Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRuiz-Mendoza, Belizza J.
dc.contributor.authorSosapanta Salas, Joseph Camilo
dc.date.accessioned2023-01-23T15:09:22Z
dc.date.available2023-01-23T15:09:22Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83058
dc.descriptionilustraciones, graficas
dc.description.abstractLa transición energética está transformando el funcionamiento y operación de los sistemas eléctricos de potencia, provocando así que se diversifique la matriz energética a través de la inclusión de diferentes fuentes de generación de energía eléctrica. Este documento describe los impactos de la energía eólica sobre la estabilidad transitoria del sistema de potencia, empleando un sistema de prueba de nueve barras y analizando diferentes localizaciones de las fallas. A partir de los resultados se encontró que, en general, las oscilaciones de las posiciones angulares del rotor crecen en la medida que se incrementa el nivel de participación de energía eólica. También, teniendo en cuenta que los indicadores de estabilidad bajos representan buenos márgenes de estabilidad, se encontró que para los diferentes escenarios de participación de energía eólica, la estabilidad transitoria es susceptible a la localización de las fallas. (Texto tomado de la fuente)
dc.description.abstractThe energy transition is transforming the functioning and operation of the electric power system, thus causing the energy mix to diversify through the inclusion of different electricity generation sources. This document describes the impacts of wind power on the power system transient stability, using a nine-bus test system and analyzing different fault locations. From the results it was found that, in general, the oscillations of the rotor angular positions grow as the level of participation of wind power increases. Also, considering that low stability indicators represent good stability margins, it was found that for the different wind power participation scenarios, transient stability is susceptible to fault location.
dc.format.extentvii, 67 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleSimulación de la influencia de la generación de energía eólica en la estabilidad transitoria
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica
dc.contributor.researchgroupGipem ­ Grupo de Investigación en Potencia, Energía y Mercados
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctrica
dc.description.researchareaSistemas Eléctricos de Potencia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesV. Akhmatov, Analysis of Dynamic Behaviour of Electric Power Systems with Large Amount of Wind Power. Doctoral thesis, Universidad T´ecnica de Dinamarca, Lyngby, 2003.
dc.relation.referencesJ. G. Slootweg, Wind Power: Modelling and Impact on Power System Dynamics. Doctoral thesis, Delft University of Technology, Delft, 2003.
dc.relation.referencesY. Coughlan, “Wind turbine modelling for power system stability analysis – a system operator perspective,” IEEE Transactions on Power Systems, vol. 22, pp. 929–936, 2007.
dc.relation.referencesM. Vittal, E. O’Malley and A. Keane, “Rotor angle stability with high penetrations of wind generation,” IEEE Transactions on Power Systems, vol. 27, pp. 353–362, 2012.
dc.relation.referencesA. Agarala and et al., “Transient stability analysis of a multi-machine power system integrated with renewables,” Energies, vol. 15, no. 13, 2022.
dc.relation.referencesD. Trudnowski, “Fixed-speed wind-generator and wind- park modeling for transient stability studies,” IEEE Transactions on Power Systems, vol. 19, pp. 1911–1917, 2004.
dc.relation.referencesM. Rahimi and M. Parniani, “Dynamic behavior and transient stability analysis of fixed speed wind turbines,” Renewable Energy, vol. 34, pp. 2613–2624, 2009.
dc.relation.referencesM. Reza, Stability Analysis of Transmission System with High Penetration of Distributed Generation. Doctoral thesis, Delft University of Technology, Delft, 2006.
dc.relation.referencesM. Zapata Ceballos, “Estabilidad de peque˜na se˜nal en sistemas de energ´ıa el´ectrica con alta penetraci´on de generaci´on renovable,” Master’s thesis, UNAL Medell´ın, 2020.
dc.relation.referencesJ. Chow and K. Cheung, “A toolbox for power system dynamics and control engineering education and research,” IEEE Transactions on Power Systems, vol. 7, no. 4, pp. 1559– 1564, 1992.
dc.relation.referencesF. Milano, “An open source power system analysis toolbox,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1199–1206, 2005.
dc.relation.referencesS. Cole and R. Belmans, “Matdyn, a new matlab-based toolbox for power system dynamic simulation,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1129–1136, 2011.
dc.relation.referencesI. Abdulrahman, “Matlab-based programs for power system dynamic analysis,” IEEE Open Access Journal of Power and Energy, vol. 7, pp. 59–69, 2020.
dc.relation.referencesC. Gear, “Simultaneous numerical solution of differential-algebraic equations,” IEEE Transactions on Circuit Theory, vol. 18, no. 1, pp. 89–95, 1971.
dc.relation.referencesP. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, 2014.
dc.relation.referencesF. Milano, “Semi-implicit formulation of differential-algebraic equations for transient stability analysis,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4534–4543, 2016.
dc.relation.referencesC. Wang, K. Yuan, P. Li, B. Jiao, and G. Song, “A projective integration method for transient stability assessment of power systems with a high penetration of distributed generation,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 386–395, 2018.
dc.relation.referencesJ. Sosapanta Salas, “Energ´ıa e´olica en colombia: panorama y perspectivas bajo la triple cuenta de resultados,” Master’s thesis, UNAD, 2020.
dc.relation.referencesK. R. Rao, Wind Energy for Power Generation: Meeting the Challenge of Practical Implementation. Brandon: Springer, 1st ed., 2019.
dc.relation.referencesM. R. Patel and O. Beik, Wind and Solar Power Systems: Design, Analysis, and Operation. Florida: CRC Press, 3rd ed., 2021.
dc.relation.referencesJ. Pitteloud, “Wind energy international. obtenido de global wind installations,” 2020.
dc.relation.referencesUPME, “Plan de expansi´on de referencia generaci´on transmisi´on 2020-2034,” 2020.
dc.relation.referencesC. Gonz´alez and J. Barney, El viento del este llega con revoluciones: Multinacionales y transici´on con energ´ıa e´olica en territorio Way´uu. Bogot´a: Indepaz, 1st ed., 2019.
dc.relation.referencesF. Milano, Power System Modelling and Scripting. La Mancha: Springer, 1st ed., 2010.
dc.relation.referencesM. Eremia and M. Shahidehpour, Handbook of Electrical Power System Dynamics. New Jersey: John Wiley & Sons Ltda., 1st ed., 2013.
dc.relation.referencesJ. G. Slootweg and W. L. Kling, “The impact of large scale wind power generation on power system oscillations,” Electric Power Systems Research, vol. 67, pp. 9–20, 2003.
dc.relation.referencesIEC61400-27-1, “Wind energy generation systems - part 27-1: Electrical simulation models - generic models,” 2020.
dc.relation.referencesJ. Fortmann, Modeling of Wind Turbines with Doubly Fed Generator System. Duisburg: Springer Vieweg, 1st ed., 2015.
dc.relation.referencesA. D. Hansen, “Dynamic wind turbine models in power system simulation tool digsilent,” tech. rep., Technical University of Denmark, Riso National Laboratory, 2007.
dc.relation.referencesM. Pavella and P. G. Murthy, Transient Stability of Power Systems. Liege: John Wiley & Sons Ltda., 1st ed., 1994.
dc.relation.referencesP. Kundur, Power System Stability and Control. Palo Alto, California: McGraw-Hill, Inc., 1st ed., 1994.
dc.relation.referencesK. R. Padiyar, Power System Dynamics: Stability and Control. Hyderabad: BS Publicaciones, 1st ed., 2008.
dc.relation.referencesJ. Machowski, J. Bialek and J. Bumby, Power System Dynamics: Stability and Control. Great Britain: John Wiley & Sons, Ltd., 2nd ed., 2008.
dc.relation.referencesS. Cole, “Matdyn user’s manual version 1.2,” tech. rep., Universidad Cat´olica Leuven, ESAT-ELECTRA, 2010.
dc.relation.referencesM. A. Pai and D. Chatterjee, Computer Techniques in Power System Analysis. Illinois: McGraw Hill Education, 3rd ed., 2014.
dc.relation.referencesJ. Grainger and W. Stevenson, An´alisis de Sistemas de Potencia. Carolina del Norte: McGraw-Hill Interamericana, 2nd ed., 1996.
dc.relation.referencesN. Hatziargyriou and et al., “Definition and classification of power system stability – revisited & extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271– 3281, 2021.
dc.relation.referencesM. J. Basler and R. C. Schaefer, “Understanding power system stability,” IEEE Transactions on Industry Applications, vol. 44, pp. 463–474, 2008.
dc.relation.referencesM. Secanell and F. Corcoles, “Daes implementation of dynamic power systems,” in 10th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.02EX630), vol. 2, pp. 663–669 vol.2, 2002.
dc.relation.referencesE. A. Celaya, J. J. A. Aguirrezabala, and P. Chatzipantelidis, “Implementation of an adaptive bdf2 formula and comparison with the matlab ode15s,” Procedia Computer Science, vol. 29, pp. 1014–1026, 2014.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTransmisión de potencia
dc.subject.lembControl de sistemas de energía eléctrica
dc.subject.proposalDinámica del sistema de potencia
dc.subject.proposalEcuaciones diferenciales algebraicas
dc.subject.proposalEstabilidad del sistema de potencia
dc.subject.proposalFuentes de energía renovable
dc.subject.proposalIntegración a la red de energía eólica
dc.subject.proposalPower system dynamics
dc.subject.proposalDifferential algebraic equations
dc.subject.proposalPower system stability
dc.subject.proposalRenewable energy sources
dc.subject.proposalWind power grid integration
dc.title.translatedSimulation of the influence of wind power generation on transient stability
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones
dc.contributor.orcidSosapanta Salas, Joseph Camilo [0000-0002-2035-9323]
dc.contributor.cvlacSosapanta Salas, Joseph Camilo [0001538062]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito