 2015.
dc.relation.referencesZ. Song, H. Wang, Y. Wu, J. Gu, S. Li, and H. Han, “Fabrication of Bis-Quaternary Ammonium Salt as an Efficient Bactericidal Weapon Against Escherichia coli and Staphylococcus aureus,” ACS Omega, vol. 3, no. 10, pp. 14517–14525, 2018.
dc.relation.referencesM. Golam Sakline et al., “Antibiotic Resistance Pattern of Clinical Isolates -Escherichia coli, Enterobacter, Pseudomonas and Staphylococcus aureus in the Western of Bangladesh,” Front. Environ. Microbiol., vol. 7, no. 2, p. 69, 2021.
dc.relation.referencesL. Ferreira and A. Zumbuehl, “Non-leaching surfaces capable of killing microorganisms on contact,” J. Mater. Chem., vol. 19, no. 42, pp. 7796–7806, 2009.
dc.relation.referencesMalafatti, J. O. D., Moreira, A. J., Paris, E. C., Cardenas Flechas, L. J., Pereira, O. A. P., & Rincón Joya, M., “Evaluation of Ni-Doped Tricobalt Tetroxide with Reduced Graphene Oxide: Structural, Photocatalysis, and Antibacterial Response,” Catalysts, 12(10), pp. 1199, 2022.
dc.relation.referencesL. Wang et al., “Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli,” J. Inorg. Biochem., vol. 135, pp. 45–53, 2014.
dc.relation.referencesS. K. Evstropiev et al., “Bactericidal properties of ZnO-SnO2 nanocomposites prepared by polymer-salt method,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 264, no. September 2020, p.114877, 2021.
dc.relation.referencesM. Safaei, M. Taran, and M. M. Imani, “Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite,” Mater. Sci. Eng. C, vol. 101, no. March, pp. 323–329, 2019
dc.relation.referencesA. B. Rajendra Santosh, O. E. Ogle, D. Williams, and E. F. Woodbine, “Epidemiology of Oral and Maxillofacial Infections,” Dent. Clin. North Am., vol. 61, no. 2, pp. 217–233, 2017.
dc.relation.referencesV. Dogra, G. Kaur, S. Jindal, R. Kumar, S. Kumar, and N. K. Singhal, “Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus,” Sci. Total Environ., vol. 681, pp. 350–364, 2019.
dc.relation.referencesT. Kavitha, S. Haider, T. Kamal, and M. Ul-Islam, “Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: Antibacterial activity and mechanism,” J. Alloys Compd., vol. 704, pp. 296–302, 2017.
dc.relation.referencesE. Alsharaeh, Y. Mussa, F. Ahmed, Y. Aldawsari, M. Al-Hindawi, and G. K. Sing, “Novel route for the preparation of cobalt oxide nanoparticles/reduced graphene oxide nanocomposites and their antibacterial activities,” Ceram. Int., vol. 42, no. 2, pp. 3407–3410, 2016.
dc.relation.referencesA. Mobeen Amanulla et al., “Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4 - Co3O4 nanocomposites and its synthesis and characterization,” J. Photochem. Photobiol. B Biol., vol. 183, no. April, pp. 233–241, 2018.
dc.relation.referencesA. Mobeen Amanulla et al., “Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4 - Co3O4 nanocomposites and its synthesis and characterization,” J. Photochem. Photobiol. B Biol., vol. 183, no. April, pp. 233–241, 2018.
dc.relation.referencesO. M. Bankole, S. E. Olaseni, M. A. Adeyemo, and A. S. Ogunlaja, “Microwave-assisted synthesis of cobalt oxide/reduced graphene oxide (Co3O4-RGO) composite and its sulfite enhanced photocatalytic degradation of organic dyes,” Zeitschrift fur Phys. Chemie, vol. 234, no. 10, pp. 1681–1708, 2020.
dc.relation.referencesR. Ranjith, V. Renganathan, S. M. Chen, N. S. Selvan, and P. S. Rajam, “Green synthesis of reduced graphene oxide supported TiO2 / Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet,” Ceram. Int., vol. 45, no. 10, pp. 12926–12933, 2019.
dc.relation.referencesL. J. Cardenas Flechas, A.M. Raba, J. Barba Ortega, L.C. Moreno, and M. R. Joya, “Effect of Calcination Temperature on the Behavior of the Agglomerated Co3O4 Nanoparticles Obtained Through the Sol–Gel Method", J. Inorg. Organomet. Polym, vol. 31 no. 1, pp. 121-128, 2021.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMATERIALES DE NANOESTRUCTURAS
dc.subject.lembNanostructure materials
dc.subject.proposalEspinela de cobalto
dc.subject.proposalTécnica hidrotermal
dc.subject.proposalSensor de gas
dc.subject.proposalDegradación fotocatalítica
dc.subject.proposalRespuesta bactericida
dc.subject.proposalCobalt spinel
dc.subject.proposalSol-gel technique
dc.subject.proposalHydrothermal technique
dc.subject.proposalGas sensors
dc.subject.proposalPhotocatalytic degradation
dc.subject.proposalBactericidal response
dc.subject.proposalTécnica sol gel
dc.title.translatedSynthesis and characterization of Ni-doped Co3O4 nanostructures for applications in gas detection
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidorcid.org/0000-0001-6039-3924
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001515995
dc.contributor.scopusscopus.com/authid/detail.uri?authorId=57211373270
dc.contributor.researchgatehttps://www.researchgate.net/profile/Leydi-Julieta-Cardenas-2?ev=hdr_xprf
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=-jKCl14AAAAJ&hl=es


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito