Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorAngarita Moncaleano, Irma Inirida
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.authorAgredo Diaz, Dayi Giberto
dc.date.accessioned2023-01-17T16:33:04Z
dc.date.available2023-01-17T16:33:04Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82981
dc.descriptionilstraciones, fotografías, graficas
dc.description.abstractEl titanio es un material altamente utilizado en la industria, condición ligada a sus buenas propiedades, sin duda alguna esto ofrece ventajas importantes con respecto a materiales como el acero; es así que las industrias de mayor demanda son la aeronáutica, medica, industria armamentista e incluso en el ámbito deportivo. En esta investigación se sintetizan recubrimientos metal-cerámica (60% wt de Ti+ 40% wt de TiB2) por la técnica de láser cladding coaxial sobre sustratos de Ti grado 2 y Ti-6Al-4V a diferentes niveles de energía (600, 900 y 1000 W) y se evalúa su comportamiento electroquímico en una solución de NaCl al 3.5% y a alta temperatura. Se caracteriza el material por microscopia electrónica de barrido, la evaluación electroquímica se hace por medio de espectroscopia de impedancia y polarización tafel, su estructura se evalúa por difracción de rayos X. La corrosión a alta temperatura es evaluada por medio de la técnica de oxidación cíclica. A nivel electroquímico los resultados muestran que los recubrimientos modifican la respuesta electroquímica del sistema, brindando protección sobre la superficie del material, lo cual está asociado a la formación de una capa protectora sobre la superficie del material (formación de compuestos de TiB, TiB2, TiO2; en la corrosión a alta temperatura se encuentra reducción de la degradación del material recubierto a diferencia del material sin recubrimiento, evidenciando la formación de compuestos principalmente constituidos por TiO2 (Texto tomado de la fuente).
dc.description.abstractTitanium is a highly used material in the industry, a condition linked to its good properties, without a doubt this offers important advantages with respect to materials such as steel; Thus, the industries with the greatest demand are aeronautics, medicine, the arms industry and even sports. In this research, metal-ceramic coatings (60% wt Ti+ 40% wt TiB2) are synthesized using the coaxial laser cladding technique on Ti grade 2 and Ti-6Al-4V substrates at different energy levels (600, 900 and 1000 W) and its electrochemical behavior is evaluated in a 3.5% NaCl solution and at high temperature. The material is characterized by scanning electron microscopy, the electrochemical evaluation is done by means of impedance spectroscopy and tafel polarization, its structure is evaluated by X-ray diffraction. Corrosion at high temperature is evaluated using of the cyclic oxidation technique. At an electrochemical level, the results show that the coatings modify the electrochemical response of the system, providing protection on the surface of the material, which is associated with the formation of a protective layer on the surface of the material (formation of compounds of TiB, TiB2, TiO2; in high-temperature corrosion, a reduction in the degradation of the coated material is found, unlike the uncoated material, evidencing the formation of compounds mainly constituted by TiO2.
dc.format.extentxvii, 107 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.titleEvaluación de la resistencia a la corrosión de recubrimientos de TiB2 depositados sobre Ti y Ti-6Al-4V obtenidos mediante la técnica de láser cladding coaxial
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energía
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaIngenieria de superficies
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesF. Gil and J. Planell, “Aplicaciones biomédicas del titanio v sus aleaciones,” Biomecánica, no. JANUARY 1993, pp. 34–42, 1993.
dc.relation.referencesY. Chong, G. Deng, J. Yi, A. Shibata, and N. Tsuji, “On the strain hardening abilities of α+β titanium alloys: The roles of strain partitioning and interface length density,” J. Alloys Compd., vol. 811, p. 152040, 2019, doi:10.1016/j.jallcom.2019.152040.
dc.relation.referencesR. R. Boyer, “Attributes, characteristics, and applications of titanium and its alloys,” Jom, vol. 62, no. 5. pp. 21–24, 2010.
dc.relation.referencesD. Prando et al., “Corrosion of titanium: Part 1: Aggressive environments and main forms of degradation,” J. Appl. Biomater. Funct. Mater., vol. 15, no. 4, pp. e291–e302, 2017, doi:10.5301/jabfm.5000387.
dc.relation.referencesK. K. Xu, A. D. Lan, J. W. Qiao, H. J. Yang, P. D. Han, and P. K. Liaw, “Corrosion behaviors and mechanisms of in-situ Ti-based MGMCs in chloride-containing and chloride-free solutions,” Intermetallics, vol. 105, no. June 2018, pp. 179–186, 2019, doi:10.1016/j.intermet.2018.10.010.
dc.relation.referencesA. Neville and B. A. B. McDougall, “Erosion—and cavitation—corrosion of titanium and its alloys,” Wear, vol. 250, no. 1–12, pp. 726–735, 2001, doi:10.1016/S0043-1648(01)00709-8.
dc.relation.referencesN. D. Tomashov, R. M. Altovsky, and G. P. Chernova, “Passivity and Corrosion Resistance of Titanium and Its Alloys,” J. Electrochem. Soc., vol. 108, no. 2, p. 113, 1961, doi:10.1149/1.2428023.
dc.relation.referencesJ. Fojt, Z. Kacenka, E. Jablonska, V. Hybasek, and E. Pruchova, “Influence of the surface etching on the corrosion behaviour of a three-dimensional printed Ti–6Al–4V alloy,” Mater. Corros., no. May, pp. 1–6, 2020, doi:10.1002/maco.202011658.
dc.relation.referencesB. Pazhanivel, P. Sathiya, and G. Sozhan, “Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process,” Opt. Laser Technol., vol. 125, no. October 2019, p. 106017, 2020, doi:10.1016/j.optlastec.2019.106017.
dc.relation.referencesG. T. Burstein, C. Liu, and R. M. Souto, “The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution,” Biomaterials, vol. 26, no. 3, pp. 245–256, 2005, doi:10.1016/j.biomaterials.2004.02.023.
dc.relation.referencesC. L. Chu and S. K. Wu, “Ion nitriding of titanium aluminides with 25-53 at.% Al I: Nitriding parameters and microstructure characterization,” Surf. Coatings Technol., vol. 78, no. 1–3, pp. 211–218, 1996, doi:10.1016/0257-8972(94)02411-1.
dc.relation.referencesF. M. El-Hossary, N. Z. Negm, S. M. Khalil, and M. Raaif, “Surface modification of titanium by radio frequency plasma nitriding,” Thin Solid Films, vol. 497, no. 1–2, pp. 196–202, 2006, doi:10.1016/j.tsf.2005.09.193.
dc.relation.referencesY. C. Lin, H. M. Chen, and Y. C. Chen, “The effect of different methods to add nitrogen to titanium alloys on the properties of titanium nitride clad layers,” Mater. Des., vol. 54, pp. 222–229, 2014, doi:10.1016/j.matdes.2013.08.069.
dc.relation.referencesN. Tsuji, S. Tanaka, and T. Takasugi, “Evaluation of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling,” Mater. Sci. Eng. A, vol. 488, no. 1–2, pp. 139–145, 2008, doi:10.1016/j.msea.2007.11.079
dc.relation.referencesY. HUANG, Y. WANG, C. NING, K. NAN, and Y. HAN, “Preparation and properties of a cerium-containing hydroxyapatite coating on commercially pure titanium by micro-arc oxidation,” Rare Met., vol. 27, no. 3, pp. 257–260, 2008, doi:10.1016/S1001-0521(08)60125-4.
dc.relation.referencesH. J. Song, S. H. Park, S. H. Jeong, and Y. J. Park, “Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes,” J. Mater. Process. Technol., vol. 209, no. 2, pp. 864–870, 2009, doi:10.1016/j.jmatprotec.2008.02.055.
dc.relation.referencesM. Y. P. Costa, M. L. R. Venditti, M. O. H. Cioffi, H. J. C. Voorwald, V. A. Guimarães, and R. Ruas, “Fatigue behavior of PVD coated Ti-6Al-4V alloy,” Int. J. Fatigue, vol. 33, no. 6, pp. 759–765, 2011, doi:10.1016/j.ijfatigue.2010.11.007.
dc.relation.referencesY. Zhu, W. Wang, X. Jia, T. Akasaka, S. Liao, and F. Watari, “Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD,” Appl. Surf. Sci., vol. 262, pp. 156–158, 2012, doi:10.1016/j.apsusc.2012.03.152.
dc.relation.referencesA. Khorram, A. Davoodi Jamaloei, A. Jafari, and M. Moradi, “Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation,” Opt. Laser Technol., vol. 119, no. April, p. 105617, 2019, doi:10.1016/j.optlastec.2019.105617.
dc.relation.referencesR. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, “Improving the hot corrosion resistance of plasma sprayed ceria-yttria stabilized zirconia thermal barrier coatings by laser surface treatment,” Mater. Des., vol. 57, pp. 336–341, 2014, doi:10.1016/j.matdes.2013.12.075.
dc.relation.referencesM. xi Li, Y. zhu He, and G. xiong Sun, “Laser cladding Co-based alloy/SiCp composite coatings on IF steel,” Mater. Des., vol. 25, no. 4, pp. 355–358, 2004, doi:10.1016/j.matdes.2003.08.006.
dc.relation.referencesP. W. Leech, “Laser surface melting of a complex high alloy steel,” Mater. Des., vol. 54, pp. 539–543, 2014, doi:10.1016/j.matdes.2013.08.060.
dc.relation.referencesK. Zhang et al., “Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition,” Mater. Des., vol. 184, p. 108191, 2019, doi:10.1016/j.matdes.2019.108191.
dc.relation.referencesY. S. Tian, C. Z. Chen, S. T. Li, and Q. H. Huo, “Research progress on laser surface modification of titanium alloys,” Appl. Surf. Sci., vol. 242, no. 1–2, pp. 177–184, 2005, doi:10.1016/j.apsusc.2004.08.011.
dc.relation.referencesJ. J. Candel, V. Amigó, J. A. Ramos, and D. Busquets, “Sliding wear resistance of TiCp reinforced titanium composite coating produced by laser cladding,” Surf. Coatings Technol., vol. 204, no. 20, pp. 3161–3166, 2010, doi:10.1016/j.surfcoat.2010.02.070.
dc.relation.referencesM. Zheng, D. Fan, X. K. Li, W. F. Li, Q. Bin Liu, and J. Bin Zhang, “Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding,” Appl. Surf. Sci., vol. 255, no. 2, pp. 426–428, 2008, doi:10.1016/j.apsusc.2008.06.078.
dc.relation.referencesL. Liu, T. Minasyan, R. Ivanov, S. Aydinyan, and I. Hussainova, “Selective laser melting of TiB2-Ti composite with high content of ceramic phase,” Ceram. Int., vol. 46, no. 13, pp. 21128–21135, 2020, doi:10.1016/j.ceramint.2020.05.189.
dc.relation.referencesI. Shishkovsky, N. Kakovkina, and V. Sherbakov, “Graded layered titanium composite structures with TiB2 inclusions fabricated by selective laser melting,” Compos. Struct., vol. 169, pp. 90–96, 2017, doi:10.1016/j.compstruct.2016.11.013.
dc.relation.referencesA. International, Metallography and Microstructures. 2018.
dc.relation.referencesASTM, “Standard Specifcation for Titanium and Titaniumm Alloy Strip, Sheet, and Plate,” Annu. B. ASTM Stand., vol. B265-03, pp. 1–9, 2004.
dc.relation.referencesS. Accep-, V. Examination, T. Alloys, and T. C. Method, “Standard Specification for Titanium and Titanium Alloy Castings 1,” vol. 93, no. Reapproved, pp. 1–5, 2004.
dc.relation.referencesASTM, “Standard Specification for Titanium and Titanium Alloy Forgings,” vol. 93, no. Reapproved, pp. 1–5, 2004.
dc.relation.referencesVander Voort and W. Baldwin, “Metallography and Microstructures Handbook,” ASM Int., vol. 9, p. 2733, 2004, doi:10.1361/asmhba0003771.
dc.relation.referencesP. Chui, R. Jing, F. Zhang, J. Li, and T. Feng, “Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application,” J. Alloys Compd., vol. 842, p. 155693, 2020, doi:10.1016/j.jallcom.2020.155693.
dc.relation.referencesC. Chang et al., “Microstructure and mechanical deformation behavior of selective laser melted Ti6Al4V ELI alloy porous structures,” Mater. Lett., vol. 277, p. 128366, 2020, doi:10.1016/j.matlet.2020.128366.
dc.relation.referencesD. Il Seo and J. B. Lee, “Effects of competitive anion adsorption (Br− or Cl−) and semiconducting properties of the passive films on the corrosion behavior of the additively manufactured Ti–6Al–4V alloys,” Corros. Sci., vol. 173, no. June, p. 108789, 2020, doi:10.1016/j.corsci.2020.108789.
dc.relation.referencesD. Rodriguez Ruis, “1 El Titanio Y Sus Aleaciones,” Tesis Dr., 2000.
dc.relation.referencesE. Hancock, W. Smith, R. Wilson, and A. Bors, “An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8048 LNCS, no. PART 2, 2013, doi:10.1007/978-3-642-40246-3.
dc.relation.referencesM. Textor, C. Sittig, V. Frauchiger, S. Tosatti, and D. M. Brunette, “Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys,” pp. 171–230, 2001, doi:10.1007/978-3-642-56486-4_7.
dc.relation.referencesF. Weng, C. Chen, and H. Yu, “Research status of laser cladding on titanium and its alloys: A review,” Mater. Des., vol. 58, pp. 412–425, 2014, doi:10.1016/j.matdes.2014.01.077.
dc.relation.referencesA. R. Rafieerad, M. R. Ashra, R. Mahmoodian, and A. R. Bushroa, “Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper,” Mater. Sci. Eng. C, vol. 57, pp. 397–413, 2015, doi:10.1016/j.msec.2015.07.058.
dc.relation.referencesQ. Li et al., “Mechanical and corrosion properties of Ti-Ni-Cu-Zr metallic glass matrix composites,” J. Alloys Compd., vol. 727, pp. 1344–1350, 2017, doi:10.1016/j.jallcom.2017.08.120.
dc.relation.referencesJ. Dias Corpa Tardelli, C. Bolfarini, and A. Cândido dos Reis, “Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review,” J. Trace Elem. Med. Biol., vol. 62, no. June, p. 126618, 2020, doi:10.1016/j.jtemb.2020.126618.
dc.relation.referencesW. Q. Chen, S. M. Zhang, and J. Qiu, “Surface analysis and corrosion behavior of pure titanium under fluoride exposure,” J. Prosthet. Dent., vol. 124, no. 2, pp. 239.e1-239.e8, 2020, doi:10.1016/j.prosdent.2020.02.022.
dc.relation.referencesM. Kaur and K. Singh, “Review on titanium and titanium based alloys as biomaterials for orthopaedic applications,” Mater. Sci. Eng. C, vol. 102, no. April, pp. 844–862, 2019, doi:10.1016/j.msec.2019.04.064.
dc.relation.referencesA. Hemmasian Ettefagh, C. Zeng, S. Guo, and J. Raush, “Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing,” Addit. Manuf., vol. 28, no. March, pp. 252–258, 2019, doi:10.1016/j.addma.2019.05.011.
dc.relation.referencesA. Sharma, M. C. Oh, J. T. Kim, A. K. Srivastava, and B. Ahn, “Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes,” J. Alloys Compd., vol. 830, p. 154620, 2020, doi:10.1016/j.jallcom.2020.154620.
dc.relation.referencesM. Kazemi, S. Ahangarani, M. Esmailian, and A. Shanaghi, “Investigation on the corrosion behavior and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications,” Surf. Coatings Technol., vol. 397, no. June, p. 126044, 2020, doi:10.1016/j.surfcoat.2020.126044.
dc.relation.referencesJ. Dai, H. Zhang, C. Sun, S. Li, C. Chen, and Y. Yang, “The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy,” Corros. Sci., vol. 168, no. February, p. 108578, 2020, doi:10.1016/j.corsci.2020.108578.
dc.relation.referencesJ. Dai, J. Zhu, C. Chen, and F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review,” J. Alloys Compd., vol. 685, pp. 784–798, 2016, doi:10.1016/j.jallcom.2016.06.212.
dc.relation.referencesC. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, and H. Zhou, “Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature,” Surf. Coatings Technol., vol. 205, no. 7, pp. 2142–2151, 2010, doi:10.1016/j.surfcoat.2010.08.125.
dc.relation.referencesM. Zhang, L. Xin, X. Ding, S. Zhu, and F. Wang, “Effects Ti/TiAlN composite multilayer coatings on corrosion resistance of titanium alloy in solid NaCl-H 2 O-O 2 at 600 °C,” J. Alloys Compd., vol. 734, pp. 307–317, 2018, doi:10.1016/j.jallcom.2017.11.035.
dc.relation.referencesA. Ebach-Stahl, C. Eilers, N. Laska, and R. Braun, “Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700°C in air,” Surf. Coatings Technol., vol. 223, pp. 24–31, 2013, doi:10.1016/j.surfcoat.2013.02.021.
dc.relation.referencesO. S. Adesina, B. A. Obadele, G. A. Farotade, D. A. Isadare, A. A. Adediran, and P. P. Ikubanni, “Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy,” J. Alloys Compd., vol. 827, p. 154245, 2020, doi:10.1016/j.jallcom.2020.154245.
dc.relation.referencesY. C. Lin, Y. C. Lin, and Y. C. Chen, “Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder,” Mater. Des., vol. 36, pp. 584–589, 2012, doi:10.1016/j.matdes.2011.12.007.
dc.relation.referencesC. R. F. Azevedo, “Failure analysis of a commercially pure titanium plate for osteosynthesis,” Eng. Fail. Anal., vol. 10, no. 2, pp. 153–164, 2003, doi:10.1016/S1350-6307(02)00067-5.
dc.relation.referencesM. B. Suárez-Fernández, A. B. Soldado, A. Sanz-Medel, J. A. Vega, A. Novelli, and M. T. Fernández-Sánchez, “Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death,” Brain Res., vol. 835, no. 2, pp. 125–136, 1999, doi:10.1016/S0006-8993(99)01536-X.
dc.relation.referencesR. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. Pityana, “Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite,” Mater. Des., vol. 50, pp. 656–666, 2013, doi:10.1016/j.matdes.2013.03.049.
dc.relation.referencesE. Toyserkani, A. Khajepour, and S. Corbin, Laser Cladding, vol. 53, no. 9. 2019.
dc.relation.referencesL. Song and J. Mazumder, “Feedback control of melt pool temperature during laser cladding process,” IEEE Trans. Control Syst. Technol., vol. 19, no. 6, pp. 1349–1356, 2011, doi:10.1109/TCST.2010.2093901.
dc.relation.referencesJ. De Damborenea, “Surface modification of metals by high power lasers,” Surf. Coatings Technol., vol. 100–101, no. 1–3, pp. 377–382, 1998, doi:10.1016/S0257-8972(97)00652-X.
dc.relation.referencesB. Cárcel, A. Serrano, J. Zambrano, V. Amigó, and A. C. Cárcel, “Laser cladding of TiAl intermetallic alloy on Ti6Al4V. Process optimization and properties,” Phys. Procedia, vol. 56, no. C, pp. 284–293, 2014, doi:10.1016/j.phpro.2014.08.173.
dc.relation.referencesY. S. Tian, Q. Y. Zhang, and D. Y. Wang, “Study on the microstructures and properties of the boride layers laser fabricated on Ti-6Al-4V alloy,” J. Mater. Process. Technol., vol. 209, no. 6, pp. 2887–2891, 2009, doi:10.1016/j.jmatprotec.2008.06.043.
dc.relation.referencesP. Chandrasekar, V. Balusamy, K. S. R. Chandran, and H. Kumar, “Laser surface hardening of titanium-titanium boride (Ti-TiB) metal matrix composite,” Scr. Mater., vol. 56, no. 7, pp. 641–644, 2007, doi:10.1016/j.scriptamat.2006.11.035.
dc.relation.referencesI. I. Angarita-Mocaleano, “ANALISIS DE RECUBRIMIENTOS DE Ti REFORZADOS CON TiB2 MEDIANTE TECNICAS DE RECUBRIMIENTO LASER,” Univeritat Politecnica de Valencia, 2012.
dc.relation.referencesI. Sulima, R. Kowalik, and P. Hyjek, “The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride,” J. Alloys Compd., vol. 688, pp. 1195–1205, 2016, doi:10.1016/j.jallcom.2016.07.132.
dc.relation.referencesN. Hamdad, N. Benosman, and B. Bouhafs, “First principles calculation of electronic structure, bonding and chemical stability of TiB2, NbB2 and their ternary alloy Ti0.5Nb0.5B2,” Phys. B Condens. Matter, vol. 405, no. 2, pp. 540–546, 2010, doi:10.1016/j.physb.2009.09.061.
dc.relation.referencesB. Du, S. R. Paital, and N. B. Dahotre, “Phase constituents and microstructure of laser synthesized TiB2-TiC reinforced composite coating on steel,” Scr. Mater., vol. 59, no. 10, pp. 1147–1150, 2008, doi:10.1016/j.scriptamat.2008.07.035.
dc.relation.referencesJ. Nie et al., “Microstructure and corrosion behavior of Al-TiB2/TiC composites processed by hot rolling,” Results Phys., vol. 14, no. March, p. 102471, 2019, doi:10.1016/j.rinp.2019.102471.
dc.relation.referencesY. Wang, Z. Xu, and A. Zhang, “Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions,” Corros. Sci., vol. 157, no. March, pp. 357–369, 2019, doi:10.1016/j.corsci.2019.06.010.
dc.relation.referencesN. Perez, Electrochemistry and corrosion science, 2nd ed. Mayaguez, Puerto Rico, 2014.
dc.relation.referencesASTM, Electrochemical corrosion testing. San Francisco: American Society for Testing and Materials, 1979.
dc.relation.referencesF. Di Turo, R. Parra, J. Piquero-Cilla, G. Favero, and A. Doménech-Carbó, “Crossing VIMP and EIS for studying heterogeneous sets of copper/bronze coins,” J. Solid State Electrochem., vol. 23, no. 3, pp. 771–781, 2019, doi:10.1007/s10008-018-04182-5.
dc.relation.referencesU. P. Morales, Á. M. Camargo, and J. J. O. Flórez, “Impedancia electroquímica-interpretación de diagramas típicos con circuitos equivalentes,” DYNA, vol. 77, no. 164, pp. 69–75, 2010.
dc.relation.referencesA. Huber et al., “La espectroscopía de impedancia electroquímica (EIS) aplicada al estudio del mecanismo de la corrosión en caliente por sales fundidas,” Dyna, vol. 71, no. 144, pp. 39–47, 2004.
dc.relation.referencesASTM International, “Standard Practice for Verification of Algorithm and Equipment for Electrochemical DocMaster : Uncontrolled copy when printed ( 103427 ) DocMaster : Uncontrolled copy when printed ( 103427 ),” vol. 89, no. Reapproved, pp. 1–11, 2015, doi:10.1520/G0106-89R15.2.
dc.relation.referencesA. F. Mahecha Gómez, “Evaluación de la resistencia a la corrosión a altas temperaturas y desgaste adhesivo de recubrimientos nanoestructurados de la aleación Zirconia ( ZrO 2 ) -Sílice ( SiO 2 ) depositados con la técnica Sputtering reactivo,” 2017.
dc.relation.referencesA. Barba Pingarrón, A. Covelo Villar, M. A. Hernández Gallegos, R. Valdez Navarro, and R. González Parra, Texto iberoamericano de ingeniería de superficies, 1st ed. Ciudad de México: Universidad Nacional Autónoma de México, 2018.
dc.relation.referencesL. R. B. Elton and D. F. Jackson, “X-Ray Diffraction and the Bragg Law,” Am. J. Phys., vol. 34, no. 11, pp. 1036–1038, 1966, doi:10.1119/1.1972439.
dc.relation.referencesJ. L. E. Esteban, “Unidad de microscopia electrónica.” .
dc.relation.references“Scanning electron microscopy (SEM) :: Condensed Matter Physics :: Rudi Winter’s web space.” .
dc.relation.referencesC. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, pp. 671–675, 2012, doi:10.1038/nmeth.2089.
dc.relation.referencesASTM, “E3 Preparation of Metallographic Specimens,” Annu. B. ASTM Stand., vol. 11, no. Reapproved 2017, pp. 1–17, 2017, doi:10.1520/E0003-11R17.1.
dc.relation.referencesY. Diao and K. Zhang, “Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB 2 powders,” Appl. Surf. Sci., vol. 352, pp. 163–168, 2015, doi:10.1016/j.apsusc.2015.04.030.
dc.relation.referencesJ. Li et al., “Characterization and corrosion behavior of electroless Ni-Mo-P/Ni-P composite coating in CO2/H2S/Cl− brine: Effects of Mo addition and heat treatment,” Surf. Coatings Technol., vol. 403, no. August, p. 126416, 2020, doi:10.1016/j.surfcoat.2020.126416.
dc.relation.referencesB. Y. Chang and S. M. Park, “Electrochemical impedance spectroscopy,” Annu. Rev. Anal. Chem., vol. 3, no. 1, pp. 207–229, 2010, doi:10.1146/annurev.anchem.012809.102211.
dc.relation.referencesW. Aperador Chaparro, E. Vera López, and A. Vargas Uscategui, “Electrochemical corrosion resistance study of electroplated nickel/copper coatings obtained by pulsed current,” Ing. y Desarro., no. 27, pp. 48–61, 2010.
dc.relation.referencesR. M. S. P. N. R. Fuertes, “Diseño e implementación de un equipo portátil para ensayos electroquímicos de corrosión en campo,” Pontificia Universidad Católica del Perú, 2003.
dc.relation.referencesS. Singh, H. Singh, S. Chaudhary, and R. Kumar, “Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel,” Surf. Coat. Technol., vol. 389, no. July 2019, p. 125619, 2020, doi:10.1016/j.surfcoat.2020.125619.
dc.relation.referencesB. Carcel and J. M. Guilemany, “Microestructura y Disolución en el Proceso Laser Cladding de Stellite 6 Método experimental,” no. December, pp. 7–10, 2010.
dc.relation.referencesJ. J. C. Bou, “ANÁLISIS MICROESTRUCTURAL DE RECUBRIMIENTOS COMPUESTOS DE CARBURO DE TITANIO Y MATRIZ DE TITANIO DEPOSITADOS POR LÁSER,” UPV, 2012.
dc.relation.referencesF. Wang, J. Mei, and X. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol., vol. 195, no. 1–3, pp. 321–326, 2008, doi:10.1016/j.jmatprotec.2007.05.024.
dc.relation.referencesV. I. Aladesanmi, O. S. Fatoba, and E. T. Akinlabi, “Laser cladded Ti + TiB2 on steel rail microstructural effect,” Procedia Manuf., vol. 33, pp. 709–716, 2019, doi:10.1016/j.promfg.2019.04.089.
dc.relation.referencesA. S. Patil, V. D. Hiwarkar, P. K. Verma, and R. K. Khatirkar, “Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS),” J. Alloys Compd., vol. 777, pp. 165–173, 2019, doi:10.1016/j.jallcom.2018.10.308.
dc.relation.referencesY. Lin, J. Yao, Y. Lei, H. Fu, and L. Wang, “Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding,” Opt. Lasers Eng., vol. 86, pp. 216–227, 2016, doi:10.1016/j.optlaseng.2016.06.013.
dc.relation.referencesR. SHARMA, A. K. SINGH, A. ARORA, S. PATI, and P. S. DE, “Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution,” Trans. Nonferrous Met. Soc. China, vol. 29, no. 7, pp. 1383–1392, 2019, doi:10.1016/s1003-6326(19)65045-4.
dc.relation.referencesY.-W. Cui et al., “Metastable pitting corrosion behavior of laser powder bed fusion produced Ti-6Al-4V in Hank’s solution,” Corros. Sci., vol. 203, p. 110333, Jul. 2022, doi:10.1016/J.CORSCI.2022.110333.
dc.relation.referencesX. N. Liao, F. H. Cao, A. N. Chen, W. J. Liu, J. Q. Zhang, and C. N. Cao, “In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. 5, pp. 1239–1249, 2012, doi:10.1016/S1003-6326(11)61311-3.
dc.relation.referencesS. L. De Assis, S. Wolynec, and I. Costa, “Corrosion characterization of titanium alloys by electrochemical techniques,” Electrochim. Acta, vol. 51, no. 8–9, pp. 1815–1819, Jan. 2006, doi:10.1016/J.ELECTACTA.2005.02.121.
dc.relation.references“What is a Charge Transfer Resistance (RCT)? - Definition from Corrosionpedia.” .
dc.relation.referencesS. Liu and M. Pang, “Effect of TiB2 Content on Properties of Nickel-Coated Graphite Self-Lubricating Coating Prepared by Laser Cladding,” Coatings 2021, Vol. 11, Page 1501, vol. 11, no. 12, p. 1501, Dec. 2021, doi:10.3390/COATINGS11121501.
dc.relation.referencesY. Diao and K. Zhang, “Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders,” Appl. Surf. Sci., vol. 352, pp. 163–168, Oct. 2015, doi:10.1016/J.APSUSC.2015.04.030.
dc.relation.referencesD. Kuczyńska-Zemła, A. Sotniczuk, M. Pisarek, A. Chlanda, and H. Garbacz, “Corrosion behavior of titanium modified by direct laser interference lithography,” Surf. Coatings Technol., vol. 418, p. 127219, Jul. 2021, doi:10.1016/J.SURFCOAT.2021.127219.
dc.relation.referencesA. M. Fekry and M. A. Ameer, “Electrochemistry and impedance studies on titanium and magnesium alloys in Ringer’s solution,” Int. J. Electrochem. Sci., vol. 6, no. 5, pp. 1342–1354, 2011.
dc.relation.referencesJ. Pan, D. Thierry, and C. Leygraf, “Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application,” Electrochim. Acta, vol. 41, no. 7–8, pp. 1143–1153, 1996, doi:10.1016/0013-4686(95)00465-3.
dc.relation.referencesR. Huang and Y. Han, “The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti–25Nb–3Mo–3Zr–2Sn alloy,” Mater. Sci. Eng. C, vol. 33, no. 4, pp. 2353–2359, May 2013, doi:10.1016/J.MSEC.2013.01.068.
dc.relation.referencesD. QU, D. LIU, X. WANG, Y. DUAN, and M. PENG, “Corrosion and wear properties of TB2 titanium alloy borided by pack boriding with La2O3,” Trans. Nonferrous Met. Soc. China, vol. 32, no. 3, pp. 868–881, 2022, doi:10.1016/s1003-6326(22)65839-4.
dc.relation.referencesA. C. Alves et al., “Corrosion mechanisms in titanium oxide-based films produced by anodic treatment,” Electrochim. Acta, vol. 234, pp. 16–27, 2017, doi:10.1016/j.electacta.2017.03.011.
dc.relation.referencesA. Ebrahimi, H. Esfahani, A. Fattah-alhosseini, and O. Imantalab, “Electrochemical Properties of Commercially Pure Ti with TiB/TiB 2 Coatings in Hanks’ Balanced Salt Solution,” J. Mater. Eng. Perform., vol. 28, no. 3, pp. 1456–1468, 2019, doi:10.1007/s11665-019-03930-6.
dc.relation.referencesS. Bose, L. C. Pathak, and R. Singh, “Response of boride coating on the Ti-6Al-4V alloy to corrosion and fretting corrosion behavior in Ringer’s solution for bio-implant application,” Appl. Surf. Sci., vol. 433, pp. 1158–1174, 2018, doi:10.1016/j.apsusc.2017.09.223.
dc.relation.referencesJ. Francisco, L. Moreno, and J. J. N. Laboulais, “Curso Académico: 2018-19,” 2018.
dc.relation.referencesL. Weng, L. Du, and H. Wu, “Corrosion Behaviour of Weathering Steel with High-Content Titanium Exposed to Simulated Marine Environment,” vol. 13, pp. 5888–5903, 2018, doi:10.20964/2018.06.61.
dc.relation.referencesE. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation method,” Corros. Sci., vol. 47, no. 12, pp. 3202–3215, 2005, doi:10.1016/j.corsci.2005.05.046.
dc.relation.referencesJ. M. Jáquez-Muñoz et al., “Electrochemical Behavior of Titanium Alloys Using Potentiodynamic Polarization,” ECS Trans., vol. 101, pp. 173–178, 2021, doi:10.1149/10101.0173ecst.
dc.relation.referencesC. Gaona-tiburcio et al., “Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H 2 SO 4 Solutions,” Metals (Basel)., vol. 11, pp. 1–23, 2021, doi:doi.org/10.3390/ met11010105.
dc.relation.referencesH. Hu et al., “Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2,” Opt. Laser Technol., vol. 119, no. January, p. 105588, 2019, doi:10.1016/j.optlastec.2019.105588.
dc.relation.referencesM. Nabhani, R. Shoja Razavi, and M. Barekat, “Corrosion study of laser cladded Ti-6Al-4V alloy in different corrosive environments,” Eng. Fail. Anal., vol. 97, no. October 2018, pp. 234–241, 2019, doi:10.1016/j.engfailanal.2019.01.023.
dc.relation.referencesJ. P. Parra Sua, “Evaluación de la resistencia a la corrosión a altas temperaturas y su comportamiento como barrera térmica de BixTiyOz,” p. 122, 2014, doi:10.1002/sia.2686.
dc.relation.referencesR. Thulasiram, S. Mani, M. Murugesan, C. Palanisamy, and G. S. Kaliaraj, “Effect of TiB Addition on Corrosion Behavior of Titanium Composites under Neutral Chloride Solution,” Trans. Indian Ceram. Soc., vol. 78, no. 3, pp. 155–160, 2019, doi:10.1080/0371750X.2019.1656548.
dc.relation.references“Estudio de la corrosión de una aleación Ti6Al4V utilizada como biomaterial.” .
dc.relation.referencesM. Kareem Dimah, “Estudio Del Comportamiento Frente A La Tribocorrosión De Aleaciones Biomedicas De Titanio En Electrolitos Que Simulan El Suero Humano Mediante Técnicas Electroquímicas,” p. 96, 2012.
dc.relation.referencesM. Pourbaix, H. Zhang, and A. Pourbaix, “Presentation of an Atlas of chemical and electrochemical equilibria in the presence of a gaseous phase,” Mater. Sci. Forum, vol. 251–254, pp. 143–148, 1997, doi:10.4028/www.scientific.net/msf.251-254.143.
dc.relation.referencesE. J. Kelly, “Electrochemical Behavior of Titanium,” Mod. Asp. Electrochem., pp. 319–424, 1982, doi:10.1007/978-1-4615-7458-3_5.
dc.relation.referencesC. Kuphasuk, Y. Oshida, C. J. Andres, S. T. Hovijitra, M. T. Barco, and D. T. Brown, “Electrochemical corrosion of titanium and titanium-based alloys,” J. Prosthet. Dent., vol. 85, no. 2, pp. 195–202, 2001, doi:10.1067/mpr.2001.113029.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTITANIO
dc.subject.lembTitanium
dc.subject.lembMATERIALES RESISTENTES A LA CORROSION
dc.subject.lembCorrosion resistant materials
dc.subject.proposalTi-6Al-4V
dc.subject.proposalLáser cladding coaxial
dc.subject.proposalRecubrimientos cerámicos por láser
dc.subject.proposalCorrosión electroquímica
dc.subject.proposalOxidación cíclica
dc.subject.proposalTi-6Al-4V
dc.subject.proposalCoaxial Laser Cladding
dc.subject.proposalLaser Ceramic Coatings
dc.subject.proposalElectrochemical Corrosion
dc.subject.proposalCyclic Oxidation
dc.title.translatedEvaluation of the corrosion resistance of TiB2 coatings deposited on Ti and Ti-6Al-4V obtained using coaxial laser cladding technique
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidAgredo Diaz, Dayi Gilberto [0000-0003-2830-3022]
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=SkA2vycAAAAJ&hl=es


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito