Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorEspinosa Moreno, Andres Santiago
dc.date.accessioned2023-01-16T15:04:08Z
dc.date.available2023-01-16T15:04:08Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82936
dc.descriptionilustraciones, diagramas, gráficas, tablas
dc.description.abstractIn recent years, numerical simulation has emerged as a robust tool for the analysis of physiological phenomena. The application of computational fluid dynamics (CFD) techniques to the study of biofluids is a constantly growing field, especially the focus given to simulations of blood through the circulatory system and air within the human airways. A high complexity arises in the analysis of these systems. On the one hand, the extension and configuration of the geometrical model (branches, networks), and on the other hand, the multiphysics nature of many of these phenomena. This research work was developed with the aim of exploring methodologies that help to simplify the complexity of simulations associated with biofluids, particularly in human airways. In the first part, a specification of the basic concepts was developed, focusing on the description of the airways and the fluid dynamics associated with air transport in the respiratory system. In turn, a background of numerical simulation applied to biofluids, and a classification of the hybrid simulation methodologies was discussed. In the second part, a first simplification strategy was studied, specifically the use of synthetic airway models. For this purpose, a comparison study of the use of these models vs real patient-specific models was carried out. In addition, a study of the effect of the variation of some morphological parameters on the flow, such as bifurcation angle and carina radius rounding, was developed. In the third part, the implementation and validation of a hybrid simulation methodology was performed, based on a dimensional reduction from the airway homothety ratios. A boundary condition for the pressure, which is the result of this methodology, was implemented in a open source, and tested with two application cases: a study of airways in asthma condition and a study of branch collapse. Finally, general conclusions about the application of the spatial simplification strategy and the use of the hybrid simulation methodology were detailed, as well as recommendations and future work.
dc.description.abstractEn los últimos años, la simulación numérica se ha potenciado como una herramienta robusta para el análisis de fenómenos fisiológicos. La aplicación de técnicas de dinámica de fluidos computacional (CFD) para el estudio de bio-fluidos es un campo en constante crecimiento, en especial, el enfoque dado a las simulaciones de sangre a través del sistema circulatorio y de aire a través de las vías respiratorias. Una elevada complejidad surge en el análisis de estos sistemas. Por un lado, la extensión y la configuración del modelo geométrico (ramificaciones, redes), y por otro, la naturaleza multi-física de muchos fenómenos. Este trabajo de investigación fue desarrollado con la intención de explorar metodologías que ayuden a simplificar la complejidad de las simulaciones asociadas a bio-fluidos, particularmente en vías respiratorias humanas. En la primera parte, una especificación de los conceptos básicos fue desarrollada, centrándose en la descripción de las vías respiratorias y la dinámica de fluidos asociada al transporte de aire en el sistema respiratorio. A su vez, un background de la simulación numérica aplicada a bio-fluidos, y la consecución de una clasificación de las metodologías de simulación híbridas, fue discutido. En la segunda parte, una primera estrategia de simplificación fue estudiada, específicamente el uso de modelos sintéticos de vías respiratorias. Para esto, un estudio de comparación del uso de estos modelos contra los modelos reales específicos de paciente fue llevado a cabo. Ademas, un estudio del efecto de la variación de algunos parámetros morfológicos sobre el flujo, como lo son el ángulo de bifurcación y el redondeo de radio de carina, fue desarrollado. En la tercera parte, la implementación y validación de una metodología de simulación híbrida fue realizada, basados en una reducción dimensional a partir de los factores homotéticos de vías respiratorias. Una condición de frontera para la presión, la cual es el resultado de dicha metodología, fue implementada en un software libre, y puesta a prueba con dos casos aplicativos: un estudio de vías respiratorias en condición de asma y un estudio de colapso de ramificaciones. Finalmente, las conclusiones generales acerca de la aplicación de la estrategia de simplificación espacial y del uso de la metodología de simulación híbrida fueron detalladas, así como las debidas recomendaciones y trabajos futuros. (Texto tomado de la fuente)
dc.format.extentxiii, 119 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2022
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleExploration of hybrid simulation methodologies for the computational study of fluid flow phenomena in airways
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Mecánica
dc.description.researchareaThermal and fluid sciences
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesKatrin Adler and Christoph Brücker. Dynamic flow in a realistic model of the upper human lung airways. Experiments in Fluids, 43(2):411–423, 2007.
dc.relation.referencesS Manuchehr Alavi, Theodore E Keats, and William M O’Brien. The angle of tracheal bifurcation: its normal mensuration. American Journal of Roentgenology, 108(3):546–549, 1970.
dc.relation.referencesAndrea Aliverti and Antonio Pedotti. Mechanics of breathing: new insights from new technologies. Springer, 2014.
dc.relation.referencesWJ Bair. The icrp human respiratory tract model for radiological protection. Radiation Protection Dosimetry, 60(4):307–310, 1995.
dc.relation.referencesMaria C Basil and Edward E Morrisey. Respiratory bronchioles: a unique structure in the human lung. Lung Stem Cells in Development, Health and Disease, 91:114, 2021.
dc.relation.referencesJason HT Bates. Lung mechanics: an inverse modeling approach. Cambridge University Press, 2009.
dc.relation.referencesK Bauer and Ch Brücker. The role of ventilation frequency in airway reopening. Journal of Biomechanics, 42(8):1108–1113, 2009.
dc.relation.referencesKatrin Bauer and Christoph Brücker. The influence of airway tree geometry and ventilation frequency on airflow distribution. Journal of biomechanical engineering, 137(8), 2015.
dc.relation.referencesMehdi Behbahani, M Behr, M Hormes, U Steinseifer, D Arora, O Coronado, and M Pasquali. A review of computational fluid dynamics analysis of blood pumps. European Journal of Applied Mathematics, 20(4):363–397, 2009.
dc.relation.referencesTim Behrens. Openfoam’s basic solvers for linear systems of equations. Chalmers, Department of Applied Mechanics, 18(02), 2009.
dc.relation.referencesPhilipp Berg, Gabor Janiga, and Dominique Thevenin. Investigation of the unsteady blood flow in cerebral aneurysms with stent using the open-source software openfoam®. In Proc. Open Source CFD International Conference (OSCIC), pages 1–8, 2011.110
dc.relation.referencesBruno Blais, David Vidal, Francois Bertrand, Gregory S Patience, and Jamal Chaouki. Experimental methods in chemical engineering: Discrete element method—dem. The Canadian Journal of Chemical Engineering, 97(7):1964–1973, 2019.
dc.relation.referencesPablo J Blanco, Márcio R Pivello, Santiago A Urquiza, and Raúl A Feijóo. Building coupled 3d–1d–0d models in computational hemodynamics. In 1st International Conference on Mathematical and Computational Biomedical Engineering-CMBE2009, 2009.
dc.relation.referencesMark Brouns, Santhosh T Jayaraju, Chris Lacor, Johan De Mey, Marc Noppen, Walter Vincken, and Sylvia Verbanck. Tracheal stenosis: a flow dynamics study. Journal of Applied Physiology, 102(3):1178–1184, 2007.
dc.relation.referencesRajnish Kaur Calay, Jutarat Kurujareon, and Arne Erik Holdø. Numerical simulation of respiratory flow patterns within human lung. Respiratory physiology & neurobiology, 130(2):201–221, 2002.
dc.relation.referencesJoão PF Campos, Karla RB Melo, and Gabriela C Lopes. Implementation, validation and application of a lubrication force model in cfd-dem simulations. Brazilian Journal of Chemical Engineering, 39(2):429–440, 2022.
dc.relation.referencesE Garcı́a Castillo, M Chicot Llano, DA Rodrı́guez Serrano, and E Zamora Garcı́a. Ventilación mecánica no invasiva e invasiva. Medicine-Programa de Formación Médica Continuada Acreditado, 11(63):3759–3767, 2014.
dc.relation.referencesKwang K Chang, Ki Beom Kim, Mark W McQuilling, and Reza Movahed. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery. American Journal of Orthodontics and Dentofacial Orthopedics, 153(6):895–904, 2018.
dc.relation.referencesJie Chen, Xi-Yun Lu, and Wen Wang. Non-newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. Journal of Biomechanics, 39(11): 1983–1995, 2006.
dc.relation.referencesJT Chen, Charles E Putman, Laurence W Hedlund, NS Dahmash, and L Roberts. Widening of the subcarinal angle by pericardial effusion. American Journal of Roentgenology, 139(5):883–887, 1982.
dc.relation.referencesXiaole Chen, Wenqi Zhong, Xianguang Zhou, Baosheng Jin, and Baobin Sun. Cfd-dem simulation of particle transport and deposition in pulmonary airway. Powder technology, 228:309–318, 2012.
dc.relation.referencesJiwoong Choi, Guohua Xia, Merryn H Tawhai, Eric A Hoffman, and Ching-Long Lin. Numerical study of high-frequency oscillatory air flow and convective mixing in a ct-based human airway model. Annals of biomedical engineering, 38(12):3550–3571, 2010.
dc.relation.referencesRajesh Chowdhary, Virendra Singh, AE Tattersfield, SD Sharma, Subir Kar, and AB Gupta. Relationship of flow and cross-sectional area to frictional stress in airway models of asthma. Journal of Asthma, 36(5):419–426, 1999.
dc.relation.referencesSimoni Christou, Thanasis Chatziathanasiou, Stelios Angeli, Pantelis Koullapis, Fotos Stylianou, Josué Sznitman, Haiwei Henry Guo, and Stavros C Kassinos. Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies. Journal of Applied Physiology, 130(3):678–707, 2021.
dc.relation.referencesDogan Ciloglu and Adem Karaman. A numerical simulation of the airflow and aerosol particle deposition in a realistic airway model of a healthy adult. Journal of Pharmaceutical Sciences, 2022.
dc.relation.referencesMitchel J Colebank, M Umar Qureshi, Sudarshan Rajagopal, Richard A Krasuski, and Mette S Olufsen. A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 321(2):H318–H338, 2021.
dc.relation.referencesPatricia Corieri. Experimental and numerical investigation of flows in bifurcations within lung airways. PhD thesis, Ph. D. thesis, von Karman Institute for Fluid Dynamics, Université Libre de …, 1994.
dc.relation.referencesHL Dailey, HC Yalcin, and SN Ghadiali. Fluid-structure modeling of flow-induced alveolar epithelial cell deformation. Computers & structures, 85(11-14):1066–1071, 2007.
dc.relation.referencesJW De Backer, WG Vos, CD Gorlé, P Germonpré, B Partoens, FL Wuyts, Paul M Parizel, and W De Backer. Flow analyses in the lower airways: patient-specific model and boundary conditions. Medical engineering & physics, 30(7):872–879, 2008.
dc.relation.referencesWo R Dean. Xvi. note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(20):208–223, 1927.
dc.relation.referencesZhenya Fan, David W Holmes, Emilie Sauret, Mohammad S Islam, Suvash C Saha, Zoran Ristovski, and YuanTong Gu. A multiscale modeling method incorporating spatial coupling and temporal coupling into transient simulations of the human airways. International Journal for Numerical Methods in Fluids, 93(9):2905–2920, 2021.
dc.relation.referencesYu Feng and Clement Kleinstreuer. Ddpm-dem simulations of particulate flows in human tracheobronchial airways. In ASME International Mechanical Engineering Congress and Exposition, volume 56222, page V03BT03A030. American Society of Mechanical Engineers, 2013
dc.relation.referencesJerry Fine. Applied biofluid mechanics. McGraw-Hill Education, 2017.
dc.relation.referencesBrendan T Finucane, Albert H Santora, and Ban Chi-Ho Tsui. Principles of airway management. Springer, 2003.
dc.relation.referencesLuca Formaggia, Alfio Quarteroni, and Allesandro Veneziani. Cardiovascular Mathematics: Modeling and simulation of the circulatory system, volume 1. Springer Science & Business Media, 2010.
dc.relation.referencesFrank E Fresconi and Ajay K Prasad. Secondary velocity fields in the conducting airways of the human lung. Journal of Biomechanical Engineering, 129:722–732, 2007.
dc.relation.referencesLennart Fries, Sergiy Antonyuk, Stefan Heinrich, Daniel Dopfer, and Stefan Palzer. Collision dynamics in fluidised bed granulators: A dem-cfd study. Chemical engineering science, 86:108–123, 2013.
dc.relation.referencesManikantam G Gaddam and Arvind Santhanakrishnan. Effects of varying inhalation duration and respiratory rate on human airway flow. Fluids, 6(6):221, 2021.
dc.relation.referencesT Gemci, Valery Ponyavin, Y Chen, H Chen, and R Collins. Computational model of airflow in upper 17 generations of human respiratory tract. Journal of Biomechanics, 41(9):2047–2054, 2008.
dc.relation.referencesAS Green. Modelling of peak-flow wall shear stress in major airways of the lung. Journal of Biomechanics, 37(5):661–667, 2004.
dc.relation.referencesFernando Gutiérrez Muñoz. Ventilación mecánica. Acta médica peruana, 28(2):87–104, 2011.
dc.relation.referencesPamela H Haskin and Lawrence R Goodman. Normal tracheal bifurcation angle: a reassessment. American Journal of Roentgenology, 139(5):879–882, 1982.
dc.relation.referencesBeatriz Herranz, Marı́a Dolores Álvarez, and Jara Pérez-Jiménez. Association of plasma and urine viscosity with cardiometabolic risk factors and oxidative status. a pilot study in subjects with abdominal obesity. PloS one, 13(10):e0204075, 2018.
dc.relation.referencesWerner Hofmann. Modelling inhaled particle deposition in the human lung—a review. Journal of Aerosol Science, 42(10):693–724, 2011.
dc.relation.referencesK Horsfield and G Cumming. Angles of branching and diameters of branches in the human bronchial tree. The Bulletin of mathematical biophysics, 29(2):245–259, 1967.
dc.relation.referencesKeith Horsfield, Gladys Dart, Dan E Olson, Giles F Filley, and Gordon Cumming. Models of the human bronchial tree. Journal of applied physiology, 31(2):207–217, 1971
dc.relation.referencesMd Mahfuzul Islam, Huiru Li, Huidan Yu, and Xiaoping Du. Physics-based regression vs. cfd for hagen-poiseuille and womersley flows and uncertainty quantification. In Eleventh International Conference on Computational Fluid Dynamics, volume ICCFD11, pages ICCFD11–3301. ICCFD, 2022.
dc.relation.referencesM Ismail, A Comerford, and WA3130232 Wall. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. International journal for numerical methods in biomedical engineering, 29(11):1285–1305, 2013.
dc.relation.referencesDalibor Jajcevic, Eva Siegmann, Charles Radeke, and Johannes G Khinast. Large-scale cfd–dem simulations of fluidized granular systems. Chemical Engineering Science, 98: 298–310, 2013.
dc.relation.referencesM Elshin Joel and M Anburajan. 3d modeling of stenotic internal carotid artery treated with stent: a cfd analysis of blood. In International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013), pages 148–151. Atlantis Press, 2013.
dc.relation.referencesNasrul Hadi Johari, Jegatis Balaiyah, and Zulkifli Ahmad. Effect of chronic obstructive pulmonary disease on airflow motion using computational fluid dynamics analysis. In 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pages 249–254. IEEE, 2014.
dc.relation.referencesRoger D Kamm. Airway wall mechanics. Annual review of biomedical engineering, 1(1):47–72, 1999.
dc.relation.referencesMin-Yeong Kang, Jeongeun Hwang, and Jin-Won Lee. Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway. Journal of biomechanics, 44(6):1196–1199, 2011.
dc.relation.referencesBipinchandra Khade, AR Waheed, Nisha Yadav, and CV Diwan. Study of sub carinal angle of human trachea by computerized tomography. Int J Anat Res, 4(3):2828–32, 2016.
dc.relation.referencesHyoung-Ho Kim, Young Ho Choi, Seung Bae Lee, Yasutaka Baba, Kyung-Wuk Kim, and Sang-Ho Suh. Numerical analysis of the urine flow in a stented ureter with no peristalsis. Bio-medical materials and engineering, 26(s1):S215–S223, 2015.
dc.relation.referencesJ Kren, Miroslav Horák, F Zát’ura, and Mı́t’a Rosenberg. Mathematical model of the male urinary tract. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 145(2):91–96, 2001.
dc.relation.referencesSwashna Lal. Assessing the Impact of E-cigarette Particle Size on Aerosol Transport and Deposition in the Lung. PhD thesis, ResearchSpace@ Auckland, 2022
dc.relation.referencesBart N Lambrecht and Hamida Hammad. The immunology of asthma. Nature immunology, 16(1):45–56, 2015.
dc.relation.referencesDongyoub Lee, Seong S Park, George A Ban-Weiss, Michelle V Fanucchi, Charles G Plopper, and Anthony S Wexler. Bifurcation model for characterization of pulmonary architecture. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology, 291(4):379–389, 2008.
dc.relation.referencesMichael G Levitzky. Pulmonary physiology, volume 1. : McGraw-Hill Education,, 2018.
dc.relation.referencesTina A Lewis, Yang-Sheng Tzeng, Erin L McKinstry, Angela C Tooker, Kwansoo Hong, Yanping Sun, Joey Mansour, Zachary Handler, and Mitchell S Albert. Quantification of airway diameters and 3d airway tree rendering from dynamic hyperpolarized 3he magnetic resonance imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 53(2):474–478, 2005.
dc.relation.referencesChen Lin, Jui-Heng Lee, and Chih-Min Hsieh. The correlation between subcarinal angle and left atrial volume. Age (years old), 67(16.4):15–96, 2012.
dc.relation.referencesYang Liu, RMC So, and CH Zhang. Modeling the bifurcating flow in a human lung airway. Journal of biomechanics, 35(4):465–473, 2002.
dc.relation.referencesDuncan A Lockerby, Carlos A Duque-Daza, Matthew K Borg, and Jason M Reese. Time-step coupling for hybrid simulations of multiscale flows. Journal of Computational Physics, 237:344–365, 2013.
dc.relation.referencesM Malve, S Chandra, JL Lopez-Villalobos, EA Finol, A Ginel, and M Doblare. Cfd analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea. Computer methods in biomechanics and biomedical engineering, 16(2):198–216, 2013.
dc.relation.referencesBenoit Mandelbrot. Fractals. Freeman San Francisco, 1977.
dc.relation.referencesElaine N Marieb and K Hoehn. Urinary system. Essentials of Human Anatomy and Physiology, pages 501–526, 2006.
dc.relation.referencesTB Martonen, Y Yang, and ZQ Xue. Effects of carinal ridge shapes on lung airstreams. Aerosol science and technology, 21(2):119–136, 1994.
dc.relation.referencesTB Martonen, X Guan, and RM Schreck. Fluid dynamics in airway bifurcations: I. primary flows. Inhalation toxicology, 13(4):261–279, 2001.
dc.relation.referencesBenjamin Mauroy, M Filoche, ER Weibel, and B Sapoval. An optimal bronchial tree may be dangerous. Nature, 427(6975):633–636, 2004.
dc.relation.referencesPuneet Mehra. Fluid-Structure Interaction Modeling of Human Upper Airway Collapse in Obstructive Sleep Apnea. PhD thesis, University of Cincinnati, 2019.
dc.relation.referencesDouglas J Minnich and Douglas J Mathisen. Anatomy of the trachea, carina, and bronchi. Thoracic surgery clinics, 17(4):571–585, 2007.
dc.relation.referencesTaghi Miri et al. Viscosity and oscillatory rheology. Practical food rheology: An interpretive approach, pages 7–28, 2011.
dc.relation.referencesJoe J Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543–574, 1992.
dc.relation.referencesJoseph J Monaghan. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44:323–346, 2012.
dc.relation.referencesJG Murray, AL Brown, EA Anagnostou, and R Senior. Widening of the tracheal bifurcation on chest radiographs: value as a sign of left atrial enlargement. AJR. American journal of roentgenology, 164(5):1089–1092, 1995.
dc.relation.referencesJustus Kavita Mutuku, Wei-Hsin Chen, et al. Flow characterization in healthy airways and airways with chronic obstructive pulmonary disease (copd) during different inhalation conditions. Aerosol and Air Quality Research, 18(10):2680–2694, 2018.
dc.relation.referencesAchuth Nair Balachandran Nair, Stefan Pirker, and Mahdi Saeedipour. Resolved cfd-dem simulation of blood flow with a reduced-order rbc model. Computational Particle Mechanics volume, 9:759–774, 2021.
dc.relation.referencesPietro Nardelli, Kashif A Khan, Alberto Corvò, Niamh Moore, Mary J Murphy, Maria Twomey, Owen J O’Connor, Marcus P Kennedy, Raúl San José Estépar, Michael M Maher, et al. Optimizing parameters of an open-source airway segmentation algorithm using different ct images. Biomedical engineering online, 14(1):1–24, 2015.
dc.relation.referencesMatthew E Nipper and J Brandon Dixon. Engineering the lymphatic system. Cardiovascular engineering and technology, 2(4):296–308, 2011.
dc.relation.referencesYang-Yao Niu and Ding-Yu Chang. Cfd simulation of shear stress and secondary flows in urethra. Biomedical Engineering: Applications, Basis and Communications, 19(02):117–127, 2007.
dc.relation.referencesMette S Olufsen. Structured tree outflow condition for blood flow in larger systemic arteries. American journal of physiology-Heart and circulatory physiology, 276(1):H257–H268, 1999.
dc.relation.referencesMette S Olufsen, Charles S Peskin, Won Yong Kim, Erik M Pedersen, Ali Nadim, and Jesper Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of biomedical engineering, 28 (11):1281–1299, 2000.
dc.relation.referencesJesús Manuel Fernández Oro. Técnicas numéricas en ingenierı́a de fluidos: introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Reverté, 2012.
dc.relation.referencesMarco Paggi, Andrea Amicarelli, and Pietro Lenarda. Sph modelling of hydrodynamic lubrication along rough surfaces. Lubricants, 7(12):103, 2019.
dc.relation.referencesTJ Pedley, RC Schroter, and MF Sudlow. Energy losses and pressure drop in models of human airways. Respiration physiology, 9(3):371–386, 1970.
dc.relation.referencesTJ Pedley, RC Schroter, and MF Sudlow. The prediction of pressure drop and variation of resistance within the human bronchial airways. Respiration physiology, 9(3):387–405, 1970.
dc.relation.referencesTJ Pedley, RC Schroter, and MF Sudlow. Flow and pressure drop in systems of repeatedly branching tubes. Journal of Fluid Mechanics, 46(2):365–383, 1971.
dc.relation.referencesK Perktold and D Hilbert. Numerical simulation of pulsatile flow in a carotid bifurcation model. Journal of biomedical engineering, 8(3):193–199, 1986.
dc.relation.referencesSvetla Petkova, Alamgir Hossain, Jamal Naser, and Enzo Palombo. Cfd modelling of blood flow in portal vein hypertension with and without thrombosis. In Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melborne, Australia, pages 10–12, 2003.
dc.relation.referencesAK Politis, GP Stavropoulos, MN Christolis, FG Panagopoulos, NS Vlachos, and NC Markatos. Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: Steady state simulations. Journal of Biomechanics, 40(5): 1125–1136, 2007.
dc.relation.referencesR Ponzini, R Da Vià, S Bnà, C Cottini, and A Benassi. Coupled cfd-dem model for dry powder inhalers simulation: validation and sensitivity analysis for the main model parameters. Powder Technology, 385:199–226, 2021.
dc.relation.referencesChristian J Roth, Mahmoud Ismail, Lena Yoshihara, and Wolfgang A Wall. A comprehensive computational human lung model incorporating inter-acinar dependencies: Application to spontaneous breathing and mechanical ventilation. International journal for numerical methods in biomedical engineering, 33(1):e02787, 2017.
dc.relation.referencesChristian J Roth, Lena Yoshihara, Mahmoud Ismail, and Wolfgang A Wall. Computational modelling of the respiratory system: discussion of coupled modelling approaches and two recent extensions. Computer Methods in Applied Mechanics and Engineering, 314:473–493, 2017.
dc.relation.referencesConor A Ruzycki, Emadeddin Javaheri, and Warren H Finlay. The use of computational fluid dynamics in inhaler design. Expert opinion on drug delivery, 10(3):307–323, 2013.
dc.relation.referencesDaisy Sahni, Yatindra Kumar Batra, and Subramanyam Rajeev. Anatomical dimensions of trachea, main bronchi, subcarinal and bronchial angles in fetuses measured exvivo. Pediatric Anesthesia, 18(11):1029–1034, 2008.
dc.relation.referencesAndreas Schmidt, Stephan Zidowitz, Andres Kriete, Thorsten Denhard, Stefan Krass, and Heinz-Otto Peitgen. A digital reference model of the human bronchial tree. Computerized Medical Imaging and Graphics, 28(4):203–211, 2004.
dc.relation.referencesRC Schroter and MF Sudlow. Flow patterns in models of the human bronchial airways. Respiration physiology, 7(3):341–355, 1969.
dc.relation.referencesEnrico Sciubba. A critical reassessment of the hess–murray law. Entropy, 18(8):283, 2016.
dc.relation.referencesShahrokh Shahriari and Damien Garcia. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. Physics in Medicine & Biology, 63(20):205011, 2018.
dc.relation.referencesLauralee Sherwood. The urinary system. Human physiology from cells to system. 8th ed. Canada: Brooks/Cole, pages 504–26, 2013.
dc.relation.referencesYubing Shi, Patricia Lawford, and Rodney Hose. Review of zero-d and 1-d models of blood flow in the cardiovascular system. Biomedical engineering online, 10(1):1–38, 2011.
dc.relation.referencesPejman Shojaee and Hanieh Niroomand-Oscuii. Cfd analysis of drug uptake and elimination through vascularized cancerous tissue. Biomedical Physics & Engineering Express, 5(3):035032, 2019.
dc.relation.referencesRakesh Kumar Shukla, Vivek Kumar Srivastav, Akshoy Ranjan Paul, and Anuj Jain. Fluid structure interaction studies of human airways. Sādhanā, 45(1):1–6, 2020.
dc.relation.referencesVenkataramana K Sidhaye, Kelly S Schweitzer, Michael J Caterina, Larissa Shimoda, and Landon S King. Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proceedings of the National Academy of Sciences, 105(9):3345–3350, 2008.
dc.relation.referencesB Snyder and DE Olson. Flow development in a model airway bronchus. Journal of Fluid Mechanics, 207:379–392, 1989.
dc.relation.referencesBrooke N Steele, Mette S Olufsen, and Charles A Taylor. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Computer Methods in Biomechanics and Biomedical Engineering, 10(1): 39–51, 2007.
dc.relation.referencesCarlos Jose Suarez, Suzanne M Dintzis, and Charles W Frevert. Respiratory. In Comparative anatomy and histology, pages 121–134. Elsevier, 2012.
dc.relation.referencesMelody A Swartz. The physiology of the lymphatic system. Advanced drug delivery reviews, 50(1-2):3–20, 2001.
dc.relation.referencesShahab Taherian, Hamid Rahai, Bernardo Z Gomez, Thomas Waddington, and Jeremy R Bonifacio. Tracheal stenosis: a cfd approach for evaluation of drug delivery. In ASME International Mechanical Engineering Congress and Exposition, volume 57380, page V003T03A096. American Society of Mechanical Engineers, 2015.
dc.relation.referencesE Tsega and V Katiyar. Numerical simulations of inspiratory airflow in healthy and asthmatic human airways. Am J Biomed Eng, 9:5–12, 2019.
dc.relation.referencesCaroline Van Ertbruggen, Charles Hirsch, and Manuel Paiva. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. Journal of applied physiology, 98(3):970–980, 2005.
dc.relation.referencesLorenzo Vasquez Giuliano, Antonio Buffo, Marco Vanni, Alessandra Sabina Lanotte, Valentina Arima, Monica Bianco, Francesca Baldassarre, and Graziano Frungieri. Response of shear-activated nanotherapeutic particles in a clot-obstructed blood vessel by cfd-dem simulations. The Canadian Journal of Chemical Engineering, 2022.
dc.relation.referencesXiang-Qi Wang, Arun S Mujumdar, and Christopher Yap. Effect of bifurcation angle in tree-shaped microchannel networks. Journal of Applied Physics, 102(7):073530, 2007.
dc.relation.referencesYUAN WANG. CFD-DEM Simulation of Particle Transport and Deposition in Human Airway. PhD thesis, Monash University, 2017.
dc.relation.referencesMark A Warner and Bela Patel. Mechanical ventilation. Benumof and Hagberg’s airway management, pages 981–997, 2013.
dc.relation.referenceswald R Weibel, Andre F Cournand, and Dickinson W Richards. Morphometry of the human lung, volume 1. Springer, 1963.
dc.relation.referencesGeoffrey B West, James H Brown, and Brian J Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276(5309):122–126, 1997
dc.relation.referencesJohn Burnard West. Pulmonary pathophysiology: the essentials. Lippincott Williams & Wilkins, 2008.
dc.relation.referencesJohn Burnard West. Respiratory physiology: the essentials. Lippincott Williams & Wilkins, 2012.
dc.relation.referencesBR Wiggs, R Moreno, JC Hogg, C Hilliam, and PD Pare. A model of the mechanics of airway narrowing. Journal of Applied Physiology, 69(3):849–860, 1990.
dc.relation.referencesBR Wiggs, C Bosken, PD Pare, A James, and JC Hogg. A model of airway narrowing in asthma and in chronic obstructive pulmonary disease1-3. Am Rev Respir Dis, 145: 1251–1258, 1992.
dc.relation.referencesGuohua Xia, Merryn H Tawhai, Eric A Hoffman, and Ching-Long Lin. Airway wall stiffening increases peak wall shear stress: a fluid–structure interaction study in rigid and compliant airways. Annals of biomedical engineering, 38(5):1836–1853, 2010.
dc.relation.referencesXL Yang, Yang Liu, RMC So, and JM Yang. The effect of inlet velocity profile on the bifurcation copd airway flow. Computers in biology and medicine, 36(2):181–194, 2006.
dc.relation.referencesLena Yoshihara, Mahmoud Ismail, and Wolfgang A Wall. Bridging scales in respiratory mechanics. In Computer Models in Biomechanics, pages 395–407. Springer, 2013.
dc.relation.referencesBin Zhang, Shuang Liu, Yinxia Liu, Bo Wu, Xuhui Zhang, Xin Wang, Xuezhi Liang, Xiaoming Cao, Dongwen Wang, and Chin-Lee Wu. Novel cfd modeling approaches to assessing urine flow in prostatic urethra after transurethral surgery. Scientific Reports, 11(1):1–9, 2021.
dc.relation.referencesPeng Zhang, Na Zhang, Yuefan Deng, and Danny Bluestein. A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma. Journal of computational physics, 284:668–686, 2015.
dc.relation.referencesYao Zhao and Baruch B Lieber. Steady inspiratory flow in a model symmetric bifurcation. Journal of biomechanical engineering, 116(4):488–496, 1994.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsFenómenos Fisiológicos Circulatorios y Respiratorios
dc.subject.decsCirculatory and Respiratory Physiological Phenomena
dc.subject.proposalComputational Fluid Dynamics (CFD)
dc.subject.proposalHybrid Numerical Simulation
dc.subject.proposalLower Airways
dc.subject.proposalHomothety ratios
dc.subject.proposalReal Airway Patient-Specific
dc.subject.proposalSynthetic Airway Models
dc.subject.proposalDinámica de fluidos computacional (CFD)
dc.subject.proposalSimulación numérica híbrida
dc.subject.proposalVías respiratorias inferiores
dc.subject.proposalFactores homotéticos
dc.subject.proposalModelos de vías respiratorias reales de paciente especifico
dc.subject.proposalModelos sintéticos de vías respiratorias
dc.subject.spinesMecánica de fluidos
dc.title.translatedExploración de metodologías de simulación híbridas para el estudio computacional de fenómenos de flujos de fluidos en vías respiratorias
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidEspinosa Moreno, Andres Santiago [0000-0002-3562-6658]
dc.contributor.cvlacEspinosa Moreno, Andres Santiago [0001619872]
dc.contributor.researchgateEspinosa Moreno, Andres Santiago [Andres-Espinosa-Moreno]
dc.contributor.googlescholarEspinosa Moreno, Andres Santiago [HCrJtfwAAAAJ&hl=es]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito