Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBuitrago Sierra, Robison
dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.authorDurango Giraldo, Geraldine
dc.date.accessioned2023-01-23T19:13:53Z
dc.date.available2023-01-23T19:13:53Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83073
dc.descriptionilustracioneds, diagramas
dc.description.abstractEl látex de caucho natural es un polímero extraído del árbol de caucho (Hevea brasiliensis). Es un material ecológico, sostenible, no derivado del petróleo y de bajo costo. Ha sido empleado en diferentes aplicaciones en el campo biomédico como la regeneración, prótesis e injertos óseos, además de su uso en guantes, catéteres, condones, entre otros. No obstante, no presenta propiedades antibacterianas, lo que podría llevar a una colonización bacteriana en la superficie del material. El óxido de Zinc (ZnO) es un material inorgánico que dentro de sus propiedades presenta actividad antibacteriana, que dependen de diversos factores, entre ellos su morfología. El ZnO puede ser empleado para la modificación del látex con el fin de otorgarle propiedades antibacterianas. Sin embargo, las propiedades antibacterianas de partículas de ZnO, embebidas en el látex no han sido ampliamente estudiadas. En este trabajo, se sinterizaron partículas de ZnO con dos diferentes morfologías y fueron añadidas al látex a diferentes concentraciones con el fin de evaluar las propiedades antibacterianas del compuesto. Los resultados de caracterización por SEM y TEM mostraron la obtención de partículas con morfología esférica y de hojas. Por medio de DRX, se concluyó que ambos tipos de partícula presentan fase cristalina Wurtzita, la más comúnmente encontrada en el ZnO. Mediante EDS se evidenció presencia de las partículas de ZnO por la superficie del compuesto, sin embargo, para la morfología de hojas, se obtuvo una menor exposición en la superficie del compuesto y se pudieron observar agregados de partículas. Con respecto a las pruebas antibacterianas, se encontró que ambos compuestos presentan esta propiedad contra bacterianas Gram negativas y Gram positivas, sin embargo, se evidenció una mayor efectividad antibacteriana en las partículas con morfología esférica. La cual se asoció a la mayor exposición de las partículas de ZnO en la superficie de estos compuestos, en comparación con los desarrollados con morfología de hojas. (Texto tomado de la fuente)
dc.description.abstractNatural rubber latex is a polymer extracted from the rubber tree (Hevea brasiliensis). It is an ecological, sustainable material, not derived from petroleum and low cost. It has been used in several applications in the biomedical field such as regeneration, prosthetics and bone grafts, in addition to its use in gloves, catheters, condoms, among others. However, it does not have antibacterial properties, which could lead to bacterial colonization on the surface of the material. Zinc oxide (ZnO) is an inorganic material that has antibacterial activity within its properties, which depend on various factors, including its morphology. ZnO can be used to modify latex in order to give it antibacterial properties. Nevertheless, the antibacterial properties of ZnO, embedded in the latex, have not been widely studied. In this work, ZnO particles with two several morphologies were synthesized and added to latex at different concentrations in order to evaluate the antibacterial properties of this compound. The results of characterization by SEM and TEM showed the obtaining of particles with spherical morphology and sheets. Through XRD, it was concluded that both types of particles present Wurtzite crystalline phase, the most commonly found in ZnO. EDS analysis evidenced the presence of ZnO particles on the surface of the compound, however, the morphology of sheets exhibits a lower exposure on the surface of the compound and aggregates of particles could be observed. Regarding the antibacterial tests, it was found that both compounds have this property against Gram-negative and Gram-positive bacteria, however, a greater antibacterial effectiveness was evidenced in the particles with spherical morphology. This relates to greater exposure of ZnO particles on the surface of these compounds, compared to those developed with sheets morphology.
dc.format.extentxxii, 78 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleDesarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupMateriales Avanzados y Energía MATyER
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaNuevos materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbadeer, N. S., & Murphy, C. J. (2016). Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Journal of Physical Chemistry C, 120(9), 4691–4716. https://doi.org/10.1021/acs.jpcc.5b11232
dc.relation.referencesAbd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., & El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces, 180(March), 411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008
dc.relation.referencesAbebe, B., Zereffa, E. A., Tadesse, A., & Murthy, H. C. A. (2020). A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Research Letters, 15(1). https://doi.org/10.1186/s11671-020-03418-6
dc.relation.referencesAbu-Dalo, M., Jaradat, A., Albiss, B. A., & Al-Rawashdeh, N. A. F. (2019). Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering, 7(5), 103370. https://doi.org/10.1016/j.jece.2019.103370
dc.relation.referencesAditya, A., Chattopadhyay, S., Jha, D., Gautam, H. K., Maiti, S., & Ganguli, M. (2018). Zinc Oxide Nanoparticles Dispersed in Ionic Liquids Show High Antimicrobial Efficacy to Skin-Specific Bacteria. ACS Applied Materials and Interfaces, 10(18), 15401–15411. https://doi.org/10.1021/acsami.8b01463
dc.relation.referencesAielo, P. B., Borges, F. A., Romeira, K. M., Miranda, M. C. R., Arruda, L. B. D., Paulo, P. N., Drago, B. D. C., & Herculano, R. D. (2014). Evaluation of sodium diclofenac release using natural rubber latex as carrier. Materials Research, 17(August), 146–152. https://doi.org/10.1590/S1516-14392014005000010
dc.relation.referencesAkhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. https://doi.org/10.1021/nn101390x
dc.relation.referencesAl-Jumaili, A., Alancherry, S., Bazaka, K., & Jacob, M. V. (2017). Review on the antimicrobial properties of Carbon nanostructures. Materials, 10(9), 1–26. https://doi.org/10.3390/ma10091066
dc.relation.referencesAlmeida, G. F. B., Cardoso, M. R., Zancanela, D. C., Bernardes, L. L., Norberto, A. M. Q., Barros, N. R., Paulino, C. G., Chagas, A. L. D., Herculano, R. D., & Mendonça, C. R. (2020). Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes. Applied Surface Science, 506, 144762. https://doi.org/10.1016/j.apsusc.2019.144762
dc.relation.referencesAlmontasser, A., Parveen, A., & Azam, A. (2019). Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. IOP Conference Series: Materials Science and Engineering, 577(1). https://doi.org/10.1088/1757-899X/577/1/012051
dc.relation.referencesAlsultany, F. H., Majdi, H. S., Abd, H. R., Hassan, Z., & Ahmed, N. M. (2019). Catalytic Growth of 1D ZnO Nanoneedles on Glass Substrates Through Vapor Transport. Journal of Electronic Materials, 48(3), 1660–1668. https://doi.org/10.1007/s11664-018-06853-5
dc.relation.referencesAnandgaonker, P., Kulkarni, G., Gaikwad, S., & Rajbhoj, A. (2019). Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry, 12(8), 1815–1822. https://doi.org/10.1016/j.arabjc.2014.12.015
dc.relation.referencesAnjana, P. M., Bindhu, M. R., Umadevi, M., & Rakhi, R. B. (2019). Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites. Applied Surface Science, 479(February), 96–104. https://doi.org/10.1016/j.apsusc.2019.02.057
dc.relation.referencesArens, D., Zeiter, S., Nehrbass, D., Ranjan, N., Paulin, T., & Alt, V. (2020). Antimicrobial silver-coating for locking plates shows uneventful osteotomy healing and good biocompatibility results of an experimental study in rabbits. Injury, 51(4), 830–839. https://doi.org/10.1016/j.injury.2020.02.115
dc.relation.referencesArias-Flores, R., Rosado-Quiab, U., Vargas-Valerio, A., & Grajales-Muñiz, C. (2016). Los microorganismos causantes de infecciones nosocomiales en el Instituto Mexicano del Seguro Social. Microorganisms Responsible of Nosocomial Infections in the Instituto Mexicano Del Seguro Social., 54(1), 20–24. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=112752580&lang=es&site=ehost-live
dc.relation.referencesAriosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026
dc.relation.referencesArora, S., Kaur, H., Kumar, R., Kaur, R., Rana, D., Rayat, C. S., Kaur, I., Arora, S. K., Bubber, P., & Bharadwaj, L. M. (2015). In vitro cytotoxicity of multiwalled and single-walled carbon nanotubes on human cell lines. Fullerenes Nanotubes and Carbon Nanostructures, 23(5), 377–382. https://doi.org/10.1080/1536383X.2013.812638
dc.relation.referencesAuffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. https://doi.org/10.1038/nnano.2009.242
dc.relation.referencesB. Pinto, R. J., C., M., Pascoal, C., & Trindade, T. (2012). Composites of Cellulose and Metal Nanoparticles. Nanocomposites - New Trends and Developments. https://doi.org/10.5772/50553
dc.relation.referencesBabayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., & Jurga, S. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-12134-3
dc.relation.referencesBadetti, E., Calgaro, L., Falchi, L., Bonetto, A., Bettiol, C., Leonetti, B., Ambrosi, E., Zendri, E., & Marcomini, A. (2019). Interaction between copper oxide nanoparticles and amino acids: Influence on the antibacterial activity. Nanomaterials, 9(5). https://doi.org/10.3390/nano9050792
dc.relation.referencesBalabanian, C. A. C. A., Coutinho-Netto, J., Lamano-Carvalho, T. L., Lacerda, S. A., & Brentegani, L. G. (2006). Biocompatibility of natural latex implanted into dental alveolus of rats. Journal of Oral Science, 48(4), 201–205. https://doi.org/10.2334/josnusd.48.201
dc.relation.referencesBarraza-Garza, G., De La Rosa, L. A., Martínez-Martínez, A., Castillo-Michel, H., Cotte, M., & Alvarez-Parrilla, E. (2013). La microespectroscopía de infrarrojo con transformada de fourier (FTIRM) en el estudio de sistemas biológicos. Revista Latinoamericana de Quimica, 41(3), 125–148.
dc.relation.referencesBeezhold, D., Swanson, M., Zehr, B. D., & Kostyal, D. (1996). Measurement of natural rubber proteins in latex glove extracts: Comparison of the methods. Annals of Allergy, Asthma and Immunology, 76(6), 520–526. https://doi.org/10.1016/S1081-1206(10)63271-1
dc.relation.referencesBernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Šerý, Mojmír; Ježek, Jan; Jákl, Petr; Šiler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, F. (2013). Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 13188–13199. https://doi.org/10.3390/molecules181113188
dc.relation.referencesBhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687
dc.relation.referencesBorda D’Água, R., Branquinho, R., Duarte, M. P., Maurício, E., Fernando, A. L., Martins, R., & Fortunato, E. (2018). Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost: In situ synthesis. New Journal of Chemistry, 42(2), 1052–1060. https://doi.org/10.1039/c7nj03418k
dc.relation.referencesBorges, F. A., de Barros, N. R., Garms, B. C., Miranda, M. C. R., Gemeinder, J. L. P., Ribeiro-Paes, J. T., Silva, R. F., de Toledo, K. A., & Herculano, R. D. (2017). Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. Journal of Applied Polymer Science, 134(39), 1–10. https://doi.org/10.1002/app.45321
dc.relation.referencesBottier, C. (2020). Biochemical composition of Hevea brasiliensis latex: A focus on the protein, lipid, carbohydrate and mineral contents. In Advances in Botanical Research (Vol. 93). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2019.11.003
dc.relation.referencesBottier, C., Gross, B., Wadeesirisak, K., Srisomboon, S., Vallat, M., & Mougin, K. (2017). Impact of storage time of ammonia-stabilized latex on biochemical and physicochemical indicators of hevea. Agris: International Information System for the Agricultural Science and Technology, 1, 1–14.
dc.relation.referencesCáceres, A. P., & Gauthier-maradei, P. (2012). Análisis termogravimetrico como un nuevo método para la determinación de contenido de sólidos totales ( CST ) y caucho seco ( CCS ) del látex natural Thermogravimetric analysis as a new method to determine of total solid content ( TSC ) and dry rubber con. 25(2), 57–65.
dc.relation.referencesCedillo-González, E. I., Hernández-López, J. M., Ruiz-Valdés, J. J., Barbieri, V., & Siligardi, C. (2020). Self-cleaning TiO2 coatings for building materials: The influence of morphology and humidity in the stain removal performance. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117692
dc.relation.referencesChen, J., Chen, S., Gao, T., Gao, L., Xie, M., Pan, R., Zhong, J., & Cui, X. (2019). A novel approach in blending natural rubber latex with siliceous earth nanoparticles. Iranian Polymer Journal (English Edition), 28(9), 759–768. https://doi.org/10.1007/s13726-019-00740-4
dc.relation.referencesChen, J. L., Devi, N., Li, N., Fu, D. J., & Ke, X. W. (2018). Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties. Chinese Physics B, 27(8). https://doi.org/10.1088/1674-1056/27/8/086102
dc.relation.referencesChen, X., Wang, Z., & Wu, J. (2018). Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. Journal of Polymer Research, 25(2). https://doi.org/10.1007/s10965-017-1433-y
dc.relation.referencesCiapetti, G., Stea, S., Pizzoferrato, A., Checchi, L., & Pelliccioni, G. A. (1994). A latex membrane, as an alternative device in the GTR technique: preliminary report on its biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9–10), 647–650. https://doi.org/10.1007/BF00120348
dc.relation.referencesCullity, B. D. (1978). Elements of X-RAY DIFFRACTION. In Addison-Wesley Publishing Company.
dc.relation.referencesDe Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362s20180027
dc.relation.referencesDevaraj, N. K., Han, T. C., Low, P. L., Ong, B. H., & Sin, Y. K. (2014). Synthesis and characterisation of zinc oxide nanoparticles for thermoelectric application. Materials Research Innovations, 18, S6-350-S6-353. https://doi.org/10.1179/1432891714Z.000000000980
dc.relation.referencesDey, T. K., Hossain, A., Jamal, M., Layek, R. K., & Uddin, M. E. (2022). Zinc Oxide Nanoparticle Reinforced Waste Buffing Dust Based Composite Insole and Its Antimicrobial Activity. Advances in Polymer Technology, 2022. https://doi.org/10.1155/2022/7130551
dc.relation.referencesDick, T. A., & Santos, L. A. (2017). In situ synthesis and characterization of hydroxyapatite / natural rubber composites for biomedical applications. Materials Science & Engineering C, 77, 874–882. https://doi.org/10.1016/j.msec.2017.03.301
dc.relation.referencesDulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., & Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1).https://doi.org/10.1186/s42834-021-00111-w
dc.relation.referencesDwivedi, S., Wahab, R., Khan, F., Mishra, Y. K., Musarrat, J., & Al-Khedhairy, A. A. (2014). Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE, 9(11), 1–9. https://doi.org/10.1371/journal.pone.0111289
dc.relation.referencesElahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537–556. https://doi.org/10.1016/j.talanta.2018.02.088
dc.relation.referencesEmami-Karvani, Z., & Pegah, C. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. https://doi.org/10.5897/ajmr10.159
dc.relation.referencesEspitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 5(5), 1447–1464. https://doi.org/10.1007/s11947-012-0797-6
dc.relation.referencesFeng, Q., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Polymer Bulletin, 55(1–2), 105–113. https://doi.org/10.1007/s00289-005-0414-1
dc.relation.referencesFloriano, J. F., Da Mota, L. S. L. S., Furtado, E. L., Rossetto, V. J. V., & Graeff, C. F. O. (2014). Biocompatibility studies of natural rubber latex from different tree clones and collection methods. Journal of Materials Science: Materials in Medicine, 25(2), 461–470. https://doi.org/10.1007/s10856-013-5089-9
dc.relation.referencesFontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4). https://doi.org/10.3390/foods9040442
dc.relation.referencesFranco, S., Rodriguez, C., & Arias, S. (2013). Modelo de costo-efectividad para optimizar el impacto en la prevención de infecciones asociadas a la atención en salud en hospitales de Bogotá. 1–85. https://repository.usergioarboleda.edu.co/bitstream/handle/11232/899/Modelo de costo efectividad para optimizar impacto.pdf?sequence=2&isAllowed=y
dc.relation.referencesGallego, A., Cacua, K., Herrera, B., Cabaleiro, D., Piñeiro, M. M., & Lugo, L. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31(2), 560–570. https://doi.org/10.1016/j.apt.2019.11.012
dc.relation.referencesGao, R., Gao, S., Wang, P., Xu, Y., Zhang, X., Cheng, X., Zhou, X., Major, Z., Zhu, H., & Huo, L. (2020). Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators, B: Chemical, 303(x). https://doi.org/10.1016/j.snb.2019.127085
dc.relation.referencesGardini, D., Lüscher, C. J., Struve, C., & Krogfelt, K. A. (2018). Tailored nanomaterials for antimicrobial applications. In Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization. Elsevier Inc. https://doi.org/10.1016/B978-0-323-51255-8.00004-5
dc.relation.referencesGerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556f
dc.relation.referencesGharbani, P., & Mehalizadeh, A. (2018). Facile Preparation of Novel Zinc Oxide Nano Sheets and Study of Its Optical Properties. Asian Journal of Nanoscience and Materials, 2(1), 27–36. https://doi.org/10.26655/ajnanomat.2019.1.2
dc.relation.referencesGoldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., & Joy, D. C. (2018). Microscopy and X-Ray Microanalysis. https://www.google.co.uk/books/edition/Scanning_Electron_Microscopy_and_X_Ray_M/D0I_DwAAQBAJ?hl=en&gbpv=0
dc.relation.referencesGopala Krishna, P., Paduvarahalli Ananthaswamy, P., Yadavalli, T., Bhangi Mutta, N., Sannaiah, A., & Shivanna, Y. (2016). ZnO nanopellets have selective anticancer activity. Materials Science and Engineering C, 62, 919–926. https://doi.org/10.1016/j.msec.2016.02.039
dc.relation.referencesGuo, J., Qin, J., Ren, Y., Wang, B., Cui, H., Ding, Y., Mao, H., & Yan, F. (2018). Antibacterial activity of cationic polymers: Side-chain or main-chain type? Polymer Chemistry, 9(37), 4611–4616. https://doi.org/10.1039/c8py00665b
dc.relation.referencesHa, M. K., Shim, Y. J., & Yoon, T. H. (2018). Effects of agglomeration on in vitro dosimetry and cellular association of silver nanoparticles. Environmental Science: Nano, 5(2), 446–455. https://doi.org/10.1039/c7en00965h
dc.relation.referencesHaberhauer, G., & Gerzabek, M. H. (1999). Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vibrational Spectroscopy, 19(2), 413–417. https://doi.org/10.1016/S0924-2031(98)00046-0
dc.relation.referencesHaines, P. J., Reading, M., & Wilburn, F. W. (1998). Chapter 5. 1, 279–361.
dc.relation.referencesHamzah, R., Bakar, M. A., Khairuddean, M., Mohammed, I. A., & Adnan, R. (2012). A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules, 17(9), 10974–10993. https://doi.org/10.3390/molecules170910974
dc.relation.referencesHotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. Journal of Environmental Quality, 39(6), 1909–1924. https://doi.org/10.2134/jeq2009.0462
dc.relation.referencesHuang, Y., Gohs, U., Müller, M. T., Zschech, C., & Wießner, S. (2019). Evaluation of electron induced crosslinking of masticated natural rubber at different temperatures. Polymers, 11(8), 1–14. https://doi.org/10.3390/polym11081279
dc.relation.referencesIto, H., Sakata, M., Hongo, C., Matsumoto, T., & Nishino, T. (2018). Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites, 4(4), 167–177. https://doi.org/10.1080/20550324.2018.1556912
dc.relation.referencesJacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology, 32(17), 2650–2653. https://doi.org/10.1021/es980036f
dc.relation.referencesJain, A., Bhargava, R., & Poddar, P. (2013). Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Materials Science and Engineering C, 33(3), 1247–1253. https://doi.org/10.1016/j.msec.2012.12.019
dc.relation.referencesJeevanandam, J., Chan, Y. S., & Danquah, M. K. (2019). Evaluating the Antibacterial Activity of MgO Nanoparticles Synthesized from Aqueous Leaf Extract. Med One. https://doi.org/10.20900/mo.20190011
dc.relation.referencesJenkins, R., & Snyder, R. L. (1996). CHEMICAL ANALYSIS A SERIES OF MONOGRAPHS ON ANALYTICAL CHEMISTRY AND ITS APPLICATIONS (Vol. 138).
dc.relation.referencesJin, S. E., & Jin, H. E. (2019). Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics, 11(11). https://doi.org/10.3390/pharmaceutics11110575
dc.relation.referencesJoe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013
dc.relation.referencesJones, F., Tran, H., Lindberg, D., Zhao, L., & Hupa, M. (2013). Thermal stability of zinc compounds. Energy and Fuels, 27(10), 5663–5669. https://doi.org/10.1021/ef400505u
dc.relation.referencesKang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413. https://doi.org/10.1021/la800951v
dc.relation.referencesKarthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. Journal of Photochemistry and Photobiology B: Biology, 190, 8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001
dc.relation.referencesKhashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of tio2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences (Switzerland), 11(10). https://doi.org/10.3390/app11104623
dc.relation.referencesKim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International, 38(4), 537–565. https://doi.org/10.1080/87559129.2020.1737709
dc.relation.referencesKinoshita, M., Okamoto, Y., Furuya, M., & Okamoto, M. (2019). Biocomposites composed of natural rubber latex and cartilage tissue derived from human mesenchymal stem cells. Materials Today Chemistry, 12, 315–323. https://doi.org/10.1016/j.mtchem.2019.03.002
dc.relation.referencesKolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
dc.relation.referencesKoodziejczak-Radzimska, A., Markiewicz, E., & Jesionowski, T. (2012). Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/656353
dc.relation.referencesKrainoi, A., Poomputsa, K., Kalkornsurapranee, E., Johns, J., Songtipya, L., Nip, R. L., & Nakaramontri, Y. (2021). Disinfectant natural rubber films filled with modified zinc oxide nanoparticles: Synergetic effect of mechanical and antibacterial properties. Express Polymer Letters, 15(11), 1081–1100. https://doi.org/10.3144/expresspolymlett.2021.87
dc.relation.referencesKundu, B., Kurland, N. E., Bano, S., Patra, C., Engel, F. B., Yadavalli, V. K., & Kundu, S. C. (2014). Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 39(2), 251–267. https://doi.org/10.1016/j.progpolymsci.2013.09.002
dc.relation.referencesLallo da Silva, B., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177(February), 440–447. https://doi.org/10.1016/j.colsurfb.2019.02.013
dc.relation.referencesLam, E., Male, K. B., Chong, J. H., Leung, A. C. W., & Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283–290. https://doi.org/10.1016/j.tibtech.2012.02.001
dc.relation.referencesLe Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. https://doi.org/10.1016/j.nantod.2015.04.002
dc.relation.referencesLemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028
dc.relation.referencesLevy, D. A., Moudiki, P., & Leynadier, F. (2001). Deproteinised latex condoms are well tolerated by latex allergic patients. Sexually Transmitted Infections, 77(3), 202–203. https://doi.org/10.1136/sti.77.3.202
dc.relation.referencesLi, J., Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., Zhou, F., & Jiang, X. (2018). Nanocellulose-Based Antibacterial Materials. Advanced Healthcare Materials, 7(20), 1–16. https://doi.org/10.1002/adhm.201800334
dc.relation.referencesLi, T., Su, Y., Wang, D., Mao, Y., Wang, W., Liu, L., & Wen, S. (2022). High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. International Journal of Biological Macromolecules, 195(December 2021), 449–455. https://doi.org/10.1016/j.ijbiomac.2021.12.029
dc.relation.referencesLin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan-cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products, 70, 395–403. https://doi.org/10.1016/j.indcrop.2015.03.040
dc.relation.referencesLv, M. Z., Fang, L., Li, P. W., & Yang, C. L. (2014). The natural rubber/zinc oxide nanocomposites: Its morphology, mechanical and thermal decomposing properties. Advanced Materials Research, 936, 394–399. https://doi.org/10.4028/www.scientific.net/AMR.936.394
dc.relation.referencesMa, H., Brennan, A., & Diamond, S. A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry, 31(9), 2099–2107. https://doi.org/10.1002/etc.1916
dc.relation.referencesMaji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5
dc.relation.referencesMam, K., & Dangtungee, R. (2019). Effects of silver nanoparticles on physical and antibacterial properties of natural rubber latex foam. Materials Today: Proceedings, 17, 1914–1920. https://doi.org/10.1016/j.matpr.2019.06.230
dc.relation.referencesMehta, N., Braun, P. X., Gendelman, I., Alibhai, A. Y., Arya, M., Duker, J. S., & Waheed, N. K. (2020). Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72358-z
dc.relation.referencesMendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. de M. R., Lopes, P. R. M., de Moraes, P. B., Montagnolli, R. N., Ferreira, H., & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-06657-y
dc.relation.referencesMesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566
dc.relation.referencesMieszawska, A. J., Fourligas, N., Georgakoudi, I., Ouhib, N. M., Belton, D. J., Perry, C. C., & Kaplan, D. L. (2010). Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 31(34), 8902–8910. https://doi.org/10.1016/j.biomaterials.2010.07.109
dc.relation.referencesMinisterio de Salud y Protección Social, I. (2017). INFECCIONES ASOCIADAS A DISPOSITIVOS. 1–31.
dc.relation.referencesMusa, A., Ahmad, M. B., Hussein, M. Z., Mohd Izham, S., Shameli, K., & Abubakar Sani, H. (2016). Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/2490906
dc.relation.referencesNagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043
dc.relation.referencesNain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125
dc.relation.referencesNarongwongwattana, S., Rittiron, R., & Hock, L. C. (2015). Rapid determination of alkalinity (ammonia content) in Para rubber latex using portable and Fourier transform-near infrared spectrometers. Journal of Near Infrared Spectroscopy, 23(3), 181–188. https://doi.org/10.1255/jnirs.1160
dc.relation.referencesNawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1–3), 157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021
dc.relation.referencesNazari, A. (2019). Superior Self-cleaning and Antimicrobial Properties on Cotton Fabrics Using Nano Titanium Dioxide along with Green Walnut Shell Dye. Fibers and Polymers, 20(12), 2503–2509. https://doi.org/10.1007/s12221-019-1135-7
dc.relation.referencesNejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., & Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 136(December 2021), 109107. https://doi.org/10.1016/j.inoche.2021.109107
dc.relation.referencesSharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851. https://doi.org/10.1016/j.msec.2016.02.032
dc.relation.referencesSharma, S. K., Verma, D. S., Khan, L. U., Kumar, S., & Khan, S. B. (2018). Handbook of Materials Characterization. Handbook of Materials Characterization, July 2020, 1–613. https://doi.org/10.1007/978-3-319-92955-2
dc.relation.referencesSheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J. L. (2019). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 123475. https://doi.org/10.1016/j.cej.2019.123475
dc.relation.referencesSingh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods, 29(4), 300–311. https://doi.org/10.1080/15376516.2018.1553221
dc.relation.referencesSirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x
dc.relation.referencesSirisomboon, P., & Hock Lim, C. (2020). Rapid Evaluation of the Properties of Natural Rubber Latex and Its Products Using Near-Infrared Spectroscopy. Organic Polymers, 1–18. https://doi.org/10.5772/intechopen.84549
dc.relation.referencesSoto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3(3 SPEC. ISS.), 351–358. https://doi.org/10.1016/j.actbio.2006.11.004
dc.relation.referencesSruthi, S., Ashtami, J., & Mohanan, P. V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials Today Chemistry, 10, 175–186. https://doi.org/10.1016/j.mtchem.2018.09.008
dc.relation.referencesStanković, A., Dimitrijević, S., & Uskoković, D. (2013). Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids and Surfaces B: Biointerfaces, 102, 21–28. https://doi.org/10.1016/j.colsurfb.2012.07.033
dc.relation.referencesStoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686. https://doi.org/10.1021/la0202374
dc.relation.referencesSuksup, R., Imkaew, C., & Smitthipong, W. (2017). Cream concentrated latex for foam rubber products. IOP Conference Series: Materials Science and Engineering, 272(1). https://doi.org/10.1088/1757-899X/272/1/012025
dc.relation.referencesSurfactant, P., & Crosslinking, C. (2021). Water-Resistant Latex Coatings : Tuning of Properties by.
dc.relation.referencesTheerthagiri, J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T., & Kim, H. S. (2019). A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology, 30(39). https://doi.org/10.1088/1361-6528/ab268a
dc.relation.referencesTofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17(3), 1341–1346. https://doi.org/10.1007/s10311-019-00859-z
dc.relation.referencesUmar, A., Chauhan, M. S., Chauhan, S., Kumar, R., Sharma, P., Tomar, K. J., Wahab, R., Al-Hajry, A., & Singh, D. (2013). Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. Journal of Biomedical Nanotechnology, 9(10), 1794–1802. https://doi.org/10.1166/jbn.2013.1751
dc.relation.referencesVaysse, L., Bonfils, F., Sainte-Beuve, J., & Cartault, M. (2012). Natural Rubber. In Polymer Science: A Comprehensive Reference, 10 Volume Set (Vol. 10, Issue January). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53349-4.00267-3
dc.relation.referencesWahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035
dc.relation.referencesWahab, R., Kim, Y. S., Mishra, A., Yun, S. Il, & Shin, H. S. (2010). Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity. Nanoscale Research Letters, 5(10), 1675–1681. https://doi.org/10.1007/s11671-010-9694-y
dc.relation.referencesWang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956
dc.relation.referencesWang, L., Zhang, S., Keatch, R., Corner, G., Nabi, G., Murdoch, S., Davidson, F., & Zhao, Q. (2019). In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. Journal of Hospital Infection, 103(1), 55–63. https://doi.org/10.1016/j.jhin.2019.02.012
dc.relation.referencesWei, F., Yu, H., Zeng, Z., Liu, H., Wang, Q., Wang, J., & Li, S. (2014). Preparation and structure characterization of hydroxylethylmethacrylate grafted natural rubber latex. Polímeros Ciência e Tecnologia, 24(3), 283–290. https://doi.org/10.4322/polimeros.2014.068
dc.relation.referencesWilliams, D. B., & Carter, C. B. (2009). Transmission Electron Microscopy. In Transmission Electron Microscopy. https://doi.org/10.1007/978-1-4757-2519-3_6
dc.relation.referencesWorld Health Organisation. (2022). Global report on infection prevention and control. http://apps.who.int/bookorders.
dc.relation.referencesZhang, W., Hu, J., Zhou, Y., Chen, Y., Yu, F., Hong, C., Chen, L., Xin, H., Hong, K., & Wang, X. (2019). Latex and a ZnO-based multi-functional material for cardiac implant-related inflammation. Biomaterials Science, 7(10), 4186–4194. https://doi.org/10.1039/c9bm00952c
dc.relation.referencesZhao, D. L., Wang, X. X., Zeng, X. W., Xia, Q. S., & Tang, J. T. (2009). Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. Journal of Alloys and Compounds, 477(1–2), 739–743. https://doi.org/10.1016/j.jallcom.2008.10.104
dc.relation.referencesZhu, Y., Fu, H., Ding, J., Li, H., Zhang, M., Zhang, J., & Liu, Y. (2018). Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Applied Optics, 57(27), 7924. https://doi.org/10.1364/ao.57.007924
dc.relation.referencesZou, L., Phule, A. D., Sun, Y., Zhu, T. Y., Wen, S., & Zhang, Z. X. (2020). Superhydrophobic and superoleophilic polyethylene aerogel coated natural rubber latex foam for oil-water separation application. Polymer Testing, 85(January), 106451. https://doi.org/10.1016/j.polymertesting.2020.106451
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembOxido de cinc
dc.subject.proposalLátex
dc.subject.proposalÓxido de zinc
dc.subject.proposalCompuesto
dc.subject.proposalActividad antibacteriana
dc.subject.proposalLatex
dc.subject.proposalZinc oxide
dc.subject.proposalCompound
dc.subject.proposalAntibacterial activity
dc.title.translatedDevelopment and evaluation of the physicochemical and antibacterial properties of latex/zinc oxide compounds for applications in biomedical engineering
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología
dc.contributor.orcidDurango Giraldo, Geraldine [0000-0002-7799-4790]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito