Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorArévalo Pinzón, Gabriela
dc.contributor.advisorPatarroyo Gutiérrez, Manuel Alfonso
dc.contributor.authorPulido Quevedo, Fredy Alexander
dc.date.accessioned2023-01-18T16:27:59Z
dc.date.available2023-01-18T16:27:59Z
dc.date.issued2023-01-17
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83010
dc.descriptionilustraciones
dc.description.abstractPlasmodium falciparum durante su ciclo de vida, expresa una amplia gama de proteínas entre las que se destaca la proteína del cuello de las roptrias 4 (PfRON4). Este es un candidato promisorio a vacuna, ya que se expresa tanto en merozoítos como esporozoítos, participa durante la formación del enlace fuerte con la célula hospedera a través del complejo RONs/AMA1 y es refractario a deleción genética. Pese a ello, aún no se conocen las regiones clave de este antígeno que interactúan con las células hospederas, siendo esta información de gran utilidad para combatir la enfermedad causada por este parásito. Por tal motivo, en este trabajo de investigación se sintetizaron 32 péptidos derivados de la región conservada de PfRON4 y se llevaron a cabo ensayos de interacción receptor-ligando para determinar la capacidad de unión de cada péptido a células hospederas, así como determinar la naturaleza del receptor y habilidad de éstos para inhibir la invasión del parásito en cultivo continuo in vitro con la cepa FCB2. Se identificaron cinco HABPs (High Activity Binding Peptides) denominados 42477, 42479, 42480, 42505 y 42513, los cuales se unieron con alta afinidad y especificidad a receptores de tipo proteico sobre la membrana de los eritrocitos. Por su parte, los péptidos 42477 y 42480 se unieron a la membrana de las células HepG2 con constantes de disociación en el rango sub-micromolar, siendo esta interacción dependiente de receptores tipo heparina y/o sulfato de condroitina. Los ensayos de inhibición de la invasión mostraron que los HABPs de PfRON4 fueron capaces de bloquear la entrada de los merozoítos a los eritrocitos hasta en un 50%. En conclusión, se encontró que las regiones de PfRON4 800-819 (42477) y 860-879 (42480) interactúan específicamente con las células hospederas y esto soporta su inclusión en el desarrollo de una vacuna multi-antígeno, multi-estadio basada en subunidades contra P. falciparum (Texto tomado de la fuente)
dc.description.abstractPlasmodium falciparum expresses a wide range of proteins during its lifecycle, among which one the most important is rhoptry neck protein 4 (PfRON4); it is a promising vaccine candidate since it is expressed in merozoites and sporozoites, participates in a strong bond formation with host cells via the RONs/AMA-1 complex and is refractory to genetic deletion. Despite this, PfRON4’s key regions interacting with host cells remain unknown; such information would be extremely useful for combating P. falciparum-related malaria. For this reason, in this research work, thirty-two PfRON4 conserved region-derived synthetic peptides were chemically synthesized, and receptor-ligand interaction/binding assays were carried out for determining the binding capacity of each peptide to host cells, the nature of their receptors and their ability to inhibit in vitro parasite invasion with the FCB2 strain. Five HABPS (High Activity Binding Peptides) named 42477, 42479, 42480, 42505 and 42513 were identified, which bound with high affinity and specificity to protein-like receptors on the erythrocyte membrane. Peptides 42477 and 42480 bound to HepG2 cells’ membrane, both of them having submicromolar range kD, the interaction being dependent on heparin and/or chondroitin sulphate proteoglycan receptors. Invasion inhibition assays showed that PfRON4 HABPs were able to block merozoite entry into erythrocytes by up to 50%. In conclusion, PfRON4 regions 800-819 (42477) and 860-879 (42480) were found to specifically interact with host cells, which supports their inclusion in the development of a subunit-based, multi-antigen, multistage anti-malarial vaccine against P. falciparum
dc.format.extentxv, 90 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleDeterminación y caracterización de las regiones de unión de PfRON4 a eritrocitos y hepatocitos humanos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Bioquímica
dc.contributor.researchgroupReceptor-Ligando
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Bioquímica
dc.description.researchareaBioquímica y Biología Molecular
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. White N, Pukrittayakamee S, Hien T, Faiz M, Mokuolu O, Dondorp A. Malaria. Lancet [Internet]. 2014; 383 (9918): 723–35
dc.relation.references2. Source WHOJR. World malaria report 2021. 2021. 2022.
dc.relation.references3. Salud INd. Boletín epidemiológico semanal, Semana epidemiológica 52 de 2021. 2021. p. 14.
dc.relation.references4. Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. 2019;394(10195):322-31.
dc.relation.references5. Ashley EA, Phyo APJD. Drugs in development for malaria. 2018;78(9):861- 79.
dc.relation.references6. Kumar S, Bhardwaj T, Prasad D, Singh RKJB, Pharmacotherapy. Drug targets for resistant malaria: historic to future perspectives. 2018;104:8-27.
dc.relation.references7. Rosenthal MR, Ng CLJAid. Plasmodium falciparum artemisinin resistance: the effect of heme, protein damage, and parasite cell stress response. 2020;6(7):1599-614.
dc.relation.references8. Alout H, Labbé P, Chandre F, Cohuet AJTip. Malaria vector control still matters despite insecticide resistance. 2017;33(8):610-8.
dc.relation.references9. Matuschewski KJTFj. Vaccines against malaria—still a long way to go. 2017;284(16):2560-8.
dc.relation.references10. Sibley LJS. Intracellular parasite invasion strategies. 2004;304(5668):248- 53.
dc.relation.references11. Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, et al. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiology Reviews. 2019;43(3):223-38.
dc.relation.references12. Cowman AF, Berry D, Baum JJJocB. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. 2012;198(6):961-71.
dc.relation.references13. Preiser P, Kaviratne M, Khan S, Bannister L, Jarra WJM, Infection. The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion. 2000;2(12):1461-77.
dc.relation.references14. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NW, Harvey KL, et al. Revealing the sequence and resulting cellular morphology of receptor ligand interactions during Plasmodium falciparum invasion of erythrocytes. 2015;11(2):e1004670.
dc.relation.references15. Richard D, MacRaild CA, Riglar DT, Chan J-A, Foley M, Baum J, et al. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. 2010;285(19):14815-22.
dc.relation.references16. Collins CR, Withers-Martinez C, Hackett F, Blackman MJJPp. An inhibitory antibody blocks interactions between components of the malarial invasion machinery. 2009;5(1):e1000273.
dc.relation.references17. Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. 2011;9(1):9-20.
dc.relation.references18. Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J, et al. Disrupting malaria parasite AMA1–RON2 interaction with a small molecule prevents erythrocyte invasion. 2013;4(1):1-9.
dc.relation.references19. Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. 2011;333(6041):463-7.
dc.relation.references20. Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. 2011;7(2):e1001276.
dc.relation.references21. Prudêncio M, Rodriguez A, Mota MMJNRM. The silent path to thousands of merozoites: the Plasmodium liver stage. 2006;4(11):849-56.
dc.relation.references22. Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KLJEp. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. 2009;122(4):280-8.
dc.relation.references23. O'Donnell RA, Saul A, Cowman AF, Crabb BSJNm. Functional conservation of the malaria vaccine antigen MSP-1 19 across distantly related Plasmodium species. 2000;6(1):91-5.
dc.relation.references24. Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. 2005;102(36):12736-41.
dc.relation.references25. Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo MEJCr. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. 2008;108(9):3656-705.
dc.relation.references26. Curtidor H, Vanegas M, P Alba M, E Patarroyo MJCmc. Functional, immunological and three-dimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. 2011;18(29):4470- 502.
dc.relation.references27. Patarroyo ME, Patarroyo MAJAocr. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. 2008;41(3):377-86.
dc.relation.references28. Patarroyo ME, Bermúdez A, Patarroyo MAJCr. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. 2011;111(5):3459-507.
dc.relation.references29. Arévalo-Pinzón G, Curtidor H, Muñoz M, Patarroyo MA, Bermudez A, Patarroyo MEJV. A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. 2012;30(3):637-46.
dc.relation.references30. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor LJC. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. 2005;122(2):183-93.
dc.relation.references31. Patarroyo ME, Patarroyo MA, Pabón L, Curtidor H, Poloche LAJV. Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. 2015;33(52):7525-37.
dc.relation.references32. Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. 2005;309(5739):1384-7.
dc.relation.references33. Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. 2009;58(1):29-35.
dc.relation.references34. Alexander DL, Arastu-Kapur S, Dubremetz J-F, Boothroyd JCJEc. Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. 2006;5(7):1169-73.
dc.relation.references35. Besteiro S, Michelin A, Poncet J, Dubremetz J-F, Lebrun MJPp. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. 2009;5(2):e1000309.
dc.relation.references36. Giovannini D, Späth S, Lacroix C, Perazzi A, Bargieri D, Lagal V, et al. Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. 2011;10(6):591-602.
dc.relation.references37. Quintana MdP, Ch’ng J-H, Zandian A, Imam M, Hultenby K, Theisen M, et al. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4. 2- RON4-GLURP) contributes to merozoite invasion. 2018;13(8):e0201669.
dc.relation.references38. Lew VL, Tiffert TJTip. Is invasion efficiency in malaria controlled by pre invasion events? 2007;23(10):481-4.
dc.relation.references39. Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. 2011;480(7378):534-7.
dc.relation.references40. Patarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo MEJIjoms. Hotspots in plasmodium and RBC receptor-ligand interactions: Key pieces for inhibiting malarial parasite invasion. 2020;21(13):4729.
dc.relation.references41. Sim B, Chitnis C, Wasniowska K, Hadley T, Miller LJS. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. 1994;264(5167):1941-4.
dc.relation.references42. Angrisano F, Riglar DT, Sturm A, Volz JC, Delves MJ, Zuccala ES, et al. Spatial localisation of actin filaments across developmental stages of the malaria parasite. 2012;7(2):e32188.
dc.relation.references43. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. 2011;108(32):13275-80.
dc.relation.references44. Arévalo-Pinzón G, Curtidor H, Abril J, Patarroyo MAJMj. Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (Pv RON4). 2013;12(1):1-10.
dc.relation.references45. Nozaki M, Baba M, Tachibana M, Tokunaga N, Torii M, Ishino TJM. Detection of the rhoptry neck protein complex in Plasmodium sporozoites and its contribution to sporozoite invasion of salivary glands. 2020;5(4).
dc.relation.references46. Patarroyo ME, Salazar LM, Cifuentes G, Lozano JM, Delgado G, Rivera Z, et al. Protective cellular immunity against P. falciparum malaria merozoites is associated with a different P7 and P8 residue orientation in the MHC–peptide–TCR complex. 2006;88(2):219-30.
dc.relation.references47. Miller LH, Ackerman HC, Su X-z, Wellems TEJNm. Malaria biology and disease pathogenesis: insights for new treatments. 2013;19(2):156-67.
dc.relation.references48. Organization WH. World malaria report 2020: 20 years of global progress and challenges. 2020.
dc.relation.references49. Cowman AF, Crabb BSJC. Invasion of red blood cells by malaria parasites. 2006;124(4):755-66.
dc.relation.references50. Warrell DA. Clinical features of malaria. Essential malariology: CRC Press; 2017. p. 191-205.
dc.relation.references51. Salud OPdl. Directrices para el tratamiento de la malaria. OPS Washington, DC; 2011.
dc.relation.references52. Gueirard P, Tavares J, Thiberge S, Bernex F, Ishino T, Milon G, et al. Development of the malaria parasite in the skin of the mammalian host. 2010;107(43):18640-5.
dc.relation.references53. Rowe JA, Claessens A, Corrigan RA, Arman MJErimm. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. 2009;11.
dc.relation.references54. (CDC) CfDCaP. Where Malaria Occurs 2020 [updated April 9, 2020. Available from: https://www.cdc.gov/malaria/about/distribution.html.
dc.relation.references55. Pradel G, Frevert UJH. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. 2001;33(5):1154-65.
dc.relation.references56. Kori LD, Valecha N, Anvikar ARJJoVBD. Insights into the early liver stage biology of Plasmodium. 2018;55(1):9.
dc.relation.references57. Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, et al. Synchronous culture of Plasmodium falciparum at high parasitemia levels. 2009;4(12):1899.
dc.relation.references58. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. 2008;118(4):1266-76.
dc.relation.references59. Kuehn A, Pradel GJJoB, Biotechnology. The coming-out of malaria gametocytes. 2010;2010.
dc.relation.references60. Lacroix R, Mukabana WR, Gouagna LC, Koella JCJPB. Malaria infection increases attractiveness of humans to mosquitoes. 2005;3(9):e298.
dc.relation.references61. Wright GJ, Rayner JCJPP. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. 2014;10(3):e1003943.
dc.relation.references62. Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. 1997;90(3):511-22.
dc.relation.references63. Sherling ES, Perrin AJ, Knuepfer E, Russell MR, Collinson LM, Miller LH, et al. The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion. 2019;15(9):e1008049.
dc.relation.references64. Hanssen E, Goldie KN, Tilley LJMicb. Ultrastructure of the asexual blood stages of Plasmodium falciparum. 2010;96:93-116.
dc.relation.references65. Tonkin CJ, Pearce JA, McFadden GI, Cowman AFJCoim. Protein targeting to destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. 2006;9(4):381-7.
dc.relation.references66. Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, et al. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. 2012;7(9):e46160.
dc.relation.references67. Singh S, Alam MM, Pal-Bhowmick I, Brzostowski JA, Chitnis CEJPP. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. 2010;6(2):e1000746.
dc.relation.references68. Knuepfer E, Suleyman O, Dluzewski AR, Straschil U, O'Keeffe AH, Ogun SA, et al. RON 12, a novel P lasmodium‐specific rhoptry neck protein important for parasite proliferation. 2014;16(5):657-72.
dc.relation.references69. Francia ME, Jordan CN, Patel JD, Sheiner L, Demerly JL, Fellows JD, et al. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. 2012;10(12):e1001444.
dc.relation.references70. Blackman MJ, Bannister LHJM, parasitology b. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. 2001;117(1):11-25.
dc.relation.references71. Frevert U, Sinnis P, Cerami C, Shreffler W, Takacs B, Nussenzweig VJTJoem. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. 1993;177(5):1287-98.
dc.relation.references72. Müller H, Scarselli E, Crisanti AJP. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum in parasite-host cell interactions. 1993;35:69-72.
dc.relation.references73. Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U, Nussenzweig RS, et al. Migration of Plasmodium sporozoites through cells before infection. 2001;291(5501):141-4.
dc.relation.references74. Risco-Castillo V, Topçu S, Marinach C, Manzoni G, Bigorgne AE, Briquet S, et al. Malaria sporozoites traverse host cells within transient vacuoles. 2015;18(5):593-603.
dc.relation.references75. Kumar KA, Garcia CR, Chandran VR, Van Rooijen N, Zhou Y, Winzeler E, et al. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity. 2007;156(1):32- 40.
dc.relation.references76. Carrolo M, Giordano S, Cabrita-Santos L, Corso S, Vigário AM, Silva S, et al. Hepatocyte growth factor and its receptor are required for malaria infection. 2003;9(11):1363-9.
dc.relation.references77. Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. 2007;2(5):316-27.
dc.relation.references78. Ishino T, Yano K, Chinzei Y, Yuda MJPB. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. 2004;2(1):e4.
dc.relation.references79. Ishino T, Chinzei Y, Yuda MJCm. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. 2005;7(2):199-208.
dc.relation.references80. Kariu T, Ishino T, Yano K, Chinzei Y, Yuda MJMm. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. 2006;59(5):1369-79.
dc.relation.references81. Jimah JR, Salinas ND, Sala-Rabanal M, Jones NG, Sibley LD, Nichols CG, et al. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore dependent disruption. 2016;5:e20621.
dc.relation.references82. Sinnis P, Coppi AJPi. A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. 2007;56(3):171-8.
dc.relation.references83. Pinzon-Ortiz C, Friedman J, Esko J, Sinnis PJJoBC. The Binding of the Circumsporozoite Protein to Cell Surface Heparan Sulfate Proteoglycans Is Required for PlasmodiumSporozoite Attachment to Target Cells. 2001;276(29):26784-91.
dc.relation.references84. Matuschewski K, Nunes AC, Nussenzweig V, Ménard RJTEj. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. 2002;21(7):1597-606.
dc.relation.references85. Yang AS, Lopaticki S, O'Neill MT, Erickson SM, Douglas DN, Kneteman NM, et al. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. 2017;19(9):e12745
dc.relation.references86. Silvie O, Rubinstein E, Franetich J-F, Prenant M, Belnoue E, Rénia L, et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. 2003;9(1):93-6.
dc.relation.references87. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JSJFmr. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. 2016;40(3):343-72.
dc.relation.references88. Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, et al. Multiple Plasmodium falciparum merozoite surface protein 1 complexes mediate merozoite binding to human erythrocytes. 2016;291(14):7703-15.
dc.relation.references89. Baldwin MR, Li X, Hanada T, Liu S-C, Chishti AHJB, The Journal of the American Society of Hematology. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. 2015;125(17):2704-11.
dc.relation.references90. Kobayashi K, Takano R, Takemae H, Sugi T, Ishiwa A, Gong H, et al. Analyses of interactions between heparin and the apical surface proteins of Plasmodium falciparum. 2013;3(1):1-11.
dc.relation.references91. Rayner JC, Galinski MR, Ingravallo P, Barnwell JWJPotNAoS. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. 2000;97(17):9648-53.
dc.relation.references92. Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. 2011;79(3):1107-17.
dc.relation.references93. Ashline DJ, Duk M, Lukasiewicz J, Reinhold VN, Lisowska E, Jaskiewicz EJG. The structures of glycophorin CN-glycans, a putative component of the GPC receptor site for Plasmodium falciparum EBA-140 ligand. 2015;25(5):570-81.
dc.relation.references94. Rydzak J, Kaczmarek R, Czerwinski M, Lukasiewicz J, Tyborowska J, Szewczyk B, et al. The baculovirus-expressed binding region of Plasmodium falciparum EBA-140 ligand and its glycophorin C binding specificity. 2015;10(1):e0115437.
dc.relation.references95. Vera-Bravo R, Valbuena JJ, Ocampo M, Garcia JE, Rodriguez LE, Puentes A, et al. Amino terminal peptides from the Plasmodium falciparum EBA 181/JESEBL protein bind specifically to erythrocytes and inhibit in vitro merozoite invasion. 2005;87(5):425-36.
dc.relation.references96. Mayer DG, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. 2009;106(13):5348-52.
dc.relation.references97. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte binding protein homologue 5–an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. 2009;39(3):371-80.
dc.relation.references98. Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. 2010;107(40):17327-32.
dc.relation.references99. Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur DJPotNAoS. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. 2015;112(4):1179-84.
dc.relation.references100. Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. 2011;7(9):e1002199.
dc.relation.references101. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NT, Whitehead LW, et al. Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum invasion of erythrocytes. 2016;20(1):60-71.
dc.relation.references102. Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–ripr invasion complex. 2019;565(7737):118-21.
dc.relation.references103. Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. 2017;8(1):1-11.
dc.relation.references104. Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, et al. Structural and functional insights into the malaria parasite moving junction complex. 2012;8(6):e1002755.
dc.relation.references105. Healer J, Crawford S, Ralph S, McFadden G, Cowman AFJI, immunity. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. 2002;70(10):5751-8.
dc.relation.references106. Hossain ME, Dhawan S, Mohmmed AJPr. The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. 2012;110(5):1711-21.
dc.relation.references107. Koussis K, Withers‐Martinez C, Yeoh S, Child M, Hackett F, Knuepfer E, et al. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. 2009;28(6):725-35.
dc.relation.references108. Straub KW, Cheng SJ, Sohn CS, Bradley PJJCm. Novel components of the Apicomplexan moving junction reveal conserved and coccidia‐restricted elements. 2009;11(4):590-603.
dc.relation.references109. Coelho CH, Doritchamou JYA, Zaidi I, Duffy PE. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. Nature Publishing Group; 2017.
dc.relation.references110. Epstein J, Tewari K, Lyke K, Sim B, Billingsley P, Laurens M, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. 2011;334(6055):475-80.
dc.relation.references111. Vaughan A, Wang R, Kappe SHJHv. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. 2010;6(1):107-13.
dc.relation.references112. Ewer KJ, Sierra-Davidson K, Salman AM, Illingworth JJ, Draper SJ, Biswas S, et al. Progress with viral vectored malaria vaccines: A multi-stage approach involving “unnatural immunity”. 2015;33(52):7444-51.
dc.relation.references113. Nascimento I, Leite LJBjom, research b. Recombinant vaccines and the development of new vaccine strategies. 2012;45:1102-11.
dc.relation.references114. Stoute JA, Heppner DG, Mason CJ, Siangla J, Opollo MO, Kester KE, et al. Phase 1 safety and immunogenicity trial of malaria vaccine RTS, S/AS02A in adults in a hyperendemic region of western Kenya. 2006;75(1):166-70.
dc.relation.references115. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVJSr. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. 2017;7(1):1-15.
dc.relation.references116. Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, et al. Plasmodium falciparum pre-erythrocytic stage vaccine development. 2020;19(1):1-18.
dc.relation.references117. Curtidor H, Patiño LC, Arévalo-Pinzón G, Vanegas M, Patarroyo ME, Patarroyo MAJP. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. 2014;53:210-7.
dc.relation.references118. Bermúdez M, Arévalo‐Pinzón G, Rubio L, Chaloin O, Muller S, Curtidor H, et al. Receptor–ligand and parasite protein–protein interactions in Plasmodium vivax: analysing rhoptry neck proteins 2 and 4. 2018;20(7):e12835.
dc.relation.references119. Guerra ÁP, Calvo EP, Wasserman M, Chaparro-Olaya JJB. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli. 2016;36:97- 108
dc.relation.references120. Houghten RAJPotNAoS. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. 1985;82(15):5131-5.
dc.relation.references121. Merrifield RBJJotACS. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. 1963;85(14):2149-54.
dc.relation.references122. Ocampo M, Urquiza M, Guzman F, Rodriguez L, Suarez J, Curtidor H, et al. Two MSA 2 peptides that bind to human red blood cells are relevant to Plasmodium falciparum merozoite invasion. 2000;55(3):216-23.
dc.relation.references123. Valbuena JJ, Bravo RV, Ocampo M, Lopez R, Rodriguez LE, Curtidor H, et al. Identifying Plasmodium falciparum EBA-175 homologue sequences that specifically bind to human erythrocytes. 2004;321(4):835-44.
dc.relation.references124. Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo MEJV. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. 2013;31(14):1830-7.
dc.relation.references125. Lambros C, Vanderberg JPJTJop. Synchronization of Plasmodium falciparum erythrocytic stages in culture. 1979:418-20.
dc.relation.references126. Urquiza M, Suarez JE, Cardenas C, Lopez R, Puentes A, Chavez F, et al. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. 2000;19(4-5):508-13.
dc.relation.references127. Buitrago SP, Garzon-Ospina D, Patarroyo MA. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J. 2016;15(1):501.
dc.relation.references128. URQUIZA M, RODRIGUEZ LE, SUAREZ JE, GUZMÁN F, OCAMPO M, CURTIDOR H, et al. Identification of Plasmodium falciparum MSP‐1 peptides able to bind to human red blood cells. 1996;18(10):515-26.
dc.relation.references129. Hein P, Michel MC, Leineweber K, Wieland T, Wettschureck N, Offermanns S. Receptor and binding studies. Practical methods in cardiovascular research: Springer; 2005. p. 723-83.
dc.relation.references130. Maguire JJ, Kuc RE, Davenport AP. Radioligand binding assays and their analysis. Receptor binding techniques: Springer; 2012. p. 31-77.
dc.relation.references131. Gaur D, Mayer DG, Miller LHJIjfp. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. 2004;34(13-14):1413- 29.
dc.relation.references132. Wasserman M, Alarcón C, Mendoza PMJTAjotm, hygiene. Effects of Ca++ depletion on the asexual cell cycle of Plasmodium falciparum. 1982;31(4):711-7.
dc.relation.references133. Aikawa M, Miller LH, Johnson J, Rabbege JJJoCB. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. 1978;77(1):72-82.
dc.relation.references134. Takemae H, Sugi T, Kobayashi K, Gong H, Ishiwa A, Recuenco FC, et al. Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin. 2013;3(1):1-9.
dc.relation.references135. Takemae H, Kobayashi K, Sugi T, Han Y, Gong H, Ishiwa A, et al. Toxoplasma gondii RON4 binds to heparan sulfate on the host cell surface. 2018;67(2):123-30.
dc.relation.references136. Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. 2015;125(8):1314-24.
dc.relation.references137. Arévalo-Pinzón G, Garzón-Ospina D, Pulido FA, Bermúdez M, Forero Rodríguez J, Rodríguez-Mesa XM, et al. Plasmodium vivax cell traversal protein for ookinetes and sporozoites (CelTOS) functionally restricted regions are involved in specific host-pathogen interactions. 2020:119.
dc.relation.references138. Williams AR, Douglas AD, Miura K, Illingworth JJ, Choudhary P, Murungi LM, et al. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. 2012;8(11):e1002991.
dc.relation.references139. Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CAJPo. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. 2012;7(1):e30251.
dc.relation.references140. Hill AVJPTotRSBBS. Vaccines against malaria. 2011;366(1579):2806-14.
dc.relation.references141. Ouattara A, Mu J, Takala-Harrison S, Saye R, Sagara I, Dicko A, et al. Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. 2010;9(1):1-13.
dc.relation.references142. Healer J, Wong W, Thompson JK, He W, Birkinshaw RW, Miura K, et al. Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of Plasmodium falciparum into human erythrocytes. 2019;21(7):e13030.
dc.relation.references143. Saul A, Fay MPJPo. Human immunity and the design of multi-component, single target vaccines. 2007;2(9):e850.
dc.relation.references144. Azasi Y, Gallagher SK, Diouf A, Dabbs RA, Jin J, Mian SY, et al. Bliss' and Loewe's additive and synergistic effects in Plasmodium falciparum growth inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. 2020;10(1):1-12.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembVacunas
dc.subject.lembVaccines
dc.subject.lembParásitos
dc.subject.lembParasites
dc.subject.proposalmalaria
dc.subject.proposalPlasmodium falciparum
dc.subject.proposalproteína del cuello de las roptrias 4
dc.subject.proposalpéptidos sintéticos.
dc.subject.proposalrhoptry neck protein 4
dc.subject.proposalsynthetic peptides
dc.title.translatedDetermination and characterization PfRON4's binding regions to human erythrocytes and hepatocytes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidhttps://orcid.org/0000-0003-4395-3672


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito