Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.authorGonzález González, Edwin Ricardo
dc.date.accessioned2023-01-18T21:05:00Z
dc.date.available2023-01-18T21:05:00Z
dc.date.issued2022-12-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83019
dc.descriptionilustraciones, fotografías principalmente a blanco y negro
dc.description.abstractEn la presente investigación se estudió la influencia de la adición de níquel en películas de WTiSiN depositadas mediante el proceso co-sputtering reactivo empleando una configuración de dos blancos. Se utilizaron como sustratos los aceros H13 y 4340 para evaluar las propiedades tribológicas de los recubrimientos y la aleación de titanio Ti6Al4V para evaluar las propiedades anticorrosivas. Las caracterizaciones microestructurales y morfológicas se llevaron a cabo mediante difracción de rayos X (DRX) y microscopia electrónica de barrido (SEM), respectivamente. La caracterización química elemental se efectuó por medio de espectroscopia de rayos X de energía dispersiva (EDS). El comportamiento frente al desgaste se evaluó por medio del ensayo de Ball on disc, logrando obtener los coeficientes de fricción (COF) y la tasa de desgaste. El comportamiento frente a la corrosión se evaluó mediante polarización potenciodinámica (TAFEL) y espectroscopia de impedancia electroquímica (EIS). Los recubrimientos mostraron cambios en la estructura y morfología debido a la adición de níquel, así como una disminución en el coeficiente de fricción. Sin embargo, el comportamiento frente a la corrosión fue inferior al del sustrato de la aleación Ti6Al4V. (Texto tomado de la fuente)
dc.description.abstractIn the present investigation, the influence of nickel addition on WTiSiN films deposited by reactive co-sputtering using a two-target configuration was studied. H13 and 4340 steels were used as substrates to evaluate the tribological properties of the coatings and the titanium alloy Ti6Al4V to evaluate the anticorrosive properties. The microstructural and morphological characterizations were carried out by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Elemental chemical characterization was performed by energy dispersive X-ray spectroscopy (EDS). The behavior against wear was evaluated by means of the Ball on disc test, obtaining the coefficients of friction (COF) and the rate of wear. Corrosion behavior was evaluated by potentiodynamic polarization (TAFEL) and electrochemical impedance spectroscopy (EIS). The coatings showed changes in structure and morphology due to the addition of nickel, as well as a decrease in the coefficient of friction. However, the corrosion behavior was inferior to that of the Ti6Al4V alloy substrate.
dc.format.extentvii, 97 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc080 - Colecciones generales
dc.titleEvaluación de la resistencia al desgaste y corrosión en recubrimientos (TI,W,SI)N con adición de Ni depositados mediante - co-sputtering
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería de Materiales y Procesos
dc.description.researchareaIngeniería de Superficies
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesH. A. Macías, L. Yate, L. E. Coy, J. J. Olaya, and W. Aperador, “Effect of nitrogen flow ratio on microstructure , mechanical and tribological properties of TiWSiN x thin film deposited by magnetron co-sputtering,” Appl. Surf. Sci., vol. 456, no. January, pp. 445–456, 2018.
dc.relation.referencesH. A. Macías, L. Yate, L. E. Coy, W. Aperador, and J. J. Olaya, “Influence of Si-addition on wear and oxidation resistance of TiWSi x N thin films,” Ceram. Int., vol. 45, no. February, pp. 17363–17375, 2019.
dc.relation.referencesG. Greczynski, S. Mráz, L. Hultman, and J. M. Schneider, “Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films,” Appl. Surf. Sci., vol. 385, pp. 356–359, 2016.
dc.relation.referencesS. Mitrovic, D. Adamovic, F. Zivic, D. Dzunic, and M. Pantic, “Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions,” Appl. Surf. Sci., vol. 290, pp. 223–232, 2014.
dc.relation.referencesA. Inspektor and P. A. Salvador, “Architecture of PVD coatings for metalcutting applications: A review,” Surf. Coatings Technol., vol. 257, pp. 138–153, 2014.
dc.relation.referencesS. Veprek and A. S. Argon, “Mechanical properties of superhard nanocomposites,” Surf. Coat. Technol., vol. 147, pp. 175–182, 2001.
dc.relation.referencesV. Chawla, R. Jayaganthan, and R. Chandra, “A study of structural and mechanical properties of sputter deposited nanocomposite Ti – Si – N thin fi lms,” Surf. Coat. Technol., vol. 204, no. 9–10, pp. 1582–1589, 2010.
dc.relation.referencesC. Karvánková, P., Mannling, H.D., Eggs and S. Veprek, “Thermal stability of ZrN – Ni and CrN – Ni superhard nanocomposite coatings,” Surf. Coat. Technol., vol. 147, pp. 280–285, 2001.
dc.relation.referencesS. Veprek and S. Reiprich, “A concept for the design of novel superhard coatings,” Thin Solid Films, vol. 268, pp. 64–71, 1995.
dc.relation.referencesT. Sato, M. Tada, and Y. C. Huang, “PHYSICAL VAPOR DEPOSITION OF CHROMIUM AND TITANIUM NITRIDES BY THE HOLLOW CATHODE DISCHARGE PROCESS,” Thin Solid Films, vol. 54, pp. 61–65, 1978.
dc.relation.referencesD. . Matthews, A, Teer, “EVALUATION OF COATING WEAR RESISTANCE FOR BULK METAL FORMING,” Thin Solid Films, vol. 73, pp. 315–321, 1980.
dc.relation.referencesE. Buhl, R., Pulker, H.K, Moll, “TiN COATINGS ON STEEL,” Thin Solid Films, vol. 80, pp. 265–270, 1981.
dc.relation.referencesH. A. Colorado, “Damping behavior of physical vapor-deposited TiN coatings on AISI 304 stainless steel and adhesion determinations,” Mater. Sci. Eng. A, vol. 442, pp. 514–518, 2006.
dc.relation.referencesY. X. Ou, J. Lin, S. Tong, H. L. Che, W. D. Sproul, and M. K. Lei, “Wear and corrosion resistance of CrN / TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering,” Appl. Surf. Sci., vol. 351, pp. 332–343, 2015.
dc.relation.referencesH. Wang, R. Zhang, Z. Yuan, X. Shu, E. Liu, and Z. Han, “A comparative study of the corrosion performance of titanium ( Ti ), titanium nitride ( TiN ), titanium dioxide ( TiO 2 ) and nitrogen-doped titanium oxides ( N – TiO 2 ), as coatings for biomedical applications,” Ceram. Int., vol. 41, no. 9, pp. 11844–11851, 2015.
dc.relation.referencesJ. Castanho and A. Cavaleiro, “Study of tungsten sputtered films with low nitrogen content,” Vacuum, vol. 45, no. 93, pp. 1051–1053, 1994.
dc.relation.referencesT. Polcar, N. M. G. Parreira, and A. Cavaleiro, “Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering,” Wear, vol. 262, pp. 655–665, 2007.
dc.relation.referencesT. Polcar, N. M. G. Parreira, and A. Cavaleiro, “Structural and tribological characterization of tungsten nitride coatings at elevated temperature,” Wear, vol. 265, pp. 319–326, 2008.
dc.relation.referencesT. Polcar and A. Cavaleiro, “Structure , mechanical properties and tribology of W – N and W – O coatings,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 1, pp. 15–22, 2010.
dc.relation.referencesV. Tiron, I. Laura, C. Porosnicu, I. Burducea, P. Dinca, and P. Malinsk, “Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications,” Appl. Surf. Sci., vol. 416, pp. 878–884, 2017.
dc.relation.referencesH. Zhao and F. Ye, “Effect of Si-incorporation on the structure , mechanical , tribological and corrosion properties of WSiN coatings,” Appl. Surf. Sci., vol. 356, pp. 958–966, 2015.
dc.relation.referencesF. Diserens, M., Patscheider, J., Lévy, “Mechanical properties and oxidation resistance of nanocomposite TiN – SiNx physical-vapor-deposited thin films,” Surf. Coat. Technol., vol. 121, pp. 158–165, 1999.
dc.relation.referencesS. Zhang, D. Sun, Y. Fu, H. Du, and Q. Zhang, “Effect of sputtering target power density on topography and residual stress during growth of nanocomposite nc-TiN/a-SiNxthin films,” Diam. Relat. Mater., vol. 13, no. 10, pp. 1777–1784, 2004.
dc.relation.referencesS. Zhang, D. Sun, Y. Fu, Y. T. Pei, and J. T. M. De Hosson, “Ni-toughened nc-TiN/a-SiNx nanocomposite thin films,” Surf. Coatings Technol., vol. 200, no. 5–6, pp. 1530–1534, 2005.
dc.relation.referencesV. Chawla, R. Jayaganthan, and R. Chandra, “Influence of Sputtering Pressure on the Structure and Mechanical Properties of Nanocomposite Ti-Si-N Thin Films,” J. Mater. Sci. Technol., vol. 26, no. 8, pp. 673–678, 2010.
dc.relation.referencesC. K. Chung, H. C. Chang, S. C. Chang, and M. W. Liao, “Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering,” J. Alloys Compd., vol. 537, pp. 318–322, 2012.
dc.relation.referencesQ. Wan et al., “Corrosion behaviors of TiN and Ti-Si-N ( with 2 . 9 at .% and 5 . 0 at .% Si ) coatings by electrochemical impedance spectroscopy,” Thin Solid Films, vol. 616, pp. 601–607, 2016.
dc.relation.referencesH. T. Wang, Y. X. Xu, and L. Chen, “Optimization of Cr-Al-N coating by multilayer architecture with TiSiN insertion layer,” J. Alloys Compd., vol. 728, pp. 952–958, 2017.
dc.relation.referencesL. . Shaginyan, M. Misina, J. Zemek, J. Musil, F. Regent, and V. F. Britun, “Composition , structure , microhardness and residual stress of W – Ti – N films deposited by reactive magnetron sputtering,” Thin Solid Films, vol. 408, pp. 136–147, 2002.
dc.relation.referencesR. . Londoño-Menjura, R. Ospina, D. Escobar, J. H. Quintero, J. J. Olaya, and A. Mello, “Influence of deposition temperature on WTiN coatings tribological performance,” Appl. Surf. Sci., vol. 427, pp. 1096–1104, 2018.
dc.relation.referencesE. Grigore, A. A. El Mel, A. Granier, and P. Y. Tessier, “The influence of Ni content on the characteristics of C – Ni thin films,” Surf. Coat. Technol., vol. 211, pp. 188–191, 2012.
dc.relation.referencesJ. F. Yang, Y. Jiang, R. F. Yang, Y. X. Gao, X. P. Wang, and Q. F. Fang, “Microstructure and mechanical properties of W – Ni – N coatings prepared by magnetron sputtering,” Thin Solid Films, vol. 570, pp. 249–255, 2014.
dc.relation.referencesL. B. Varela, F. Fernandes, A. Cavaleiro, and A. P. Tschiptschin, “NbC-Ni coatings deposited by DC reactive magnetron sputtering : E ff ect of Ni content on mechanical properties , thermal stability and oxidation resistance,” Surf. Coat. Technol., vol. 349, no. June, pp. 1018–1031, 2018.
dc.relation.referencesD. S. Belov et al., “Abrasive , hydroabrasive , and erosion wear behaviour of nanostructured ( Ti , Al ) N-Cu and ( Ti , Al ) N-Ni coatings,” Surf. Coat. Technol., vol. 338, no. February, pp. 1–13, 2018.
dc.relation.referencesJ. Yi, S. Chen, K. Chen, Y. Xu, Q. Chen, and C. Zhu, “Effects of Ni content on microstructure , mechanical properties and Inconel 718 cutting performance of AlTiN-Ni nanocomposite coatings,” Ceram. Int., no. August, pp. 0–1, 2018.
dc.relation.referencesC. Sha, P. Munroe, Z. Zhou, and Z. Xie, “Effect of Ni content on the microstructure and mechanical behaviour of CrAlNiN coatings deposited by closed fi eld unbalanced magnetron sputtering,” Surf. Coat. Technol., vol. 357, no. October 2018, pp. 445–455, 2019.
dc.relation.referencesZ. R. Liu, B. Peng, Y. X. Xu, Q. Zhang, Q. Wang, and L. Chen, “Influence of Ni-addition on mechanical , tribological properties and oxidation resistance of AlCrSiN coatings,” Ceram. Int., vol. 45, no. October 2018, pp. 3735–3742, 2019.
dc.relation.referencesE. N. Borja-goyeneche and J. J. Olaya-florez, “A microstructural and corrosion resistance study of ( Zr , Si , Ti ) N-Ni coatings produced through co-sputtering • Un estudio de la microestructura y resistencia a la corrosión de recubrimientos de ( Zr , Si , Ti ) N-Ni producidas mediante co- sputtering,” Dyna, vol. 85, no. 207, pp. 192–197, 2018.
dc.relation.referencesASM International, Metals HandBook VOL 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. 1990.
dc.relation.referencesASTM International, “Designation: B265-13a StandardSpecification for Titanium and Titanium Alloy Strip , Sheet , and Plate,” pp. 1–10, 2020.
dc.relation.referencesASTM International, “Designation: A681-08 StandardSpecification for Tool Steels Alloy,” pp. 1–14, 2020.
dc.relation.referencesS. Kumar, D. Singh, and N. S. Kalsi, “Analysis of Surface Roughness during Machining of Hardened AISI 4340 Steel using Minimum Quantity lubrication,” Mater. Today Proc., vol. 4, no. 2, pp. 3627–3635, 2017.
dc.relation.referencesASTM International, “Designation: A29/A29M-15 Standard Specification for General Requirements for Steel Bars , Carbon and Alloy ,” pp. 1–16, 2020.
dc.relation.referencesJ. E. Greene, “1800s to 2017 Review Article : Tracing the recorded history of thin-film sputter deposition : From the 1800s to 2017,” J. Vac. Sci. Technol., vol. 204, no. 2017, pp. 1–61, 2018.
dc.relation.referencesH. Wasa, Kiyotaka, Kanno, Isaku, Kotera, Handbook of Sputter Deposition Technology - Fundamentals and applications for functional Thin Films, Nanomaterials, and MEMS, 2nd ed. 2012.
dc.relation.referencesD. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Second edi. 2010.
dc.relation.referencesD. Nilsson and U. Wiklund, “A flexible laboratory-scale approach to alloying and tailoring of thin films by single-magnetron co-sputtering,” Thin Solid Films, vol. 467, pp. 10–15, 2004.
dc.relation.referencesA. Buranawong, N. Witit-anun, S. Chaiyakun, A. Pokaipisit, and P. Limsuwan, “The effect of titanium current on structure and hardness of aluminium titanium nitride deposited by reactive unbalanced magnetron co-sputtering,” Thin Solid Films, vol. 519, no. 15, pp. 4963–4968, 2011.
dc.relation.referencesA. Kumar, Lahiri, Applied Metallurgy and Corrosion Control - A Handbook for the Petrochemical Industry. Springer, 2017.
dc.relation.referencesM. M. T. Luque, “ESTUDIO COMPARATIVO DEL PROCESO DE CORROSIÓN EN RECUBRIMIENTOS CERÁMICOS, METÁLICOS Y ORGÁNICOS MEDIANTE TÉCNICAS ELECTROQUÍMICAS,” 2010.
dc.relation.referencesASM International, ASM Metals Handbook Volume 13, Corrosion. 1987.
dc.relation.referencesASTM International, “Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements,” vol. 89, no. Reapproved 2010. pp. 1–7, 2012.
dc.relation.referencesASTM International, “Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements,” vol. 94, no. Reapproved 2011, pp. 1–12, 2012.
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution : Part II . EIS interpretation of corrosion behaviour,” Corros. Sci., vol. 45, pp. 1257–1273, 2003.
dc.relation.referencesGamry Instruments, “The basics of Electrochemical Impedance Spectroscopy.” p. 18.
dc.relation.referencesGamry Instruments, “EIS of Coated Metals.” p. 16.
dc.relation.referencesB. Orazem, Mark E., Tribollet, Electrochemical Impedance Sepctroscopy. Jhon Wiley & Sons, Inc., 2008.
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution : Part I . Establishment of equivalent circuits for EIS data modelling,” Corros. Sci., vol. 45, pp. 1243–1256, 2003.
dc.relation.referencesM. Patiño Infante, “EVALUACION DEL COEFICIENTE DE FRICCIÓN Y LAS PROPIEDADES MECÁNICAS DE LOS RECUBRIMIENTOS 140MXC-530AS Y 140MXC-560AS SOBRE ACERO AISI-SAE 4340 UTILIZANDO LA TÉCNICA DE PROYECCIÓN TÉRMICA,” 2015.
dc.relation.referencesJ. R. Davis, SURFACE ENGINEERING FOR CORROSION AND WEAR RESISTANCE. 2001.
dc.relation.referencesR. C. Vega-morón et al., “Adhesion and mechanical properties of Ti fi lms deposited by DC magnetron sputtering,” Surf. Coat. Technol., vol. 349, no. May, pp. 1137–1147, 2018.
dc.relation.referencesASTM International, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” vol. 05, no. Reapproved, pp. 1–5, 2016.
dc.relation.referencesA. A. Gómez Zapata, “Determinación de propiedades estructurales y esfuerzos residuales de películas delgadas de YBaCo 4 O 7 + δ depositadas sobre sustratos monocristalinos por técnica de pulverización catódica,” 2014.
dc.relation.referencesW. . Oliver and G. . Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Mater. Res. Soc., vol. 7, pp. 1564–1583, 1992.
dc.relation.referencesO. A. T. MONTERO, “CRECIMIENTO Y CARACTERIZACIÓN DE PELICULAS DELGADAS DE NITRURO DE TITANIO CIRCONIO (Ti,Zr)N,” 2009.
dc.relation.referencesF. Gao, G. Li, and Y. Xia, “Influence of hysteresis effect on properties of reactively sputtered TiAlSiN films,” Appl. Surf. Sci., vol. 431, pp. 160–164, 2018.
dc.relation.referencesS. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films, vol. 476, pp. 215–230, 2005.
dc.relation.referencesSAFINA a.s., “Because everything needs to be just right,” 2017. [Online]. Available: https://www.tescan.com/because-everything-needs-to-be-just-right/.
dc.relation.referencesH. Antonio and E. Puentes, “Producción y caracterización de bicapas de DLC / Zr x O y usando técnicas de sputtering y CVD asistido por plasma,” 2017.
dc.relation.referencesGamry Instruments, “Over 27 years of Redefining Electrochemical Measurements.” pp. 0–24.
dc.relation.referencesL. A. Cañon Tafur, “PROPIEDADES ANTICORROSIVAS DE RECUBRIMIENTOS TixAlySizN ELABORADOS POR EL SISTEMA DE SPUTTERING REACTIVO,” 2017.
dc.relation.referencesJ. H. Quintero and H. Leyton, “Análisis del ensanchamiento de las líneas de difracción de Bragg de la fase cúbica fcc del oro,” Inventum, vol. 11, no. 11, pp. 6–10, 2011.
dc.relation.referencesA. Ruden Muñoz, “ANALISIS ESTRUCTURAL, SUPERFICIAL Y TRIBOLOGICO DE RECUBRIMIENTOS DE NITRURO DE CROMO (CrN) SINTETIZADO POR MAGNETRON SPUTTERING REACTIVO DC,” 2011.
dc.relation.referencesD. H. Buckley, Surface effects in adhesion, friction, wear, and lubrication. Elsevier, 1981.
dc.relation.referencesJ. Newell, Ciencia de Materiales Aplicaciones en Ingenieria. Alfaomega, 2011.
dc.relation.referencesL. V. Estrada, “Producción , Caracterizacion Microestructural y Estudio de la Resistencia a la Corrosión de Recubrimientos Nanoestructurados de Nb x Si y N z Depositados con el Sistema de UBM . Producción , Caracterizacion Microestructural y Estudio de la Resistencia a l,” 2011.
dc.relation.referencesS. J. Splinter, R. Rofagha, N. S. McIntyre, and U. Erb, “XPS Characterization of the Corrosion Films Formed on Nanocrystalline Ni-P Alloys in Sulphuric Acid,” Surf. interface Anal., vol. 24, pp. 181–186, 1996.
dc.relation.referencesM. Kalisz, M. Grobelny, D. Kaczmarek, J. Domaradzki, M. Mazur, and D. Wojcieszak, “Comparison of structural , mechanical and corrosion properties of TiO2 -WO3 mixed oxide films deposited on TiAlV surface by electron beam evaporation,” Appl. Surf. Sci., vol. 421, pp. 185–190, 2017.
dc.relation.referencesD. Javdo, J. Musil, Z. Soukup, S. Haviar, R. Č, and J. Houska, “Tribological properties and oxidation resistance of tungsten and tungsten nitride fi lms at temperatures up to 500 ° C,” Tribol. Int., vol. 132, no. October 2018, pp. 211–220, 2019.
dc.relation.referencesX. Xiao and B. Yao, “Structure and oxidation resistance of W 1−x AlxN composite films,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 27, pp. 1063–1070, 2017.
dc.relation.referencesASM International, ASM Handbook Volume 13A - Corrosion: Fundamentals, Testing, and Protection. 2003.
dc.relation.referencesG. Palumbo and K. T. Aust, “Triple-line Corrosion in High Purity Nickel *,” Mater. Sci. Eng., vol. 113, pp. 139–147, 1989.
dc.relation.referencesK. T. Palumbo, G., Aust, “Localized corrosion at grain boundary intersections in high purity nickel,” Scr. Metall., vol. 22, pp. 0–5, 1988.
dc.relation.referencesK. T. Palumbo, G., Thorpe, S.J., Aust, “ON THE CONTRIBUTION OF TRIPLE JUNCTIONS TO THE STRUCTURE AND PROPERTIES OF NANOCRYSTALLINE MATERIALS,” Nanocrystalline Mater., vol. 24, no. 1, pp. 1347–1350, 1990.
dc.relation.referencesN. P. Wasekar, N. Hebalkar, A. Jyothirmayi, B. Lavakumar, and M. Ramakrishna, “Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content,” Corros. Sci., vol. 165, no. December 2019, p. 108409, 2020.
dc.relation.referencesZ. V. Riveros, “ESTUDIO DE LA RESISTENCIA AL DESGASTE DE PELÍCULAS DELGADAS DE Ti,” 2006.
dc.relation.referencesI. Ponomarev, T. Polcar, and P. Nicolini, “Tribological properties of V2O5 studied via reactive molecular dynamics simulations,” Tribol. Int., vol. 154, no. October 2020, pp. 1–11, 2021.
dc.relation.referencesM. Ermrich and D. Opper, X-RAY Powder Diffraction for the analyst, Second Edi. Almelo, Netherlands: PANalytical GmbH, 2011.
dc.relation.referencesM. Monsalve, E. López, J. Meza, and F. Vargas, “Estudio mediante difracción de rayos X de las tensiones residuales producidas durante el depósito de películas delgadas de TiN sobre sustratos metálicos,” Revista Facultad de Ingenieria, no. 54, pp. 32–41, 2010.
dc.relation.referencesJ. H. Quintero, J. A. Peñafiel Castro, and H. Leyton, “Análisis del ensanchamiento de las líneas de difracción de Bragg de la fase cúbica fcc del oro,” INVENTUM, vol. 6, no. 11, pp. 6–10, Jul. 2011, doi: 10.26620/uniminuto.inventum.6.11.2011.6-10.
dc.relation.referencesMa. L. Ramón García, “Determinación del tamaño de cristal utilizando el software Jade 6.5,” Centro de Investigación en energía, Ciudad de México, 2007. [Online]. Available: https://xml.cie.unam.mx/xml/ms/Doctos/ManualJade65.pdf
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRevestimientos protectores
dc.subject.lembProtective coatings
dc.subject.lembCubiertas protectoras
dc.subject.lembProtective converings
dc.subject.proposalWTiSiN-Ni
dc.subject.proposalco-sputtering
dc.subject.proposalpolarización potenciodinámica
dc.subject.proposalespectroscopía de impedancia electroquímica
dc.subject.proposaltasa de desgaste.
dc.title.translatedEvaluation of the resistance to wear and corrosion in coatings (TI,W,SI)N with addition of Ni deposited by co-sputtering
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEVALUACIÓN DE LA RESISTENCIA AL DESGASTE Y CORROSIÓN EN RECUBRIMIENTOS (TI,W,SI)N CON ADICIÓN DE Ni DEPOSITADOS MEDIANTE– CO-SPUTTERING
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito