Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCelis Ramírez, Adriana Marcela
dc.contributor.advisorLeal Castro, Aura Lucía
dc.contributor.authorFonseca Fernández, Angie Lorena
dc.date.accessioned2023-01-16T16:23:10Z
dc.date.available2023-01-16T16:23:10Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82941
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractStaphylococcus aureus es una bacteria de gran importancia clínica, caracterizada por ser la especie más virulenta dentro de su género y causante de infecciones muy diversas que pueden amenazar la vida de quienes las padecen. Sin embargo, su importancia no radica únicamente en las enfermedades que causa, sino en la alta capacidad que ha evidenciado para presentar resistencia a múltiples antibióticos dentro de los que se encuentran los βlactámicos, ejemplificada por la resistencia a meticilina. Los aislamientos resistentes a meticilina son un problema de salud pública mundial, que inicialmente se atribuían a ambientes hospitalarios, pero que con el paso del tiempo han comenzado a reportarse cada vez con más frecuencia en la comunidad. Adicional a esto, se ha observado resistencia a otros antibióticos con blancos terapéuticos diferentes. Lo anterior hace necesario la búsqueda de nuevas alternativas que permitan controlar el crecimiento bacteriano de aislamientos que no pueden tratarse mediante los antimicrobianos existentes actualmente. Este trabajo tiene como objetivo determinar el efecto de péptidos derivados de catelicidina en el crecimiento y la morfología de aislamientos clínicos de S. aureus procedentes de la ciudad de Bogotá D.C. Para ello, realizaremos la caracterización molecular respecto al gen de resistencia a meticilina mecA, la proteína A (spa) y pvl , causante de la presencia de leucocidina Panton-Valentine, e identificaremos los perfiles de sensibilidad a compuestos antibióticos de 57 aislamientos clínicos de S. aureus. Adicionalmente, evaluaremos la actividad de péptidos de catelicidina, LL-37 y ATRA-1, y daptomicina sobre los aislamientos clínicos caracterizados. Finalmente, identificaremos los cambios en la morfología bacteriana de S. aureus, por acción de los péptidos de catelicidina, mediante microscopía electrónica de barrido. Determinamos que existe una importante prevalencia de aislamientos resistentes a meticilina, y que además, existen aislamientos con discordancias en el perfil de sensibilidad a estos antibióticos en S. aureus, por otra parte se evidencia una tasa alta de sensibilidad a antibióticos con mecanismos de acciones diferentes a meticilina. Comprobamos que los péptidos LL-37 y ATRA-1 presentan capacidad antimicrobiana frente a este patógeno y que existen diferencias entre la actividad de estos compuestos y el perfil de sensibilidad a meticiilina. Finalmente, comprobamos que estos péptidos generan cambios en la morfología superficial como uno de sus mecanismos de acción, sin embargo, no se descarta que presenten efectos intracelulares que potencien su actividad antimicrobiana. Con este trabajo, buscamos contribuir a la vigilancia de la resistencia bacteriana en la ciudad de Bogotá, promover el desarrollo de nuevas alternativas terapéuticas que permitan controlar la resistencia bacteriana en nuestra región, así como aportar en la caracterización de la actividad de péptidos antimicrobianos sintéticos en S. aureus. (Texto tomado de la fuente)
dc.description.abstractStaphylococcus aureus is a bacterium of great clinical importance. It is the most virulent species within its genus and the cause of very diverse infections that can threaten the lives of those who suffer from them. More importantly, it has shown resistance to multiple antibiotics, including β-lactam antibiotics, like Methicillin resistance. Methicillin-resistant isolates are a worldwide public health problem, attributed initially to hospital environments, but it has begun to be reported more and more frequently in the community. In addition to this, resistance to other antibiotics with different therapeutic targets has been observed. That makes it necessary to search for new alternatives to control the bacterial growth of isolates that cannot be treated with existing antibiotics. This work aims to determine the effect of cathelicidin-derived peptides on the growth and morphology of S. aureus clinical isolates from Bogotá D.C. city. We performed molecular characterization of the methicillin resistance mecA gene, protein A (spa), and pvl genes, and we identified the sensitivity profiles to the antibiotics of 57 S. aureus clinical isolates. Additionally, we evaluated the antimicrobial activity of LL-37, ATRA-1, and daptomycin on the characterized clinical isolates. Finally, we identified the changes in S. aureus bacterial morphology by peptides’ action using scanning electron microscopy (SEM). We determined that there is an important prevalence of resistant isolates to Methicillin. Some of them with discordances in the methicillin sensitivity in S. aureus. However, a high sensitivity rate to antibiotics with mechanisms of action different from methicillin is evidenced. We found that LL-37 and ATRA-1 peptides have antimicrobial capacity against this pathogen and are differences between the activity of these compounds and the sensitivity of the Methicillin profile. Finally, we proved that these peptides generate Surface changes in morphology as one of their mechanisms; however, it is not excluded that they present intracellular effects that potentiate its antimicrobial action. With this work, we are looking to contribute to the surveillance of bacterial resistance in Bogotá city, promote the development of new therapeutic strategies to control bacterial resistance in our region, and contribute to the characterization of the activity of synthetic antimicrobial peptides against S. aureus.
dc.format.extent62 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2022
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleCaracterización molecular y de sensibilidad in vitro a antibióticos y péptidos derivados de catelicidina como agentes antimicrobianos frente a aislamientos clínicos de Staphylococcus aureus procedentes de la ciudad de Bogotá D.C.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researcherMancera García, María Alejandra
dc.contributor.researcherMartínez, Heydys
dc.contributor.researcherChad, Leidy
dc.contributor.researcherGuevara-Suárez, Marcela
dc.contributor.researchgroupGrupo de Investigación Celular y Molecular de Microorganismos Patógenos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.methodsCaracterización de aislamientos de S. aureus Perfil de sensibilidad antibiótica En este estudio se incluyeron 57 aislamientos proporcionados por el Grupo para el Control de la resistencia bacteriana en Bogotá (GREBO) y el laboratorio de Biofísica de la Universidad de los Andes (ver Anexo A). A partir de estos aislamientos se realizaron cultivos iniciales de 24 h a 37°C en medio solido tripticasa de soya (TSA) (Scharlau Chemie, España). La sensibilidad oxacilina se evalúo empleando el método microdilución en caldo conforme a lo descrito en la norma CLSI M07 (Clinical and Laboratory Standards Institute, 2018) y a cefoxitina, gentamicina, eritromicina, clindamicina, ciprofloxacina y trimetoprima-sulfametoxazol empleando el método difusión en agar conforme a lo descrito en la normar CLSI M02 (Clinical and Laboratory Standards Institute, 2018). Como controles se emplearon las cepas Staphylococcus aureus subsp. aureus (ATCC® 25923™), Staphylococcus aureus subsp. aureus (ATCC® 29213™) y Staphylococcus aureus subsp. aureus (ATCC® 33591™) (American Type Culture Collection, Virginia, USA) y los aislamientos clínicos 1631 sensible a daptomicina y 1634 resistente a daptomicina, proporcionados por el laboratorio de Biofísica de la Universidad de los Andes (ver anexo A). Todos los ensayos se realizaron por triplicado.
dc.description.researchareaMicrobiología médica
dc.description.researchareaBiología molecular de agentes infecciosos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbente, S., Carpinelli, L., Guillén, R., Rodríguez, F., Fariña, N., Laspina, F., & López, Y. (2016). Frecuencia de Staphylococcus aureus meticilino resistente y del factor de virulencia PVL en pacientes ambulatorios con infección de piel y partes blandas de Asunción, Paraguay. Memorias Del Instituto de Investigaciones En Ciencias de La Salud, 14(2).
dc.relation.referencesAkanbi, O. E., Njom, H. A., Fri, J., Otigbu, A. C., & Clarke, A. M. (2017). Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern Cape Province of South Africa. International Journal of Environmental Research and Public Health, 14(9), 1001.
dc.relation.referencesAli, A. (2016). Detection of MecA, MecC and Femb Genes by Multiplex Polymerase Chain Reaction. Journal of Veterinary Advances, 6(1), 1199. https://doi.org/10.5455/jva.20151204111125
dc.relation.referencesAmer, L. S., Bishop, B. M., & van Hoek, M. L. (2010). Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochemical and Biophysical Research Communications, 396(2), 246–251.
dc.relation.referencesAskari, E., Soleymani, F., Arianpoor, A., Tabatabai, S. M., Amini, A., & NaderiNasab, M. (2012). Epidemiology of mecA-methicillin resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. Iranian Journal of Basic Medical Sciences, 15(5), 1010.
dc.relation.referencesBahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12), 1543–1575.
dc.relation.referencesBaindara, P., Ghosh, A. K., & Mandal, S. M. (2020). Coevolution of resistance against antimicrobial peptides. Microbial Drug Resistance, 26(8), 880–899.
dc.relation.referencesBals, R., Wang, X., Zasloff, M., & Wilson, J. M. (1998). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proceedings of the National Academy of Sciences, 95(16), 9541–9546.
dc.relation.referencesBatoni, G., Maisetta, G., & Esin, S. (2016). Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(5), 1044–1060.
dc.relation.referencesBecker, K., Ballhausen, B., Köck, R., & Kriegeskorte, A. (2014). Methicillin resistance in Staphylococcus isolates: the “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. International Journal of Medical Microbiology, 304(7), 794–804.
dc.relation.referencesBlower, R. J., Barksdale, S. M., & van Hoek, M. L. (2015). Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against Burkholderia thailandensis. PLoS Neglected Tropical Diseases, 9(7), e0003862.
dc.relation.referencesBoonsiri, T., Watanabe, S., Tan, X.-E., Thitiananpakorn, K., Narimatsu, R., Sasaki, K., Takenouchi, R., Sato’o, Y., Aiba, Y., & Kiga, K. (2020). Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Scientific Reports, 10(1), 1–22.
dc.relation.referencesBrogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238–250.
dc.relation.referencesBrogden, N. K., & Brogden, K. A. (2011). Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 38(3), 217–225.
dc.relation.referencesCallegan, M. C., Engel, L. S., Hill, J. M., & O’Callaghan, R. J. (1994). Corneal virulence of Staphylococcus aureus: roles of alpha-toxin and protein A in pathogenesis. Infection and Immunity, 62(6), 2478–2482.
dc.relation.referencesCao, X., Zhang, Y., Mao, R., Teng, D., Wang, X., & Wang, J. (2015). Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus. Applied Microbiology and Biotechnology, 99(6), 2649–2662.
dc.relation.referencesCardoso, M. H., Meneguetti, B. T., Costa, B. O., Buccini, D. F., Oshiro, K. G. N., Preza, S. L. E., Carvalho, C. M. E., Migliolo, L., & Franco, O. L. (2019). Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. International Journal of Molecular Sciences, 20(19), 4877.
dc.relation.referencesCardot‐Martin, E., Casalegno, J. S., Badiou, C., Dauwalder, O., Keller, D., Prevost, G., Rieg, S., Kern, W. V, Cuerq, C., & Etienne, J. (2015). α‐defensins partially protect human neutrophils against Panton‐Valentine leukocidin produced by Staphylococcus aureus. Letters in Applied Microbiology, 61(2), 158–164.
dc.relation.referencesCervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). Características generales del Staphylococcus aureus. Revista Mexicana de Patología Clínica y Medicina de Laboratorio, 61(1), 28–40.
dc.relation.referencesCarvalho, S. P. D., Almeida, J. B. D., Andrade, Y. M., da Silva, L. S., Chamon, R. C., Santos, K., & Marques, L. M. (2019). Molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from hospital and community environments in northeastern Brazil. Brazilian Journal of Infectious Diseases, 23, 134-138.
dc.relation.referencesChávez, M., Erazo, N. C., Reina, D. A., & Esparza, M. (2015). Métodos de tipificación y epidemiología molecular de Staphylococcus aureus con resistencia a la meticilina. Biosalud, 14(2), 81-90.
dc.relation.referencesChen, F.-J., Wang, C.-H., Chen, C.-Y., Hsu, Y.-C., & Wang, K.-T. (2014). Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Antimicrobial Agents and Chemotherapy, 58(2), 1047–1054.
dc.relation.referencesChou, S., Wang, J., Shang, L., Akhtar, M. U., Wang, Z., Shi, B., Feng, X., & Shan, A. (2019). Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomaterials Science, 7(6), 2394–2409.
dc.relation.referencesClinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute.
dc.relation.referencesCondrad, R. S. (1998). The effects of daptomycin on chemical composition and morphology of Staphylococcus aureus. Proceedings of the Oklahoma Academy of Science, 15–22.
dc.relation.referencesConlon, J. M., & Sonnevend, A. (2010). Antimicrobial peptides in frog skin secretions. In Antimicrobial Peptides (pp. 3–14). Springer.
dc.relation.referencesCorrea-Jiménez, O., Pinzón-Redondo, H., & Reyes, N. (2016). High frequency of Panton-Valentine leukocidin in Staphylococcus aureus causing pediatric infections in the city of CartagenaColombia. Journal of Infection and Public Health, 9(4), 415-420.
dc.relation.referencesCunningham, S. D., Lowe, D. J., O’brien, J. P., Wang, H., & Wilkins, A. E. (2011). Polyethylene binding peptides and methods of use. Google Patents.
dc.relation.referencesDawson, R. M., & Liu, C.-Q. (2011). Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity. International Journal of Antimicrobial Agents, 37(5), 432– 437.
dc.relation.referencesde Latour, F. A., Amer, L. S., Papanstasiou, E. A., Bishop, B. M., & van Hoek, M. L. (2010). Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochemical and Biophysical Research Communications, 396(4), 825–830.
dc.relation.referencesDean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011a). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiology, 11(1), 1–13.
dc.relation.referencesDean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011b). Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Frontiers in Microbiology, 2, 128.
dc.relation.referencesDíaz, P., Bello, H., Domínguez, M., Trabal, N., Mella, S., Zemelman, R., & González, G. (2004). Resistencia a gentamicina, amikacina y ciprofloxacina en cepas hospitalarias de Klebsiella pneumoniae subespecie pneumoniae productoras de ß-lactamasas de espectro extendido. Revista Médica de Chile, 132(10), 1173–1178.
dc.relation.referencesDonkor, E. S., Dayie, N. T. K. D., & Adiku, T. K. (2014). Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). Journal of Bioinformatics and Sequence Analysis, 6(1), 1–6.
dc.relation.referencesDürr, U. H. N., Sudheendra, U. S., & Ramamoorthy, A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)Biomembranes, 1758(9), 1408–1425.
dc.relation.referencesEnright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., & Spratt, B. G. (2002). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences, 99(11), 7687–7692.
dc.relation.referencesEpand, R. M., & Vogel, H. J. (1999). Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462(1–2), 11–28.
dc.relation.referencesEscobar-Pérez, J. A., Castro, B. E., Márquez-Ortiz, R. A., Gaines, S., Chavarro, B., Moreno, J., Leal, A. L., & Vanegas, N. (2014). Aislamientos de Staphylococcus aureus sensibles a meticilina relacionados genéticamente con el clon USA300,¿ origen de los aislamientos SARM de genotipo comunitario en Colombia? Biomédica, 34(1), 124–136.
dc.relation.referencesEspinosa, C. J., Cortés, J. A., Castillo, J. S., & Leal, A. L. (2011). Revisión sistemática de la resistencia antimicrobiana en cocos Gram positivos intrahospitalarios en Colombia. Biomédica, 31(1), 27–34.
dc.relation.referencesFalanga, A., Lombardi, L., Franci, G., Vitiello, M., Iovene, M. R., Morelli, G., Galdiero, M., & Galdiero, S. (2016). Marine antimicrobial peptides: nature provides templates for the design of novel compounds against pathogenic bacteria. International Journal of Molecular Sciences, 17(5), 785.
dc.relation.referencesFrenay, H. M. E., Bunschoten, A. E., Schouls, L. M., Van Leeuwen, W. J., Vandenbroucke-Grauls, C., Verhoef, J., & Mooi, F. R. (1996). Molecular typing of methicillin- aureus on the basis of protein A gene polymorphism. European Journal of Clinical Microbiology and Infectious Diseases, 15(1), 60–64.
dc.relation.referencesFumakia, M., & Ho, E. A. (2016). Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Molecular Pharmaceutics, 13(7), 2318–2331.
dc.relation.referencesGanz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology, 3(9), 710–720.
dc.relation.referencesGhebremedhin, B., Layer, F., Konig, W., & Konig, B. (2008). Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. Journal of Clinical Microbiology, 46(3), 1019–1025.
dc.relation.referencesGraf, M., Mardirossian, M., Nguyen, F., Seefeldt, A. C., Guichard, G., Scocchi, M., Innis, C. A., & Wilson, D. N. (2017). Proline-rich antimicrobial peptides targeting protein synthesis. Natural Product Reports, 34(7), 702–711.
dc.relation.referencesGrönberg, A., Mahlapuu, M., Ståhle, M., Whately‐Smith, C., & Rollman, O. (2014). Treatment with LL‐37 is safe and effective in enhancing healing of hard‐to‐heal venous leg ulcers: a randomized, placebo‐controlled clinical trial. Wound Repair and Regeneration, 22(5), 613– 621.
dc.relation.referencesHarmsen, D., Claus, H., Witte, W., Rothgänger, J., Claus, H., Turnwald, D., & Vogel, U. (2003). Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. Journal of Clinical Microbiology, 41(12), 5442–5448.
dc.relation.referencesHenzler Wildman, K. A., Lee, D.-K., & Ramamoorthy, A. (2003). Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 42(21), 6545–6558.
dc.relation.referencesHobbs, J. K., Miller, K., O’neill, A. J., & Chopra, I. (2008). Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 62(5), 1003–1008.
dc.relation.referencesHong, S. Y., Oh, J. E., & Lee, K.-H. (1999). Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochemical Pharmacology, 58(11), 1775–1780.
dc.relation.referencesHryniewicz, M. M., & Garbacz, K. (2017). Borderline oxacillin-resistant Staphylococcus aureus (BORSA)–a more common problem than expected? Journal of Medical Microbiology, 66(10), 1367–1373
dc.relation.referencesHsiao, C.-H., Ong, S. J., Chuang, C.-C., Ma, D. H. K., & Huang, Y.-C. (2015). A comparison of clinical features between community-associated and healthcare-associated methicillinresistant Staphylococcus aureus keratitis. Journal of Ophthalmology, 2015.
dc.relation.referencesHuang, H. W. (2020). DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(10), 183395.
dc.relation.referencesJokinen, E., Lindholm, L., Huttunen, R., Huhtala, H., Vuento, R., Vuopio, J., & Syrjänen, J. (2018). Spa type distribution in MRSA and MSSA bacteremias and association of spa clonal complexes with the clinical characteristics of bacteremia. European Journal of Clinical Microbiology & Infectious Diseases, 37(5), 937–943.
dc.relation.referencesJuba, M. L., Porter, D. K., Williams, E. H., Rodriguez, C. A., Barksdale, S. M., & Bishop, B. M. (2015). Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(5), 1081–1091.
dc.relation.referencesJuba, M., Porter, D., Dean, S., Gillmor, S., & Bishop, B. (2013). Characterization and performance of short cationic antimicrobial peptide isomers. Peptide Science, 100(4), 387–401.
dc.relation.referencesJung, S.-I., Shin, D.-H., Park, K.-H., & Shin, J.-H. (2006). Antimicrobial susceptibility and clonal relatedness between community-and hospital-acquired methicillin-resistant Staphylococcus aureus from blood cultures. Journal of Microbiology, 44(3), 336–343.
dc.relation.referencesKandasamy, S. K., & Larson, R. G. (2006). Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochimica et Biophysica Acta (BBA)Biomembranes, 1758(9), 1274–1284.
dc.relation.referencesKhurshid, Z., Najeeb, S., Mali, M., Moin, S. F., Raza, S. Q., Zohaib, S., Sefat, F., & Zafar, M. S. (2017). Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal, 25(1), 25–31.
dc.relation.referencesKlemetsen, T., Karlsen, C. R., & Willassen, N. P. (2021). Phylogenetic revision of the genus Aliivibrio: intra-and inter-species variance among clusters suggest a wider diversity of species. Frontiers in Microbiology, 12, 272.
dc.relation.referencesKöck, R., Schaumburg, F., Mellmann, A., Köksal, M., Jurke, A., Becker, K., & Friedrich, A. W. (2013). Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PloS One, 8(2), e55040.
dc.relation.referencesKumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 8(1), 4.
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547– 1549.
dc.relation.referencesLabandeira-Rey, M., Couzon, F., Boisset, S., Brown, E. L., Bes, M., Benito, Y., Barbu, E. M., Vazquez, V., Höök, M., & Etienne, J. (2007). Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science, 315(5815), 1130–1133.
dc.relation.referencesLane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics, 115–175.
dc.relation.referencesLázár, V., Martins, A., Spohn, R., Daruka, L., Grézal, G., Fekete, G., Számel, M., Jangir, P. K., Kintses, B., & Csörgő, B. (2018). Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 3(6), 718–731.
dc.relation.referencesLi, H., Sun, S., Yap, J. Q., Chen, J., & Qian, Q. (2016). 0.9% saline is neither normal nor physiological. Journal of Zhejiang University-SCIENCE B, 17(3), 181–187.
dc.relation.referencesLina, G., Piémont, Y., Godail-Gamot, F., Bes, M., Peter, M.-O., Gauduchon, V., Vandenesch, F., & Etienne, J. (1999). Involvement of Panton-Valentine Leukocidin—Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clinical Infectious Diseases, 29(5), 1128– 1132. https://doi.org/10.1086/313461
dc.relation.referencesLiu, Z., Brady, A., Young, A., Rasimick, B., Chen, K., Zhou, C., & Kallenbach, N. R. (2007). Length effects in antimicrobial peptides of the (RW) n series. Antimicrobial Agents and Chemotherapy, 51(2), 597–603.
dc.relation.referencesLöffler, B., Hussain, M., Grundmeier, M., Brück, M., Holzinger, D., Varga, G., Roth, J., Kahl, B. C., Proctor, R. A., & Peters, G. (2010). Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathogens, 6(1), e1000715.
dc.relation.referencesMagiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., & Olsson-Liljequist, B. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281.
dc.relation.referencesMalanovic, N., & Lohner, K. (2016). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(5), 936–946.
dc.relation.referencesMalik, E., Dennison, S. R., Harris, F., & Phoenix, D. A. (2016). pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals, 9(4), 67.
dc.relation.referencesMascio, C. T. M., Alder, J. D., & Silverman, J. A. (2007). Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrobial Agents and Chemotherapy, 51(12), 4255–4260.
dc.relation.referencesMerriman, J. A., Nemeth, K. A., & Schlievert, P. M. (2014). Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis. PloS One, 9(4), e95661.
dc.relation.referencesMiller, B. A., Gray, A., LeBlanc, T. W., Sexton, D. J., Martin, A. R., & Slama, T. G. (2010). Acute eosinophilic pneumonia secondary to daptomycin: a report of three cases. Clinical Infectious Diseases, 50(11), e63–e68.
dc.relation.referencesMinahk, C. J., & Morero, R. D. (2003). Inhibition of enterocin CRL35 antibiotic activity by monoand divalent ions. Letters in Applied Microbiology, 37(5), 374–379.
dc.relation.referencesMüller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T. N. V, Kohl, B., Siersma, T., Bandow, J. E., Sahl, H.-G., & Schneider, T. (2016). Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences, 113(45), E7077–E7086.
dc.relation.referencesMurray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2020). Medical Microbiology E-Book. Elsevier Health Sciences.
dc.relation.referencesMwambi, B., Iramiot, J., Bwanga, F., Nakaye, M., Itabangi, H., & Bazira, J. (2014). Clindamycin resistance among taphylococcus aureus isolated at Mbarara regional referral hospital, in south western Uganda. British Microbiology Research Journal, 4(12), 1335.
dc.relation.referencesNathwani, D., Morgan, M., Masterton, R. G., Dryden, M., Cookson, B. D., French, G., & Lewis, D. (2008). Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. Journal of Antimicrobial Chemotherapy, 61(5), 976–994.
dc.relation.referencesNeshani, A., Zare, H., Eidgahi, M. R. A., Kakhki, R. K., Safdari, H., Khaledi, A., & Ghazvini, K. (2019). LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Reports, 17, 100519.
dc.relation.referencesOcampo, A. M., Vélez, L. A., Robledo, J., & Jiménez, J. N. (2014). Cambios a lo largo del tiempo en la distribución de los complejos de clones dominantes de Staphylococcus aureus resistente a la meticilina en Medellín, Colombia. Biomédica, 34, 34-40.
dc.relation.referencesOliveira, D. C., Tomasz, A., & de Lencastre, H. (2001). The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microbial Drug Resistance, 7(4), 349–361
dc.relation.referencesOng, S. J., Huang, Y.-C., Tan, H.-Y., Ma, D. H. K., Lin, H.-C., Yeh, L.-K., Chen, P. Y. F., Chen, H.C., Chuang, C.-C., & Chang, C.-J. (2013). Staphylococcus aureus keratitis: a review of hospital cases. PLoS One, 8(11), e80119.
dc.relation.referencesOrozco, R. C., Ferrer, L. V., Jiménez, J. R., & Guzmán, N. A. (2018). Resistencia antimicrobiana en aureus y epidermidis: tendencia temporal (2010-2016) y fenotipos de multirresistencia, Cartagena (Colombia). Biosalud, 17(2), 25–36.
dc.relation.referencesOuhara, K., Komatsuzawa, H., Kawai, T., Nishi, H., Fujiwara, T., Fujiue, Y., Kuwabara, M., Sayama, K., Hashimoto, K., & Sugai, M. (2008). Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 61(6), 1266–1269.
dc.relation.referencesOvalle Guerro, M. (2020). Vigilancia por WHONET de resistencia antimicrobiana en el ámbito hospitalario, Colombia 2020. https://www.ins.gov.co/BibliotecaDigital/vigilancia-porwhonet-de-resistencia-antimicrobiana-en-el-ambito-hospitalario-colombia2020.pdf#search=Staphylococcus
dc.relation.referencesPal, M., Kerorsa, G. B., Marami, L. M., & Kandi, V. (2020). Epidemiology, Pathogenicity, Animal Infections, Antibiotic Resistance, Public Health Significance, and Economic Impact of Staphylococcus : A Comprehensive Review. American Journal of Public Health, 8(1), 14–21.
dc.relation.referencesPapanastasiou, E. A., Hua, Q., Sandouk, A., Son, U. H., Christenson, A. J., Van Hoek, M. L., & Bishop, B. M. (2009). Role of acetylation and charge in antimicrobial peptides based on human β‐defensin‐3. Apmis, 117(7), 492–499.
dc.relation.referencesPark, C. B., Yi, K.-S., Matsuzaki, K., Kim, M. S., & Kim, S. C. (2000). Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proceedings of the National Academy of Sciences, 97(15), 8245–8250.
dc.relation.referencesPatel, J. B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313–321.
dc.relation.referencesPellens, R., & Grandcolas, P. (2016). Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis. Springer Nature.
dc.relation.referencesPiątkowska, E., Piątkowski, J., & Przondo-Mordarska, A. (2012). The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cellular & Molecular Biology Letters, 17(4), 633–645.
dc.relation.referencesPo, K. H. L., Chow, H. Y., Cheng, Q., Chan, B. K., Deng, X., Wang, S., Chan, E. W. C., Kong, H., Chan, K. F., & Li, X. (2021). Daptomycin exerts bactericidal effect through induction of excessive ROS production and blocking the function of stress response protein Usp2. Natural Sciences, 1(2), e10023.
dc.relation.referencesPuklo, M., Guentsch, A., Hiemstra, P. S., Eick, S., & Potempa, J. (2008). Analysis of neutrophilderived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL‐37 in the innate immune response against periodontogenic bacteria. Oral Microbiology and Immunology, 23(4), 328–335.
dc.relation.referencesQuinn, P. J., Markey, B. K., Leonard, F. C., Hartigan, P., Fanning, S., & Fitzpatrick, Es. (2011). Veterinary microbiology and microbial disease. John Wiley & Sons.
dc.relation.referencesR Dennison, S., HG Morton, L., & A Phoenix, D. (2012). Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs. Protein and Peptide Letters, 19(6), 586–591.
dc.relation.referencesRichter, S. S., Kealey, D. E., Murray, C. T., Heilmann, K. P., Coffman, S. L., & Doern, G. V. (2003). The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy, 52(1), 123–127.
dc.relation.referencesSaeed, K., Marsh, P., & Ahmad, N. (2014). Cryptic resistance in Staphylococcus aureus: a risk for the treatment of skin infection? Current Opinion in Infectious Diseases, 27(2), 130–136.
dc.relation.referencesSantaniello, A., Sansone, M., Fioretti, A., & Menna, L. F. (2020). Systematic review and metaanalysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. International Journal of Environmental Research and Public Health, 17(9), 3278.
dc.relation.referencesScott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D., & Hancock, R. E. W. (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. The Journal of Immunology, 169(7), 3883–3891.
dc.relation.referencesShai, Y., & Oren, Z. (2001). From “carpet” mechanism to de-novo designed diastereomeric cellselective antimicrobial peptides. Peptides, 22(10), 1629–1641.
dc.relation.referencesShopsin, B., Gomez, M., Montgomery, S. O., Smith, D. H., Waddington, M., Dodge, D. E., Bost, D. A., Riehman, M., Naidich, S., & Kreiswirth, B. N. (1999). Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. Journal of Clinical Microbiology, 37(11), 3556–3563.
dc.relation.referencesSohail, M., & Latif, Z. (2017). Prevalence and antibiogram of methicillin resistant Staphylococcus aureus isolated from medical device-related infections; a retrospective study in Lahore, Pakistan. Revista Da Sociedade Brasileira de Medicina Tropical, 50(5), 680–684.
dc.relation.referencesTakizawa, Y., Taneike, I., Nakagawa, S., Oishi, T., Nitahara, Y., Iwakura, N., Ozaki, K., Takano, M., Nakayama, T., & Yamamoto, T. (2005). A Panton-Valentine leucocidin (PVL)-positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multiple-drug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. Journal of Clinical Microbiology, 43(7), 3356–3363.
dc.relation.referencesTerra, R. M. S., Guimarães, J. A., & Verli, H. (2007). Structural and functional behavior of biologically active monomeric melittin. Journal of Molecular Graphics and Modelling, 25(6), 767–772.
dc.relation.referencesThampi, D. K., Mundangalam, N., Pulikottil, S. K., & Jacob, N. (2019). Comparison of Phenotypic MRSA Detection Methods with mecA gene PCR in a Tertiary Care Centre in India. Journal of Evolution of Medical and Dental Sciences, 8(36), 2813–2818.
dc.relation.referencesThitiananpakorn, K., Aiba, Y., Tan, X.-E., Watanabe, S., Kiga, K., Sato’o, Y., Boonsiri, T., Li, F.-Y., Sasahara, T., & Taki, Y. (2020). Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Scientific Reports, 10(1), 1–15.
dc.relation.referencesThomas, P., Sekhar, A. C., Upreti, R., Mujawar, M. M., & Pasha, S. S. (2015). Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports, 8, 45–55.
dc.relation.referencesToor, H. G., Banerjee, D. I., & Chauhan, J. B. (2021). In Silico Evaluation of Human Cathelicidin LL-37 as a Novel Therapeutic Inhibitor of Panton-Valentine Leukocidin Toxin of MethicillinResistant Staphylococcus aureus. Microbial Drug Resistance, 27(5), 602–615.
dc.relation.referencesTrindade, P. A., McCulloch, J. A., Oliveira, G. A., & Mamizuka, E. M. (2003). Molecular techniques for MRSA typing: current issues and perspectives. Brazilian Journal of Infectious Diseases, 7(1), 32–43.
dc.relation.referencesTurner, A. M., Lee, J. Y. H., Gorrie, C. L., Howden, B. P., & Carter, G. P. (2021). Genomic Insights Into Last-Line Antimicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant Enterococcus. Frontiers in Microbiology, 12, 576.
dc.relation.referencesValderrama-Beltrán, S., Cortés, J. A., Caro, M. A., Cely-Andrado, L., Osorio-Pinzón, J. V., Gualtero, S. M., Berrio-Medina, I., Rodriguez, J. Y., Granada-Copete, A. M., & Guevara, F. (2019). Guía de práctica clínica para el diagnóstico y manejo de las infecciones de piel y tejidos blandos en Colombia. Infectio, 23(4), 318–346.
dc.relation.referencesVan Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: an overview. Frontiers in Microbiology, 2, 203.
dc.relation.referencesVasilchenko, A. S., Julian, W. T., Lapchinskaya, O. A., Katrukha, G. S., Sadykova, V. S., & Rogozhin, E. A. (2020). A novel peptide antibiotic produced by Streptomyces roseoflavus strain INAAc-5812 with directed activity against Gram-positive bacteria. Frontiers in Microbiology, 11.
dc.relation.referencesWu, G., Ding, J., Li, H., Li, L., Zhao, R., Fan, X., & Shen, Z. (2008). Effects of Cations and PH on Antimicrobial Activity of Thanatin and s-Thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Nature Precedings, 1.
dc.relation.referencesYamada, T., Ishikawa, S., Ishiguro, N., Kobayashi, M., & Iseki, K. (2020). Evaluation of daptomycin-induced cellular membrane injury in skeletal muscle. Biological and Pharmaceutical Bulletin, b20-00217.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsProgramas de Optimización del Uso de los Antimicrobianos
dc.subject.decsAntimicrobial Stewardship
dc.subject.decsAislamiento de Pacientes
dc.subject.decsPatient Isolation
dc.subject.proposalStaphylococcus aureus
dc.subject.proposalPéptidos antimicrobianos
dc.subject.proposalLL-37
dc.subject.proposalATRA-1
dc.subject.proposalCatelicidina
dc.subject.proposalResistencia antibiótica
dc.subject.proposalResistencia a meticilina
dc.subject.proposalAntimicrobial peptides
dc.subject.proposalAntibiotic resistance
dc.subject.proposalCathelicidin
dc.subject.proposalMethicillin resistance
dc.title.translatedMolecular and in vitro sensitivity characterization to antibiotics and cathelicidin peptides as antimicrobial agents against clinical isolates of Staphylococcus aureus from Bogotá city.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleCaracterización molecular y de sensibilidad in vitro a antibióticos y péptidos derivados de catelicidina como agentes antimicrobianos frente a aislamientos clínicos de Staphylococcus aureus procedentes de la ciudad de Bogotá D.C.
oaire.fundernameMinCiencias
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito