Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGiraldo Gutiérrez, Liliana
dc.contributor.advisorMoreno Piraján, Juan Carlos
dc.contributor.authorHernández Monje, Diana Cristina
dc.date.accessioned2023-01-18T01:28:40Z
dc.date.available2023-01-18T01:28:40Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83000
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractSe evaluó la adsorción desde fase gas y fase líquida de benceno, tolueno, ciclohexano y hexano sobre cinco muestras de carbón activado modificadas térmica y químicamente, caracterizando los sólidos por medio de diferentes técnicas. Para la fase gas se evaluaron las isotermas de adsorción de los hidrocarburos sobre los sólidos porosos, mientras que para la fase líquida se emplearon como adsorbatos soluciones de los compuestos orgánicos; posteriormente las isotermas se ajustaron a los modelos de Langmuir y Freundlich. También se determinaron las cinéticas de adsorción y se ajustaron a los modelos de pseudo primer y pseudo segundo orden, así como al modelo de difusión intraparticular. Para evaluar la energía involucrada en la interacción entre los adsorbatos y los sólidos, se calcularon los parámetros del modelo Dubinin-Radushkevich y Dubinin-Radushkevich-Kaganer para determinar la energía característica de adsorción de los solventes desde fase gas y fase líquida y el volumen de microporo (fase gas); además, se realizó la inmersión de los sólidos en benceno, tolueno, ciclohexano y hexano y en mezclas binarias de los mismos para obtener la entalpía de inmersión para los solventes puros y las mezclas; para estas últimas se calculó la entalpía diferencial a fin de evaluar la contribución del soluto y del componente sólido-solvente al proceso de interacción. Se encontró que la adsorción e interacción sólido-adsorbato se favorece si el sólido tiene mayor área superficial, volumen de microporo, carácter básico e hidrofóbico y menor contenido de grupos ácidos y si los adsorbatos son de naturaleza aromática y presentan arreglo planar para apilarse en la estructura porosa. (Texto tomado de la fuente).
dc.description.abstractThe adsorption from gas phase and liquid phase of benzene, toluene, cyclohexane and hexane on five thermally and chemically modified activated carbon samples was evaluated, characterizing the solids by means of different techniques. For the gas phase, the adsorption isotherms of hydrocarbons on porous solids were evaluated, while solutions of organic compounds were used as adsorbates for the liquid phase; subsequently, the isotherms were adjusted to the Langmuir and Freundlich models. Adsorption kinetics were also determined and fitted to pseudo first and pseudo second order models, as well as to the intraparticle diffusion model. For evaluating the energy involved in the interaction between the adsorbates and the solids, the parameters of the Dubinin-Radushkevich and Dubinin-Radushkevich-Kaganer models were calculated to determine the characteristic adsorption energy of the solvents from the gas and liquid phases and the volume of micropore (gas phase); In addition, the solids were immersed in benzene, toluene, cyclohexane and hexane and in binary mixtures thereof to obtain the enthalpy of immersion for the pure solvents and the mixtures; for the latter, the differential enthalpy was calculated in order to evaluate the contribution of the solute and the solid-solvent component to the interaction process. It was found that the solid-adsorbate adsorption and interaction is favored if the solid has a higher surface area, micropore volume, basic and hydrophobic character and lower content of acid groups and if the adsorbates are aromatic in nature and have a planar arrangement to stack on the porous structure.
dc.format.extentxxiv, 171 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.titleAdsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupGrupo de Calorimetría
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaTermodinámica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesL. Bandura, D. Kołodyńska, W. Franus, Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash, Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2017.03.036
dc.relation.referencesG. Gałezowska, M. Chraniuk, L. Wolska, In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review, TrAC - Trends Anal. Chem. 77 (2016) 14–22. https://doi.org/10.1016/j.trac.2015.10.012
dc.relation.referencesM.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031
dc.relation.referencesR. Tong, L. Zhang, X. Yang, J. Liu, P. Zhou, J. Li, Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing, J. Clean. Prod. 208 (2019) 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195.
dc.relation.referencesX. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review, Sep. Purif. Technol. 235 (2020) 116213. https://doi.org/10.1016/j.seppur.2019.116213.
dc.relation.referencesY. Qi, L. Shen, J. Zhang, J. Yao, R. Lu, T. Miyakoshi, Species and release characteristics of VOCs in furniture coating process, Environ. Pollut. 245 (2019) 810–819. https://doi.org/10.1016/j.envpol.2018.11.057.
dc.relation.referencesE.H. Lee, D. Paek, Y.L. Kho, K. Choi, H.J. Chae, Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene, Neurotoxicol. Teratol. 37 (2013) 39–43. https://doi.org/10.1016/j.ntt.2013.02.005.
dc.relation.referencesA.M. Betancur-Sánchez, E.M. Vásquez-Trespalacios, C. Sardi-Correa, Impaired colour vision in workers exposed to organic solvents: A systematic review, Arch. La Soc. Española Oftalmol. (English Ed. 92 (2017) 12–18. https://doi.org/10.1016/j.oftale.2016.09.003.
dc.relation.referencesE.M.D.C.B. Lacerda, M.G. Lima, A.R. Rodrigues, C.E.C. Teixeira, L.J.B. De Lima, D.F. Ventura, L.C.D.L. Silveira, Psychophysical evaluation of achromatic and chromatic vision of workers chronically exposed to organic solvents, J. Environ. Public Health. 2012 (2012) 1–7. https://doi.org/10.1155/2012/784390.
dc.relation.referencesT.L. Costa, M.T.S. Barboni, A.L. de A. Moura, D.M.O. Bonci, M. Gualtieri, L.C. de Lima Silveira, D.F. Ventura, Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields, PLoS One. 7 (2012) 1–9. https://doi.org/10.1371/journal.pone.0042961.
dc.relation.referencesA.M. Landtblom, A. Kristoffersson, I. Boström, Organic solvent exposure as a risk factor for multiple sclerosis: An updated review, Rev. Neurol. (Paris). 175 (2019) 625–630. https://doi.org/10.1016/j.neurol.2019.07.014.
dc.relation.referencesC. Barul, M. Carton, L. Radoï, G. Menvielle, C. Pilorget, A.S. Woronoff, I. Stücker, D. Luce, Occupational exposure to petroleum-based and oxygenated solvents and oral and oropharyngeal cancer risk in men: A population-based case-control study in France, Cancer Epidemiol. 59 (2019) 22–28. https://doi.org/10.1016/j.canep.2019.01.005.
dc.relation.referencesS. Batterman, F.C. Su, S. Li, B. Mukherjee, C. Jia, HEI Health Review Committee, Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data., Res. Rep. Health. Eff. Inst. (2014) 3–63. http://www.ncbi.nlm.nih.gov/pubmed/25145040 (accessed October 6, 2017).
dc.relation.referencesA. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.
dc.relation.referencesM.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484–499. https://doi.org/10.1016/j.jhazmat.2016.09.040.
dc.relation.referencesH. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A.
dc.relation.referencesX. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013.
dc.relation.referencesL. Zhou, Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, M. Chen, Adsorption properties of activated carbon from reed with a high adsorption capacity, Ecol. Eng. 102 (2017) 443–450. https://doi.org/10.1016/j.ecoleng.2017.02.036.
dc.relation.referencesY. Yang, X., Yi, H., Tang, X., Zhao, S., Yang, Z., Ma, Behaviors and kinetics of toluene adsorption‐desorption on activated carbons with varying pore structure, J. Environ. Sci. 67 (2018) 104–114. https://doi.org/10.1016/j.jes.2017.06.032.
dc.relation.referencesE. Gallego, F.J. Roca, J.F. Perales, X. Guardino, Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement, Build. Environ. 67 (2013) 14–25. https://doi.org/10.1016/j.buildenv.2013.05.003.
dc.relation.referencesL. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater. 192 (2011) 683–690. https://doi.org/10.1016/j.jhazmat.2011.05.069.
dc.relation.referencesA. Sekar, G.K. Varghese, M.K. Ravi Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment, Heliyon. 5 (2019) 2918. https://doi.org/10.1016/j.heliyon.2019.e02918.
dc.relation.referencesM. Song, X. Liu, Y. Zhang, M. Shao, K. Lu, Q. Tan, M. Feng, Y. Qu, Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ. 201 (2019) 28–40. https://doi.org/10.1016/j.atmosenv.2018.12.019.
dc.relation.referencesW.-T. Tsai, Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea, Environments. 3 (2016) 23–30. https://doi.org/10.3390/environments3030023.
dc.relation.referencesJ. Fan, X. Gou, Y. Sun, X. Ran, W. Teng, X. Wang, Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs), Nat. Gas Ind. B. 4 (2017) 382–389. https://doi.org/10.1016/j.ngib.2017.10.003.
dc.relation.referencesM.M. Dubinin, Microporous structures of carbonaceous adsorbents, Carbon N. Y. 20 (1982) 195–200. https://doi.org/10.1016/0008-6223(82)90020-3.
dc.relation.referencesD. Hugi-Cleary, S. Wermeille, F. Stoeckli, The Characterization of Non-Porous Surfaces by a Combination of the BET and the Dubinin-Radushkevich-Kaganer (DRK) Theories, Chimia (Aarau). 57 (2003) 611–615. https://doi.org/10.2533/000942903777678740.
dc.relation.referencesR. Denoyel, F. Rouquerol, J. Rouquerol, Porous texture and surface characterization from liquid – solid interactions: immersion calorimetry and adsorption from solution, in: J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing (Eds.), Adsorpt. by Powders Porous Solids Princ. Methodol. Appl., ACADEMIC PRESS, INC., Kidlington, 2014: pp. 273–300.
dc.relation.referencesX. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. 338 (2017) 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013.
dc.relation.referencesL. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater. 389 (2020) 122102. https://doi.org/10.1016/j.jhazmat.2020.122102.
dc.relation.referencesA. Erto, S. Chianese, A. Lancia, D. Musmarra, On the mechanism of benzene and toluene adsorption in single-compound and binary systems: Energetic interactions and competitive effects, Desalin. Water Treat. 86 (2017) 259–265. https://doi.org/10.5004/dwt.2017.20712.
dc.relation.referencesJ.M. Martín Martínez, Porosidad de Carbones II. Teoría de Polanyi - Dubinin, in: Martín-Martínez JM (Ed.), Adsorción Física Gases y Vap. Por Carbones, Universidad de Alicante Publicaciones, Alicante, 1990: pp. 5–80.
dc.relation.referencesF. Stoeckli, A. Slasli, D. Hugi-Cleary, A. Guillot, The characterization of microporosity in carbons with molecular sieve effects, Microporous Mesoporous Mater. 51 (2002) 197–202. https://doi.org/10.1016/S1387-1811(01)00482-6.
dc.relation.referencesB. Rubahamya, K.S. Kumar Reddy, A. Prabhu, A. Al Shoaibi, C. Srinivasakannan, Porous carbon screening for benzene sorption, Environ. Prog. Sustain. Energy. 38 (2019) 93–99. https://doi.org/10.1002/ep.12925.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocAdsorción
dc.subject.agrovocadsorption
dc.subject.proposalCarbón activado
dc.subject.proposalAdsorción
dc.subject.proposalCompuestos orgánicos volátiles
dc.subject.proposalCalorimetría
dc.subject.proposalEntalpía de inmersión
dc.subject.proposalGas phase adsorption
dc.subject.proposalLiquid phase adsorption
dc.subject.proposalActivated carbon
dc.subject.proposalImmersion enthalpy
dc.subject.proposalOrganic solvents
dc.subject.unescoTecnología de los combustibles
dc.subject.unescoFuel technology
dc.subject.unescoTecnología química
dc.subject.unescoChemical technology
dc.title.translatedAdsorption of organic solvents from gas phase and organic liquid phase on modified activated carbons. Energy characterization
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito