Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDuque Montoya, Álvaro Javier
dc.contributor.advisorZuleta Zapata, Daniel Felipe
dc.contributor.authorGómez Correa, Luisa Fernanda
dc.date.accessioned2023-01-18T21:10:45Z
dc.date.available2023-01-18T21:10:45Z
dc.date.issued2022-10-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83020
dc.descriptionIlustraciones
dc.description.abstractTree mortality is a fundamental ecological process determining forest structure and functioning. Here, we linked remote sensing and ground-based data to assess the influence of tree crown exposure to light (relative to total crown area), individual deviations of growth rates, tree size (DBH), and species wood density on the mortality of 984 canopy trees for the Amacayacu Forest Dynamics Plot, northwestern Amazon, between 2013 and 2019. We fitted Generalized Linear Mixed-Effects models to investigate the variables or combination of variables that best explained the probability of death during this period. We found that canopy trees of low wood density species were less prone to die when their proportion of crown was more exposed to sunlight, whereas high wood density trees were slightly more prone to die with higher relative crown exposure to light. Trees growing less than their species average had higher mortality, especially in low wood density species. The role of wood density in determining the survival of canopy trees under varying light conditions indicates differential responses of life-history strategies. Our results highlight the importance of accounting for life-history strategies (e.g., proxied by wood density) when predicting forest demography under rapidly changing climate.
dc.description.abstractLa mortalidad de los árboles es un proceso ecológico fundamental que determina la estructura y funcionamiento de los bosques. En este estudio, vinculamos datos de sensores remotos y monitoreos terrestres para evaluar la influencia de la exposición de la copa de los árboles a la luz (en relación con el área total de la copa), la desviación individual de las tasas de crecimiento, el tamaño del árbol (DBH), y la densidad de la madera de las especies, sobre la mortalidad de 984 árboles de dosel en la Parcela Permanente Amacayacu, Amazonía noroccidental, entre el 2013 y 2019. Ajustamos Modelos Lineales Generalizados de Efectos Mixtos para investigar las variables o combinación de variables que mejor explicaba la probabilidad de muerte durante este período. Encontramos que los árboles de dosel de especies con baja densidad de la madera fueron menos propensos a morir cuando tuvieron mayor proporción de copa expuesta a la luz, mientras que, árboles de alta densidad de madera fueron ligeramente más propensos a morir a mayor proporción de su copa expuesta a la luz. Árboles que crecieron menos que el promedio de su especie presentaron mayor mortalidad, especialmente en especies con baja densidad de la madera. El rol de la densidad de la madera en la determinación de la sobrevivencia de los árboles de dosel bajo diferentes condiciones de luz indica respuestas diferenciales de las estrategias de historia de vida. Nuestros resultados destacan la importancia de tener en cuenta las estrategias de historia de vida (e.g., representadas por la densidad de la madera) al predecir la demografía de los bosques bajo el rápido cambio climático. (tomado de la fuente)
dc.description.sponsorshipConvocatoria 891 del 2020 "Jóvenes investigadores" MinCiencias
dc.format.extentxvii, 71 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.titleInfluence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.contributor.researchgroupConservación, Uso y Biodiversidad
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaEcología de ecosistemas terrestres
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change 9: 384–388.
dc.relation.referencesAraujo RF, Chambers JQ, Celes CHS, Muller-Landau HC, Santos APF dos, Emmert F, Ribeiro GHPM, Gimenez BO, Lima AJN, Campos MAA, et al. 2020. Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics (J Müllerová, Ed.). PLoS ONE 15: e0243079.
dc.relation.referencesAraujo RF, Grubinger S, Celes CHS, Negrón-Juárez RI, Garcia M, Dandois JP, Muller-Landau HC. 2021. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50\,ha plot. Biogeosciences 18: 6517–6531.
dc.relation.referencesArellano G, Medina NG, Tan S, Mohamad M, Davies SJ. 2019. Crown damage and the mortality of tropical trees. New Phytologist 221: 169–179.
dc.relation.referencesAugspurger CK, Kelly CK. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211–217.
dc.relation.referencesBarton K. 2022. MuMIn: Multi-Model Inference.
dc.relation.referencesBates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48.
dc.relation.referencesBauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, Bentley LP, Rifai SW, Aguirre-Gutiérrez J, Menor IO, Phillips OL, et al. 2022. Tropical tree mortality has increased with rising atmospheric water stress. Nature.
dc.relation.referencesBennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: 15139.
dc.relation.referencesBin Y, Li Y, Russo SE, Cao H, Ni Y, Ye W, Lian J. 2022. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Functional Ecology 36: 1010–1022.
dc.relation.referencesBohlman SA, O’Brien S. 2006. Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. Journal of Tropical Ecology 22: 123–136.
dc.relation.referencesBurnham KP, Anderson DR. 2002. Model selection and multi- model inference. A practical information-theoretic approach (KP Burnham and DR Anderson, Eds.). New York, NY: Springer New York, NY.
dc.relation.referencesCamac JS, Condit R, FitzJohn RG, McCalman L, Steinberg D, Westoby M, Wright SJ, Falster DS. 2018. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proceedings of the National Academy of Sciences 115: 12459–12464.
dc.relation.referencesChamorro C. 1989. Biología de los suelos del Parque Nacional Natural Amacayacu y zonas adyacentes (Amazonas, Colombia). Colombia Geográfica 15: 45–63.
dc.relation.referencesChave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.
dc.relation.referencesChave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16: 2356–2367.
dc.relation.referencesCifuentes L, Moreno F. 2022. Trait coordination at leaf level explains the resistance to excess light stress in shade-tolerant tropical tree species (M Mencuccini, Ed.). Tree Physiology 42: 1325–1336.
dc.relation.referencesClark DA, Clark DB. 1992. Life History Diversity of Canopy and Emergent Trees in a Neotropical Rain Forest. Ecological Monographs 62: 315–344.
dc.relation.referencesCondit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP, Foster RB. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20: 51–72.
dc.relation.referencesCondit R, Pérez R, Lao S, Aguilar S, Hubbell SP. 2017. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. Forest Ecosystems 4: 17.
dc.relation.referencesCushman KC, Bunyavejchewin S, Cárdenas D, Condit R, Davies SJ, Duque Á, Hubbell SP, Kiratiprayoon S, Lum SKY, Muller‐Landau HC. 2021. Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53: 1442–1453.
dc.relation.referencesCushman KC, Detto M, García M, Muller-Landau HC. 2022. Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape. Ecology Letters 25: 1126–1138.
dc.relation.referencesDavies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade A, Arellano G, Ashton PS, et al. 2021. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation 253: 108907.
dc.relation.referencesDawkins HC, Field DRB. 1978. A long-term surveillance system for british woodland vegetation. Oxford, United Kingdom: Department of Forestry, Oxford University.
dc.relation.referencesDuque A, Muller-Landau HC, Valencia R, Cardenas D, Davies SJ, de Oliveira A, Pérez ÁJ, Romero-Saltos H, Vicentini A. 2017. Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation 26: 669–686.
dc.relation.referencesEsquivel-Muelbert A, Phillips OL, Brienen RJW, Fauset S, Sullivan MJP, Baker TR, Chao K-J, Feldpausch TR, Gloor E, Higuchi N, et al. 2020. Tree mode of death and mortality risk factors across Amazon forests. Nature Communications 11: 5515.
dc.relation.referencesEsquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L, Álvarez-Dávila E, et al. 2019. Compositional response of Amazon forests to climate change. Global Change Biology 25: 39–56.
dc.relation.referencesFeeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. 2020. Climate-driven changes in the composition of New World plant communities. Nature Climate Change 10: 965–970.
dc.relation.referencesFranklin JF, Shugart HH, Harmon ME. 1987. Tree death as an ecological process. BioScience 37: 550–556.
dc.relation.referencesFriedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J, et al. 2022. Global Carbon Budget 2021. Earth System Science Data 14: 1917–2005.
dc.relation.referencesGivnish T. 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15: 63.
dc.relation.referencesGora EM, Esquivel-Muelbert A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants 7: 384–391.
dc.relation.referencesGrizonnet M, Michel J, Poughon V, Inglada J, Savinaud M, Cresson R. 2017. Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards 2: 15.
dc.relation.referencesHacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461.
dc.relation.referencesHarris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change 8: 579–587.
dc.relation.referencesHartig F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models.
dc.relation.referencesHubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, et al. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579: 80–87.
dc.relation.referencesJucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize canopy packing in mixed‐species forests (J Baltzer, Ed.). Functional Ecology 29: 1078–1086.
dc.relation.referencesLüttge U. 2008. Tropical Forests. I. Physiognomy and Functional Structure. In: Lüttge U, ed. Physiological Ecology of Tropical Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 51–101.
dc.relation.referencesLutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson‐Teixeira KJ, Andrade A, Baltzer J, Becker KML, et al. 2018. Global importance of large‐diameter trees. Global Ecology and Biogeography 27: 849–864.
dc.relation.referencesMartínez-Cano I, Muller-Landau HC, Joseph Wright S, Bohlman SA, Pacala SW. 2019. Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: A comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits. Biogeosciences 16: 847–862.
dc.relation.referencesMazerolle M. 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c).
dc.relation.referencesMcDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368.
dc.relation.referencesMcDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment 3: 294–308.
dc.relation.referencesMcMahon SM, Arellano G, Davies SJ. 2019. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10: e02615.
dc.relation.referencesMetcalf CJE, Clark JS, Clark DA. 2009. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology 25: 1–12.
dc.relation.referencesMuller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, et al. 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9: 575–588.
dc.relation.referencesNakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models (RB O’Hara, Ed.). Methods in Ecology and Evolution 4: 133–142.
dc.relation.referencesNascimento HEM, Laurance WF, Condit R, Laurance SG, D’Angelo S, Andrade AC. 2005. Demographic and life‐history correlates for Amazonian trees. Journal of Vegetation Science 16: 625–634.
dc.relation.referencesNegrón-Juárez R, Jenkins H, Raupp C, Riley W, Kueppers L, Magnabosco Marra D, Ribeiro G, Monteiro M, Candido L, Chambers J, et al. 2017. Windthrow variability in Central Amazonia. Atmosphere 8: 28.
dc.relation.referencesOliveira RS, Costa FRC, Baalen E, Jonge A, Bittencourt PR, Almanza Y, Barros F de V, Cordoba EC, Fagundes M V, Garcia S, et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221: 1457–1465.
dc.relation.referencesPeñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, Obersteiner M, Piao S, Vautard R, Sardans J. 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution 1: 1438–1445.
dc.relation.referencesPiponiot C, Anderson‐Teixeira KJ, Davies SJ, Allen D, Bourg NA, Burslem DFRP, Cárdenas D, Chang‐Yang C, Chuyong G, Cordell S, et al. 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist 234: 1664–1677.
dc.relation.referencesPoorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908–1920.
dc.relation.referencesQGIS Geographic Information System. 2022. QGIS.
dc.relation.referencesR Core Team. 2021. R: a language and environment for statistical computing.
dc.relation.referencesReis SM, Marimon BS, Esquivel‐Muelbert A, Marimon BH, Morandi PS, Elias F, Oliveira EA, Galbraith D, Feldpausch TR, Menor IO, et al. 2022. Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology 110: 876–888.
dc.relation.referencesRüger N, Huth A, Hubbell SP, Condit R. 2011. Determinants of mortality across a tropical lowland rainforest community. Oikos 120: 1047–1056.
dc.relation.referencesRüger N, Wirth C, Wright SJ, Condit R. 2012. Functional traits explain light and size response of growth rates in tropical tree species. Ecology 93: 2626–2636.
dc.relation.referencesRusso SE, Davies SJ, King DA, Tan S. 2005. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93: 879–889.
dc.relation.referencesRusso SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, Davies SJ, Ashton PS, Bunyavejchewin S, Chang-Yang C-H, et al. 2021. The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology & Evolution 5: 174–183.
dc.relation.referencesTrenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nature Climate Change 4: 17–22.
dc.relation.referencesValladares F, Niinemets Ü. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237–257.
dc.relation.referencesWright SJ. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1–14.
dc.relation.referencesWright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, et al. 2010. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91: 3664–3674.
dc.relation.referencesYanoviak SP, Gora EM, Bitzer PM, Burchfield JC, Muller‐Landau HC, Detto M, Paton S, Hubbell SP. 2020. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytologist 225: 1936–1944.
dc.relation.referencesZanne AE, López-González G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. Dryad Digital Repository.
dc.relation.referencesZuleta D, Arellano G, Muller‐Landau HC, McMahon SM, Aguilar S, Bunyavejchewin S, Cardenas D, Chang‐Yang C, Duque A, Mitre D, et al. 2022a. Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist 233: 705–721.
dc.relation.referencesZuleta D, Duque A, Cardenas D, Muller‐Landau HC, Davies SJ. 2017. Drought‐induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98: 2538–2546.
dc.relation.referencesZuleta D, Krishna Moorthy SM, Arellano G, Verbeeck H, Davies SJ. 2022b. Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management 508: 120056.
dc.relation.referencesZuleta D, Russo SE, Barona A, Barreto-Silva JS, Cardenas D, Castaño N, Davies SJ, Detto M, Sua S, Turner BL, et al. 2020. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil 450: 133–149.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembÁrboles maderables
dc.subject.proposalÁrea de copa
dc.subject.proposalDensidad de la madera
dc.subject.proposalDisponibilidad de luz
dc.subject.proposalDrones
dc.subject.proposalEstrategias de historia de vida
dc.subject.proposalSobrevivencia arbórea
dc.subject.proposalTasas de crecimiento
dc.subject.proposalTamaño del árbol
dc.subject.proposalCrown area
dc.subject.proposalDrones
dc.subject.proposalGrowth rates
dc.subject.proposalLife-history strategies
dc.subject.proposalLight availability
dc.subject.proposalTree size
dc.subject.proposalTree survival
dc.subject.proposalWood density
dc.title.translatedInfluencia de los factores de individuo y especie en la mortalidad de los árboles de dosel en un bosque de la Amazonía: vinculación de sensores remotos y datos terrestres
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinciencias
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambiental


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito