Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBuitrago Sierra, Robison
dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.authorzapata Hernandez, Juan Camilo
dc.date.accessioned2023-01-23T20:50:04Z
dc.date.available2023-01-23T20:50:04Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83074
dc.descriptionilustraciones, diagramas
dc.description.abstractEl uso de los PENG (nanogeneradores piezoeléctricos) como sensores ha causado mucho interés en los últimos años en diversas áreas de la ingeniería y medicina. Para desarrollar estos dispositivos es necesario usar materiales piezoeléctricos. Dentro de los materiales piezoeléctricos que pueden ser sintetizados, se encuentra el titanato circonato de plomo (PZT), uno de los materiales más usados; sin embargo, la presencia de plomo y sus impactos tanto ambientales como en la salud humana, han incrementado el interés por materiales que no contengan este elemento en su composición. El óxido de zinc (ZnO) es considerado una alternativa, ya que no es tóxico y puede estar sometido a grandes deformaciones mecánicas durante periodos prolongados, siendo ambas características benéficas para el desarrollo de estos dispositivos. Sin embargo, el valor d33 del PZT (~117 pC/N) es superior al ZnO (~12 pC/Ny esto sugiere que la salida eléctrica de los dispositivos basados en ZnO podría ser menor. La estrategia más empleada para incrementar el coeficiente d33 y la salida eléctrica ha sido el uso de dopantes y el efecto de la morfología, sin embargo, el efecto de estos parametrossobre la salida eléctrica ha sido poco estudiado. Adicionalmente, diversos trabajos usan sistemas mecánicos poco robustos para la evaluación de la salida eléctrica de los dispositivos PENG y podrían inducir errores durante el análisis. En este trabajo se sintetizaron dos morfologías de óxido de zinc con el fin de desarrollar un dispositivo que podría ser usado como sensor. Adicionalmente, se propuso una metodología de ensayo de este tipo de dispositivos con el fin de estandarizar el método. Los análisis SEM evidenciaron la obtención de partículas con morfología de barras y hojas. El análisis DRX conformó que ambos tipos de partículas evidencian la fase cristalina Wurtzita, la más común en el ZnO. Mediante análisis TGA se evaluó la cantidad de ZnO presente en los dos compuestos desarrollados, la diferencia entre ambos fue de 0.02 %. Adicionalmente, se propuso un sistema mecánico para realizar los ensayos de salida eléctrica, el cual consiste de una máquina universal de ensayos adaptada para este fin. El sistema entrega la fuerza aplicada durante cada ciclo y de esta manera se puede normalizar la salida eléctrica. Respecto a la salida de voltaje del dispositivo, el compuesto basado en barras de ZnO evidenció una mayor salida en comparación con el compuesto basado en hojas. Esto podría deberse a la formación de una red conductora que favorece la transferencia de carga dentro del compuesto. (Texto tomado de la fuente)
dc.description.abstractPENGs (Piezoelectric nanogenerators) used as sensors have caused great interest in recent years across several areas of engineering and medicine. The development of these devices requires the use of piezoelectric materials. Several piezoelectric materials that can be synthesized, the lead zirconate titanate (PZT), is the most used materials; however, the presence of lead and its environmental and human impacts have increased interest in materials that do not contain this element in their composition. Zinc oxide (ZnO) is considered an alternative since it is not toxic and can be subjected to large mechanical deformations for long periods, both features being beneficial for the development of these devices. However, the d33 value of PZT (~117 pC/N) is higher than ZnO (~12 pC/N), this suggest that the electrical output of ZnO-based devices could be lower. The most used strategy has been the dopants and the effect of morphology on electrical output has been little studied. Additionally, several works use less robust mechanical systems for the evaluation of the electrical output of PENG devices and could induce errors during the analysis. In this work, two morphologies of zinc oxide were synthesized in order to develop a device that could be used as a sensor. Additionally, a testing methodology for this type of device was proposed in order to standardize the testing method. The SEM microgaph evidenced the obtaining of particles with morphology of rods and sheets. The XRD analysis confirmed that both types of particles evidenced the Wurtzite crystalline phase, the most common in ZnO. Through TGA analysis, the amount of ZnO present in the two developed compounds was evaluated, the difference between the boths was 0.02%. Additionally, a mechanical system was proposed to perform the electrical output tests. This system consists of a universal testing machine adapted for this purpose. The system delivers the force applied during each cycle and in this way the electrical output can be normalized. Regarding the voltage output of the device, the ZnO rod-based composite exhibited a higher output compared to the sheet-based composite. This could be due to the formation of a conducting network that favors charge transfer within the compound.
dc.format.extentxxii, 109 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDesarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupMateriales Avanzados y Energía MATyER
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaNuevos materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbd El-Ghaffar, M. A., Shaffei, K. A., Fouad Zikry, A. A., Mohamed, M. B., & Marzouq, K. A. G. (2016). Novel conductive nano-composite ink based on poly aniline, silver nanoparticles and nitrocellulose. Egyptian Journal of Chemistry, 59(4), 429–443. https://doi.org/10.21608/ejchem.2016.1101
dc.relation.referencesAcosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., & Rossetti, G. A. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. 041305.
dc.relation.referencesAhmad, M., Iqbal, M. A., Kiely, J., Luxton, R., & Jabeen, M. (2017). Enhanced output voltage generation via ZnO nanowires (50 nm): Effect of diameter thinning on voltage enhancement. Journal of Physics and Chemistry of Solids, 104, 281–285. https://doi.org/10.1016/j.jpcs.2017.01.006
dc.relation.referencesAl-Heniti, S., Umar, A., & Zaki, H. M. (2015). Synthesis and characterization of zinc oxide nanosheets for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 15(12), 9954–9959. https://doi.org/10.1166/jnn.2015.10693
dc.relation.referencesAlAhzm, A. M., Alejli, M. O., Ponnamma, D., Elgawady, Y., & Al-Maadeed, M. A. A. (2021). Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. Journal of Materials Science: Materials in Electronics, 32(11), 14610–14622. https://doi.org/10.1007/s10854-021-06020-3
dc.relation.referencesAlamer, F. A. (2018). Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3), 2075–2082. https://doi.org/10.1007/s10570-018-1667-9
dc.relation.referencesAlhashmi Alamer, F. (2017). A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 702, 266–273. https://doi.org/10.1016/j.jallcom.2017.01.001
dc.relation.referencesAli, A., Nguyen, N. H. A., Baheti, V., Ashraf, M., Militky, J., Mansoor, T., Noman, M. T., & Ahmad, S. (2018). Electrical conductivity and physiological comfort of silver coated cotton fabrics. Journal of the Textile Institute, 109(5), 620–628. https://doi.org/10.1080/00405000.2017.1362148
dc.relation.referencesAlshehri, N. A., Lewis, A. R., Pleydell-Pearce, C., & Maffeis, T. G. G. (2018). Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 22(5), 538–545. https://doi.org/10.1016/j.jscs.2017.09.004
dc.relation.referencesAmin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/269692
dc.relation.referencesAriosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026
dc.relation.referencesAskari, H., Hashemi, E., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032
dc.relation.referencesAugustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., Thomas, S., Menu, P., Rouxel, D., Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., & Tran, N. (2022). Electrospun poly ( vinylidene fluoride-trifluoroethylene )/ zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation To cite this version : HAL Id : hal-01712240.
dc.relation.referencesBabick, F., Mielke, J., Wohlleben, W., Weigel, S., & Hodoroaba, V. D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 18(6), 1–40. https://doi.org/10.1007/s11051-016-3461-7
dc.relation.referencesBai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250–257. https://doi.org/10.1016/j.pnsc.2012.04.011
dc.relation.referencesBairagi, S., & Ali, S. W. (2019). A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. European Polymer Journal, 116(April), 554–561. https://doi.org/10.1016/j.eurpolymj.2019.04.043
dc.relation.referencesBairagi, S., & Ali, S. W. (2020a). A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. International Journal of Energy Research, 44(7), 5545–5563. https://doi.org/10.1002/er.5306
dc.relation.referencesBairagi, S., & Ali, S. W. (2020b). Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Organic Electronics, 78(October 2019), 105547. https://doi.org/10.1016/j.orgel.2019.105547
dc.relation.referencesBalan, V., Mihai, C. T., Cojocaru, F. D., Uritu, C. M., Dodi, G., Botezat, D., & Gardikiotis, I. (2019). Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials, 12(18), 1–40. https://doi.org/10.3390/ma12182884
dc.relation.referencesBandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(February), 100223. https://doi.org/10.1016/j.scp.2020.100223
dc.relation.referencesBasnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures and Nano-Objects, 22, 100426. https://doi.org/10.1016/j.nanoso.2020.100426
dc.relation.referencesBergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers. https://doi.org/10.1016/b978-0-323-31150-2.00002-9
dc.relation.referencesBhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687
dc.relation.referencesBhatia, D., Sharma, H., Meena, R. S., & Palkar, V. R. (2016). A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sensing and Bio-Sensing Research, 9, 45–52. https://doi.org/10.1016/j.sbsr.2016.05.008
dc.relation.referencesBhunia, R., Ghosh, B., Ghosh, D., Hussain, S., Bhar, R., & Pal, A. K. (2015). Free-standing and flexible nano-ZnO/PVDF composite thin films: Impedance spectroscopic studies. Polymers for Advanced Technologies, 26(9), 1176–1183. https://doi.org/10.1002/pat.3551
dc.relation.referencesBi, H., Meng, S., Li, Y., Guo, K., Chen, Y., Kong, J., Yang, P., Zhong, W., & Liu, B. (2006). Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab on a Chip, 6(6), 769–775. https://doi.org/10.1039/b600326e
dc.relation.referencesBoppella, R., Anjaneyulu, K., Basak, P., & Manorama, S. V. (2013). Facile synthesis of face oriented ZnO crystals: Tunable polar facets and shape induced enhanced photocatalytic performance. Journal of Physical Chemistry C, 117(9), 4597–4605. https://doi.org/10.1021/jp311443s
dc.relation.referencesBoukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9), e02477. https://doi.org/10.1016/j.heliyon.2019.e02477
dc.relation.referencesBriscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P. M., Cain, M., & Dunn, S. (2013). Measurement techniques for piezoelectric nanogenerators. Energy and Environmental Science, 6(10), 3035–3045. https://doi.org/10.1039/c3ee41889h
dc.relation.referencesBruno, T. J. (1999). Sampling accessories for infrared spectrometry. Applied Spectroscopy Reviews, 34(1–2), 91–120. https://doi.org/10.1081/ASR-100100840
dc.relation.referencesCano-Raya, C., Denchev, Z. Z., Cruz, S. F., & Viana, J. C. (2019). Chemistry of solid metal-based inks and pastes for printed electronics – A review. Applied Materials Today, 15, 416–430. https://doi.org/10.1016/j.apmt.2019.02.012
dc.relation.referencesCao, F., Li, C., Li, M., Li, H., Huang, X., & Yang, B. (2018). Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science, 447, 173–181. https://doi.org/10.1016/j.apsusc.2018.03.217
dc.relation.referencesCao, X. T., Bach, L. G., Islam, M. R., & Lim, K. T. (2015). A simple synthesis, characterization, and properties of poly(methyl methacrylate) grafted CdTe nanocrystals. Molecular Crystals and Liquid Crystals, 618(1), 111–119. https://doi.org/10.1080/15421406.2015.1076305
dc.relation.referencesCeylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. https://doi.org/10.1007/s10570-013-9936-0
dc.relation.referencesChamakh, M. M., Mrlík, M., Leadenham, S., Bažant, P., Osička, J., Almaadeed, M. A. A., Erturk, A., & Kuřitka, I. (2020). Vibration sensing systems based on poly(Vinylidene fluoride) and microwave-assisted synthesized zno star-like particles with controllable structural and physical properties. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122345
dc.relation.referencesChand, N., & Fahim, M. (2020). Tribology of Natural Fiber Polymer Composites (2nd Editio, Vol. 148). https://doi.org/10.1016/C2018-0-04814-8
dc.relation.referencesChen, C., Bai, Z., Cao, Y., Dong, M., Jiang, K., Zhou, Y., Tao, Y., Gu, S., Xu, J., Yin, X., & Xu, W. (2020). Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. https://doi.org/10.1016/j.compscitech.2020.108100
dc.relation.referencesChen, F., Jing, M. xiang, Yang, H., Yuan, W. yong, Liu, M. quan, Ji, Y. sheng, Hussain, S., & Shen, X. qian. (2021). Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27(3), 1101–1111. https://doi.org/10.1007/s11581-020-03891-0
dc.relation.referencesChen, J., Nabulsi, N., Wang, W., Kim, J. Y., Kwon, M. K., & Ryou, J. H. (2019). Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation. Applied Energy, 255(June). https://doi.org/10.1016/j.apenergy.2019.113856
dc.relation.referencesCheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022a). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(February), 106703. https://doi.org/10.1016/j.mssp.2022.106703
dc.relation.referencesCheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022b). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(March), 106703. https://doi.org/10.1016/j.mssp.2022.106703
dc.relation.referencesCheon, J., Lee, J., & Kim, J. (2012). Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films, 520(7), 2639–2643. https://doi.org/10.1016/j.tsf.2011.11.021
dc.relation.referencesChoi, D., & Park, Y. T. (2019). Nanogenerators in Korea. In Nanogenerators in Korea. https://doi.org/10.3390/books978-3-03897-623-3
dc.relation.referencesChowdhury, A. R., Jaksik, J., Hussain, I., Longoria, R., Faruque, O., Cesano, F., Scarano, D., Parsons, J., & Uddin, M. J. (2019). Multicomponent nanostructured materials and interfaces for efficient piezoelectricity. Nano-Structures and Nano-Objects, 17, 148–184. https://doi.org/10.1016/j.nanoso.2018.12.002
dc.relation.referencesChristian, B., Volk, J., Lukàcs, I. E., Sautieff, E., Sturm, C., Graillot, A., Dauksevicius, R., O’Reilly, E., Ambacher, O., & Lebedev, V. (2016). Piezo-force and Vibration Analysis of ZnO Nanowire Arrays for Sensor Application. Procedia Engineering, 168, 1192–1195. https://doi.org/10.1016/j.proeng.2016.11.406
dc.relation.referencesCoates, J. (2004). Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 1–23. http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdf
dc.relation.referencesCosta, S. V., Azana, N. T., Shieh, P., & Mazon, T. (2018). Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceramics International, 44(11), 12174–12179. https://doi.org/10.1016/j.ceramint.2018.03.272
dc.relation.referencesCovaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors (Switzerland), 20(12), 1–37. https://doi.org/10.3390/s20123512
dc.relation.referencesCrossley, S., & Kar-Narayan, S. (2015). Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, 26(34). https://doi.org/10.1088/0957-4484/26/34/344001
dc.relation.referencesDeng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., & Yang, W. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516–525. https://doi.org/10.1016/j.nanoen.2018.10.049
dc.relation.referencesDong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1–43. https://doi.org/10.1002/adma.201902549
dc.relation.referencesDossin Zanrosso, C., Piazza, D., & Lansarin, M. A. (2020). PVDF/ZnO composite films for photocatalysis: A comparative study of solution mixing and melt blending methods. Polymer Engineering and Science, 60(6), 1146–1157. https://doi.org/10.1002/pen.25368
dc.relation.referencesDukali, R. M., Radovic, I. M., Stojanovic, D. B., Sevic, D. M., Radojevic, V. J., Jocic, D. M., & Aleksic, R. R. (2014). Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers. Journal of the Serbian Chemical Society, 79(7), 867–880. https://doi.org/10.2298/JSC131014011D
dc.relation.referencesElton N. Kaufmann. (2003). Characterization of materials.
dc.relation.referencesErer, K. S. (2007). Adaptive usage of the Butterworth digital filter. Journal of Biomechanics, 40(13), 2934–2943. https://doi.org/10.1016/j.jbiomech.2007.02.019
dc.relation.referencesFang, L., Wu, W., Huang, X., He, J., & Jiang, P. (2015). Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Composites Science and Technology, 107, 67–74. https://doi.org/10.1016/j.compscitech.2014.12.009
dc.relation.referencesFangueiro, R., & Soutinho, F. (2011). Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095583.1.62
dc.relation.referencesFateh, T., Richard, F., Rogaume, T., & Joseph, P. (2016). Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. Journal of Analytical and Applied Pyrolysis, 120, 423–433. https://doi.org/10.1016/j.jaap.2016.06.014
dc.relation.referencesFeng, W., Wang, B., Huang, P., Wang, X., Yu, J., & Wang, C. (2016). Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine(HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Materials Science in Semiconductor Processing, 41, 462–469. https://doi.org/10.1016/j.mssp.2015.10.017
dc.relation.referencesFonoberov, V. A., & Balandin, A. A. (2006). ZnO Quantum Dots: Physical Properties and Optoelectronic Applications. Journal of Nanoelectronics and Optoelectronics, 1(1), 19–38. https://doi.org/10.1166/jno.2006.002
dc.relation.referencesFraga, M. A., Furlan, H., Pessoa, R. S., & Massi, M. (2014). Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview. Microsystem Technologies, 20(1), 9–21. https://doi.org/10.1007/s00542-013-2029-z
dc.relation.referencesGaan, S., & Sun, G. (2009). Effect of nitrogen additives on thermal decomposition of cotton. Journal of Analytical and Applied Pyrolysis, 84(1), 108–115. https://doi.org/10.1016/j.jaap.2008.12.004
dc.relation.referencesGad, S. E., & Sullivan, D. W. (2014). Methyl Ethyl Ketone. In Encyclopedia of Toxicology: Third Edition (Third Edit, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00879-4
dc.relation.referencesGerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556f
dc.relation.referencesGhasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020–15026. https://doi.org/10.1039/c7ra01293d
dc.relation.referencesGodfrey, D., Nirmal, D., Arivazhagan, L., Rathes Kannan, R., Issac Nelson, P., Rajesh, S., Vidhya, B., & Mohankumar, N. (2020). A novel ZnPc nanorod derived piezoelectric nanogenerator for energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 118, 113931. https://doi.org/10.1016/j.physe.2019.113931
dc.relation.referencesGoel, S., & Kumar, B. (2020). A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. Journal of Alloys and Compounds, 816, 152491. https://doi.org/10.1016/j.jallcom.2019.152491
dc.relation.referencesGolubevas, R., Zarkov, A., Alinauskas, L., Stankeviciute, Z., Balciunas, G., Garskaite, E., & Kareiva, A. (2017). Fabrication and investigation of high-quality glass-ceramic (GC)-polymethyl methacrylate (PMMA) composite for regenerative medicine. RSC Advances, 7(53), 33558–33567. https://doi.org/10.1039/c7ra05188c
dc.relation.referencesgowayed, Y. (2013). Types of fiber and fiber arrangement in fi ber-reinforced polymer (FRP) composites. In N. Uddin (Ed.), Developments in fiber-reinforced polymer (FRP) composites for civil engineering (pp. 3–17).
dc.relation.referencesGulia, S., & Kakkar, R. (2013). Zno quantum dots for biomedical applications. Advanced Materials Letters, 4(12), 876–887. https://doi.org/10.5185/amlett.2013.3440
dc.relation.referencesHe, Q., Li, X., Zhang, J., Zhang, H., & Briscoe, J. (2021). P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 85(February), 105938. https://doi.org/10.1016/j.nanoen.2021.105938
dc.relation.referencesHomayounfar, S. Z., & Andrew, T. L. (2020). Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 25(1), 9–24. https://doi.org/10.1177/2472630319891128
dc.relation.referencesHou, Q., Zhu, L., Chen, H., Liu, H., & Li, W. (2013). Highly regular and ultra-thin porous ZnO nanosheets: An indirect electrodeposition method using acetate-containing precursor and their application in quantum dots-sensitized solar cells. Electrochimica Acta, 94(3), 72–79. https://doi.org/10.1016/j.electacta.2013.01.122
dc.relation.referencesHsu, C. L., & Chen, K. C. (2012). Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. Journal of Physical Chemistry C, 116(16), 9351–9355. https://doi.org/10.1021/jp301527y
dc.relation.referencesHu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55(November 2018), 288–304. https://doi.org/10.1016/j.nanoen.2018.10.053
dc.relation.referencesIbrahim, N., Akindoyo, J. O., & Mariatti, M. (2022). Recent development in silver-based ink for flexible electronics. Journal of Science: Advanced Materials and Devices, 7(1), 100395. https://doi.org/10.1016/j.jsamd.2021.09.002
dc.relation.referencesInamuddin, & Abbas Kashmery, H. (2019). Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-46305-6
dc.relation.referencesIndira, S. S., Vaithilingam, C. A., Oruganti, K. S. P., Mohd, F., & Rahman, S. (2019). Nanogenerators as a sustainable power source: state of art, applications, and challenges. In Nanomaterials (Vol. 9, Issue 5). https://doi.org/10.3390/nano9050773
dc.relation.referencesIndolia, A. P., & Gaur, M. S. (2013). Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. Journal of Thermal Analysis and Calorimetry, 113(2), 821–830. https://doi.org/10.1007/s10973-012-2834-0
dc.relation.referencesIo, W. F., Wong, M. C., Pang, S. Y., Zhao, Y., Ding, R., Guo, F., & Hao, J. (2022). Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators. Nano Energy, 99(May), 107371. https://doi.org/10.1016/j.nanoen.2022.107371
dc.relation.referencesJain, G., Rocks, C., Maguire, P., & Mariotti, D. (2020). One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots. Nanotechnology, 31(21). https://doi.org/10.1088/1361-6528/ab72b5
dc.relation.referencesJaved, Z., Rafiq, L., Nazeer, M. A., Siddiqui, S., Ramzan, M. B., Khan, M. Q., & Naeem, M. S. (2022). Piezoelectric nanogenerator for bio-mechanical strain measurement. Beilstein Journal of Nanotechnology, 13, 192–200. https://doi.org/10.3762/BJNANO.13.14
dc.relation.referencesJenkins, K., Kelly, S., Nguyen, V., Wu, Y., & Yang, R. (2018). Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy, 51, 317–323. https://doi.org/10.1016/j.nanoen.2018.06.061
dc.relation.referencesJia, G., Lu, X., Hao, B., Wang, X., Li, Y., & Yao, J. (2013). Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode. RSC Advances, 3(31), 12826–12830. https://doi.org/10.1039/c3ra23261a
dc.relation.referencesJiang, H., Wang, H., & Wang, X. (2011). Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Applied Surface Science, 257(15), 6991–6995. https://doi.org/10.1016/j.apsusc.2011.03.053
dc.relation.referencesJiang, Y., Deng, Y., & Qi, H. (2021). Microstructure dependence of output performance in flexible pvdf piezoelectric nanogenerators. Polymers, 13(19). https://doi.org/10.3390/polym13193252
dc.relation.referencesJiao, P. (2021). Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 88, 106227. https://doi.org/10.1016/j.nanoen.2021.106227
dc.relation.referencesJin, C., Hao, N., Xu, Z., Trase, I., Nie, Y., Dong, L., Closson, A., Chen, Z., & Zhang, J. X. J. (2020). Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators, A: Physical, 305, 111912. https://doi.org/10.1016/j.sna.2020.111912
dc.relation.referencesJoe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013
dc.relation.referencesJung, D. Y., Baek, S. H., Hasan, M. R., & Park, I. K. (2015). Performance-enhanced ZnO nanorod-based piezoelectric nanogenerators on double-sided stainless steel foil. Journal of Alloys and Compounds, 641, 163–169. https://doi.org/10.1016/j.jallcom.2015.03.066
dc.relation.referencesKammel, R. S., & Sabry, R. S. (2019). Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators. Journal of Science: Advanced Materials and Devices, 4(3), 420–424. https://doi.org/10.1016/j.jsamd.2019.08.002
dc.relation.referencesKamyshny, A., & Magdassi, S. (2014). Conductive nanomaterials for printed electronics. Small, 10(17), 3515–3535. https://doi.org/10.1002/smll.201303000
dc.relation.referencesKarmakar, S. R. (1998). Application of biotechnology in the pre-treatment processes of textiles. In Colourage (Vol. 45, Issue ANNUAL).
dc.relation.referencesKarthikeyan, C., Arun, L., Hameed, A. S. H., Gopinath, K., Umaralikahan, L., Vijayaprasath, G., & Malathi, P. (2019). Structural, optical, thermal and magnetic properties of nickel calcium and nickel iron co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-019-01160-z
dc.relation.referencesKasaw, E., Haile, A., & Getnet, M. (2020). Conductive Coatings of Cotton Fabric Consisting of. Coatings, 1–17.
dc.relation.referencesKaur, J., & Singh, H. (2020). Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceramics International, 46(11), 19401–19407. https://doi.org/10.1016/j.ceramint.2020.04.283
dc.relation.referencesKawamura, G., Alvarez, S., Stewart, I. E., Catenacci, M., Chen, Z., & Ha, Y. C. (2015). Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep18333
dc.relation.referencesKim, H. G., Kim, E. H., & Kim, S. S. (2021). Growth of zno nanorods on ito film for piezoelectric nanogenerators. Materials, 14(6). https://doi.org/10.3390/ma14061461
dc.relation.referencesKim, M., & Fan, J. (2021). Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Advanced Fiber Materials, 3(3), 160–171. https://doi.org/10.1007/s42765-021-00068-w
dc.relation.referencesKim, M., Wu, Y. S., Kan, E. C., & Fan, J. (2018). Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers, 10(7). https://doi.org/10.3390/polym10070745
dc.relation.referencesKolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
dc.relation.referencesKról, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249, 37–52. https://doi.org/10.1016/j.cis.2017.07.033
dc.relation.referencesKumar, P., Yadav, A. K., Joshi, A. G., Bhattacharyya, D., Jha, S. N., & Pandey, P. C. (2018). Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Materials Characterization, 142(December 2017), 593–601. https://doi.org/10.1016/j.matchar.2018.06.024
dc.relation.referencesKumar Prajapati, G., Katla, R., & Singh, B. (2021). Effect of variation of MoS2concentration on the piezoelectric performance of PVDF-MoS2based flexible nanogenerator. Materials Today: Proceedings, 47, 4861–4865. https://doi.org/10.1016/j.matpr.2021.06.084
dc.relation.referencesKurort, T., Sekiguchi, Y., Ogawa, T., Sawaguchi, T., Ikemusa, T., & Honda, T. (1977). Thermal Degradation of Polystyrene. Nippon Kagaku Kaishi, 1977(6), 894–901. https://doi.org/10.1246/nikkashi.1977.894
dc.relation.referencesKwon, Y. H., Kim, D. H., Kim, H. K., & Nah, J. (2015). Phosphorus-doped zinc oxide p-n homojunction thin film for flexible piezoelectric nanogenerators. Nano Energy, 18, 126–132. https://doi.org/10.1016/j.nanoen.2015.10.009
dc.relation.referencesLee, E., Park, J., Yim, M., Jeong, S., & Yoon, G. (2014). High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films. Applied Physics Letters, 104(21), 1–6. https://doi.org/10.1063/1.4880935
dc.relation.referencesLee, Y., Kim, S., Kim, D., Lee, C., Park, H., & Lee, J. H. (2020). Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, 509, 145328. https://doi.org/10.1016/j.apsusc.2020.145328
dc.relation.referencesLeong, S. S., Ng, W. M., Lim, J. K., & Yeap, S. P. (2018). Handbook of Materials Characterization. https://doi.org/10.1007/978-3-319-92955-2_3
dc.relation.referencesLi, G. Y., Zhang, H. Di, Guo, K., Ma, X. S., & Long, Y. Z. (2020). Fabrication and piezoelectric-pyroelectric properties of electrospun PVDF/ZnO composite fibers. Materials Research Express, 7(9). https://doi.org/10.1088/2053-1591/abb264
dc.relation.referencesLi, M., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P. W. M., & De Leeuw, D. M. (2013). Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. Journal of Materials Chemistry C, 1(46), 7695–7702. https://doi.org/10.1039/c3tc31774a
dc.relation.referencesLi, T., Li, Y. T., Qin, W. W., Zhang, P. P., Chen, X. Q., Hu, X. F., & Zhang, W. (2015). Piezoelectric Size Effects in a Zinc Oxide Micropillar. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1081-2
dc.relation.referencesLi, Wanxi, Qi, H., Guo, F., Niu, X., Du, Y., & Chen, Y. (2019). NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances, 9(51), 29959–29966. https://doi.org/10.1039/c9ra05844c
dc.relation.referencesLi, Weiwei, Meredov, A., & Shamim, A. (2019). Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 3(1). https://doi.org/10.1038/s41528-019-0063-3
dc.relation.referencesLi, Y., Feng, J., Zhao, Y., Wang, J., & Xu, C. (2022). Ultrathin flexible linear-piezoelectric ZnO thin film actuators: Tuning the piezoelectric responses by in-plane epitaxial strain. Applied Surface Science, 599(December 2021), 153969. https://doi.org/10.1016/j.apsusc.2022.153969
dc.relation.referencesLiao, Y., Zhang, R., & Qian, J. (2019). Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Advances, 9(50), 29154–29172. https://doi.org/10.1039/c9ra05954g
dc.relation.referencesLiu, J., Yang, B., Lu, L., Wang, X., Li, X., Chen, X., & Liu, J. (2020). Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sensors and Actuators, A: Physical, 303(July), 111796. https://doi.org/10.1016/j.sna.2019.111796
dc.relation.referencesLiu, M., Chang, J., Sun, J., & Gao, L. (2013). Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor. Electrochimica Acta, 107, 9–15. https://doi.org/10.1016/j.electacta.2013.05.122
dc.relation.referencesLiu, Yangsi, & Gao, W. (2015). Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. Journal of Alloys and Compounds, 629, 84–91. https://doi.org/10.1016/j.jallcom.2014.12.139
dc.relation.referencesLiu, Yiming, Wang, L., Zhao, L., Yu, X., & Zi, Y. (2020). Recent progress on flexible nanogenerators toward self‐powered systems. InfoMat, 2(2), 318–340. https://doi.org/10.1002/inf2.12079
dc.relation.referencesLiu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2017). Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 32(6). https://doi.org/10.1088/1361-6641/aa68d1
dc.relation.referencesLiu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2019). Flexible Piezoelectric Nanogenerator for Wearable Self-powered Respiration Active Sensor and Healthcare Monitoring. Materials Research Express, 0–12.
dc.relation.referencesLu, L., Ding, W., Liu, J., & Yang, B. (2020a). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(June), 105251. https://doi.org/10.1016/j.nanoen.2020.105251
dc.relation.referencesLu, L., Ding, W., Liu, J., & Yang, B. (2020b). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(July), 105251. https://doi.org/10.1016/j.nanoen.2020.105251
dc.relation.referencesLuo, J. T., Yang, Y. C., Zhu, X. Y., Chen, G., Zeng, F., & Pan, F. (2010). Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Physical Review B - Condensed Matter and Materials Physics, 82(1). https://doi.org/10.1103/PhysRevB.82.014116
dc.relation.referencesLv, J., Zhang, L., Zhong, Y., Sui, X., Wang, B., Chen, Z., Feng, X., Xu, H., & Mao, Z. (2019). High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 74(May), 59–68. https://doi.org/10.1016/j.orgel.2019.06.027
dc.relation.referencesMa, X., Zhang, F., Han, K., Yang, B., & Song, G. (2015). Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 160, 43–49. https://doi.org/10.1016/j.fuel.2015.07.079
dc.relation.referencesMahalakshmi, S., Hema, N., & Vijaya, P. P. (2020). In Vitro Biocompatibility and Antimicrobial activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route— A Comparative Study. BioNanoScience, 10(1), 112–121. https://doi.org/10.1007/s12668-019-00698-w
dc.relation.referencesMahanty, B., Ghosh, S. K., Jana, S., Mallick, Z., Sarkar, S., & Mandal, D. (2021). ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy and Fuels, 5(17), 4389–4400. https://doi.org/10.1039/d1se00444a
dc.relation.referencesMahapatra, A., Ajimsha, R. S., & Misra, P. (2022). Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. Journal of Alloys and Compounds, 913, 165277. https://doi.org/10.1016/j.jallcom.2022.165277
dc.relation.referencesManjula, Y., Kumar, R. R., Raju, P. M. S., Kumar, G. A., Rao, T. V., Akshaykranth, A., & Suparaja, P. (2020). Piezoelectric Flexible Nanogenerator Based on ZnO Nanosheet Networks for Mechanical a Department. Chemical Physics, 110699. https://doi.org/10.1016/j.chemphys.2020.110699
dc.relation.referencesManoharan, C., Sutharsan, P., Venkatachalapathy, R., Vasanthi, S., Dhanapandian, S., & Veeramuthu, K. (2015). Spectroscopic and rock magnetic studies on some ancient Indian pottery samples. Egyptian Journal of Basic and Applied Sciences, 2(1), 39–49. https://doi.org/10.1016/j.ejbas.2014.11.001
dc.relation.referencesMatin Nazar, A., Egbe, K. J. I., Jiao, P., Wang, Y., & Yang, Y. (2021). Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Materials, 9(9). https://doi.org/10.1063/5.0064300
dc.relation.referencesMayeen, A., & Kalarikkal, N. (2018). Development of ceramic-controlled piezoelectric devices for biomedical applications. In Fundamental Biomaterials: Ceramics. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102203-0.00002-0
dc.relation.referencesMedina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., Guisbiers, G., & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186
dc.relation.referencesMeng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., Zhang, J., Jia, S., Zhao, J., & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1(33), 9469–9476. https://doi.org/10.1039/c3ta10306d
dc.relation.referencesMesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566
dc.relation.referencesMishra, S., Supraja, P., Jaiswal, V. V., Sankar, P. R., Kumar, R. R., Prakash, K., Kumar, K. U., & Haranath, D. (2021). Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Engineering Research Express, 3(4). https://doi.org/10.1088/2631-8695/ac34
dc.relation.referencesMo, L., Guo, Z., Yang, L., Zhang, Q., Fang, Y., Xin, Z., Chen, Z., Hu, K., Han, L., & Li, L. (2019). Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092124
dc.relation.referencesMo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65(May), 104033. https://doi.org/10.1016/j.nanoen.2019.104033
dc.relation.referencesMokhatab, S., & Poe, W. A. (2012). Process Control Fundamentals. Handbook of Natural Gas Transmission and Processing, 473–509. https://doi.org/10.1016/b978-0-12-386914-2.00014-5
dc.relation.referencesMusbah, S. S., Radojevic, V. J., Borna, N. V., Stojanovic, D. B., Dramicanin, M. D., Marinkovic, A. D., & Aleksic, R. R. (2011). PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties. Journal of the Serbian Chemical Society, 76(8), 1153–1161. https://doi.org/10.2298/JSC100330094M
dc.relation.referencesNagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043
dc.relation.referencesNaghdi, S., Rhee, K. Y., Hui, D., & Park, S. J. (2018). A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings, 8(8). https://doi.org/10.3390/coatings8080278
dc.relation.referencesNain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125
dc.relation.referencesNair, K. S., Varghese, H., Chandran, A., Hareesh, U. N. S., Chouprik, A., Spiridonov, M., & Surendran, K. P. (2022). Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite. Materials Today Communications, 31(February), 103291. https://doi.org/10.1016/j.mtcomm.2022.103291
dc.relation.referencesNarita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743
dc.relation.referencesNaveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. Journal of Nanomaterials, 2017(Table 1). https://doi.org/10.1155/2017/8510342
dc.relation.referencesNayan, M. B., Jagadish, K., Abhilash, M. R., Namratha, K., & Srikantaswamy, S. (2019). Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M<sub>x</sub>O<sub>y</sub> Heterostructures. Journal of Water Resource and Protection, 11(03), 357–370. https://doi.org/10.4236/jwarp.2019.113021
dc.relation.referencesNikolaidis, A. K., & Achilias, D. S. (2018). Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/ organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers, 10(5). https://doi.org/10.3390/polym10050491
dc.relation.referencesOmidi, M., Fatehinya, A., Farahani, M., Akbari, Z., Shahmoradi, S., Yazdian, F., Tahriri, M., Moharamzadeh, K., Tayebi, L., & Vashaee, D. (2017). Characterization of biomaterials. In Biomaterials for Oral and Dental Tissue Engineering. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100961-1.00007-4
dc.relation.referencesOno, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133–166. https://doi.org/10.1016/S0926-860X(96)00402-4
dc.relation.referencesOpoku, H., Nketia-Yawson, B., Shin, E. S., & Noh, Y. Y. (2017). Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors. Organic Electronics, 41, 198–204. https://doi.org/10.1016/j.orgel.2016.11.004
dc.relation.referencesOutline, C. (2019). Methods for Assessing Surface Cleanliness. In Developments in Surface Contamination and Cleaning, Volume 12 (Vol. 12). https://doi.org/10.1016/b978-0-12-816081-7.00003-6
dc.relation.referencesOuyang, J. (2018). Recent advances of intrinsically conductive polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 34(11), 1211–1220. https://doi.org/10.3866/PKU.WHXB201804095
dc.relation.referencesÖztürk, S., Klnç, N., Taşaltn, N., & Öztürk, Z. Z. (2012). Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(6), 1062–1065. https://doi.org/10.1016/j.physe.2011.01.015
dc.relation.referencesParangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-19082-3
dc.relation.referencesParangusan, H., Ponnamma, D., & Almaadeed, M. A. A. (2018). Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter, 14(43), 8803–8813. https://doi.org/10.1039/c8sm01655k
dc.relation.referencesParize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., & Consonni, V. (2016). Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. Journal of Physical Chemistry C, 120(9), 5242–5250. https://doi.org/10.1021/acs.jpcc.6b00479
dc.relation.referencesPark, K. Il, Jeong, C. K., Kim, N. K., & Lee, K. J. (2016). Stretchable piezoelectric nanocomposite generator. Nano Convergence, 3(1), 1–12. https://doi.org/10.1186/s40580-016-0072-z
dc.relation.referencesPark, J. S. (2010). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(4). https://doi.org/10.1088/2043-6262/1/4/043002
dc.relation.referencesPedroso Silva Santos, B., Rubio Arias, J. J., Elias Jorge, F., Értola Pereira de Deus Santos, R., da Silva Fernandes, B., da Silva Candido, L., Cesar de Carvalho Peres, A., Gervasoni Chaves, E., & Vieira Marques, M. de F. (2021). Preparation, characterization and permeability evaluation of poly(vinylidene fluoride) composites with ZnO particles for flexible pipelines. Polymer Testing, 94(January). https://doi.org/10.1016/j.polymertesting.2021.107064
dc.relation.referencesPeterson, J. D., Vyazovkin, S., & Wight, C. A. (1999). Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). Macromolecular Rapid Communications, 20(9), 480–483. https://doi.org/10.1002/(sici)1521-3927(19990901)20:9<480::aid-marc480>3.3.co;2-z
dc.relation.referencesPigliacelli, C., D’Elicio, A., Milani, R., Terraneo, G., Resnati, G., Baldelli Bombelli, F., & Metrangolo, P. (2015). Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. Journal of Fluorine Chemistry, 177, 62–69. https://doi.org/10.1016/j.jfluchem.2015.02.004
dc.relation.referencesPorkalai, V., Sathya, B., Benny Anburaj, D., Nedunchezhian, G., Joshua Gnanamuthu, S., & Meenambika, R. (2018). Photoluminescences properties of lanthanum-silver co-doped ZnO nano particles. Modern Electronic Materials, 4(4), 135–141. https://doi.org/10.3897/j.moem.4.4.35063
dc.relation.referencesPratihar, S., Medda, S. K., Sen, S., & Devi, P. S. (2020). Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods. Polymer Composites, 41(8), 3351–3363. https://doi.org/10.1002/pc.25624
dc.relation.referencesProto, A., Penhaker, M., Conforto, S., & Schmid, M. (2017). Nanogenerators for Human Body Energy Harvesting. Trends in Biotechnology, 35(7), 610–624. https://doi.org/10.1016/j.tibtech.2017.04.005
dc.relation.referencesRafique, S., Kasi, A. K., Kasi, J. K., Aminullah, Bokhari, M., & Shakoor, Z. (2020). Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 10, 1–12. https://doi.org/10.1177/1847980419895741
dc.relation.referencesRai, P., Tripathy, S. K., Park, N. H., & Yu, Y. T. (2009). Hydrothermal synthesis, characterization and optical property of single crystal ZnO nanorods. AIP Conference Proceedings, 1147, 152–159. https://doi.org/10.1063/1.3183424
dc.relation.referencesRao, J., Chen, Z., Zhao, D., Yin, Y., Wang, X., & Yi, F. (2019). Recent Progress in Self-Powered Skin Sensors. 1–19.
dc.relation.referencesRazza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(9). https://doi.org/10.1063/1.4962478
dc.relation.referencesRen, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045
dc.relation.referencesRoji, A. M. M., Jiji, G., & Raj, A. B. T. (2017). A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Advances, 7(53), 33642–33670. https://doi.org/10.1039/c7ra05256a
dc.relation.referencesRojo, M. M., Calero, O. C., Lopeandia, A. F., Rodriguez-Viejo, J., & Martín-Gonzalez, M. (2013). Review on measurement techniques of transport properties of nanowires. Nanoscale, 5(23), 11526–11544. https://doi.org/10.1039/c3nr03242f
dc.relation.referencesRojo, M. M., Manzano, C. V., Granados, D., Osorio, M. R., Borca-Tasciuc, T., & Martín-González, M. (2015). High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films. AIP Advances, 5(8). https://doi.org/10.1063/1.4928863
dc.relation.referencesRosen, Y., Marrach, R., Gutkin, V., & Magdassi, S. (2019). Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 4(1), 1–8. https://doi.org/10.1002/admt.201800426
dc.relation.referencesSabry, R. S., & Hussein, A. D. (2019). Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations. Materials Research Express, 6(10), 0–9. https://doi.org/10.1088/2053-1591/ab4296
dc.relation.referencesSahu, K., Choudhary, S., Singh, J., Kuriakose, S., Singhal, R., & Mohapatra, S. (2018). Facile wet chemical synthesis of ZnO nanosheets: Effects of counter ions on the morphological, structural, optical and photocatalytic properties. Ceramics International, 44(18), 23094–23101. https://doi.org/10.1016/j.ceramint.2018.09.116
dc.relation.referencesSayyah, S. M., El-Shafiey, Z. A., Barsoum, B. N., & Khaliel, A. B. (2004). Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461
dc.relation.referencesSriphan, S., & Vittayakorn, N. (2022b). Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461
dc.relation.referencesStassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C. F., & Canavese, G. (2015). Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 13, 474–481. https://doi.org/10.1016/j.nanoen.2015.03.024
dc.relation.referencesStoppa, M., & Chiolerio, A. (2016). Testing and evaluation of wearable electronic textiles and assessment thereof. In Performance Testing of Textiles: Methods, Technology and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100570-5.00005-0
dc.relation.referencesSun, H., Luo, M., Weng, W., Cheng, K., Du, P., Shen, G., & Han, G. (2008). Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology, 19(12). https://doi.org/10.1088/0957-4484/19/12/125603
dc.relation.referencesSun, M., Li, Z., Yang, C., Lv, Y., Yuan, L., Shang, C., Liang, S., Guo, B., Liu, Y., Li, Z., & Luo, D. (2021). Nanogenerator-based devices for biomedical applications. Nano Energy, 89(PB), 106461. https://doi.org/10.1016/j.nanoen.2021.106461
dc.relation.referencesŚwierzy, A. P., Pawłowski, R., Warszyński, P., & Szczepanowicz, K. (2020). The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. Journal of Materials Science: Materials in Electronics, 31, 12991–12999.
dc.relation.referencesTan, K. S., Gan, W. C., Velayutham, T. S., & Majid, W. H. A. (2014). Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Materials and Structures, 23(12). https://doi.org/10.1088/0964-1726/23/12/125006
dc.relation.referencesTan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G., Muto, H., & Matsuda, A. (2014). Synthesis of ZnO nanorod-nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. Journal of Solid State Chemistry, 211, 146–153. https://doi.org/10.1016/j.jssc.2013.12.026
dc.relation.referencesTandon, B., Blaker, J. J., & Cartmell, S. H. (2018). Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73(April), 1–20. https://doi.org/10.1016/j.actbio.2018.04.026
dc.relation.referencesTang, B., Cai, G., Wang, X., Xu, Z., & Yang, M. (2016). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393, 441–448. https://doi.org/10.1016/j.apsusc.2016.10.046
dc.relation.referencesThakur, P., Kool, A., Hoque, N. A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., & Das, S. (2018a). Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 44, 456–467. https://doi.org/10.1016/j.nanoen.2017.11.065
dc.relation.referencesThein, M. T., Pung, S. Y., Aziz, A., & Itoh, M. (2015). Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. Journal of Sol-Gel Science and Technology, 74(1), 260–271. https://doi.org/10.1007/s10971-015-3646-z
dc.relation.referencesTorreblanca González, J., García Ovejero, R., Lozano Murciego, Á., Villarrubia González, G., & De Paz, J. F. (2019). Effects of Environmental Conditions and Composition on the Electrical Properties of Textile Fabrics. Sensors (Basel, Switzerland), 19(23). https://doi.org/10.3390/s19235145
dc.relation.referencesVinoth Pandi, D., Muthukumarasamy, N., Agilan, S., & Velauthapillai, D. (2018). CdSe quantum dots sensitized ZnO nanorods for solar cell application. Materials Letters, 223, 227–230. https://doi.org/10.1016/j.matlet.2018.04.022
dc.relation.referencesWahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035
dc.relation.referencesWang, A. C., Wu, C., Pisignano, D., Wang, Z. L., & Persano, L. (2018). Polymer nanogenerators: Opportunities and challenges for large-scale applications. Journal of Applied Polymer Science, 135(24), 1–17. https://doi.org/10.1002/app.45674
dc.relation.referencesWang, Q., Yang, D., Qiu, Y., Zhang, X., Song, W., & Hu, L. (2018). Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Applied Physics Letters, 112(6). https://doi.org/10.1063/1.5012950
dc.relation.referencesWang, W., & Sun, H. (2020). Effect of different forms of nano-ZnO on the properties of PVDF/ZnO hybrid membranes. Journal of Applied Polymer Science, 137(36), 1–14. https://doi.org/10.1002/app.49070
dc.relation.referencesWang, Y. W., Shen, R., Wang, Q., & Vasquez, Y. (2018). ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 3(6), 6330–6338. https://doi.org/10.1021/acsomega.8b00371
dc.relation.referencesWang, Y., Zhu, L., & Du, C. (2021). Progress in piezoelectric nanogenerators based on pvdf composite films. Micromachines, 12(11). https://doi.org/10.3390/mi12111278
dc.relation.referencesWang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R: Reports, 64(3–4), 33–71. https://doi.org/10.1016/j.mser.2009.02.001
dc.relation.referencesWang, Z. L., Zhu, G., Yang, Y., Wang, S., & Pan, C. (2012). Progress in nanogenerators for portable electronics. Materials Today, 15(12), 532–543. https://doi.org/10.1016/S1369-7021(13)70011-7
dc.relation.referencesWang, Z., & Song, J. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi.org/10.1126/science.1124005
dc.relation.referencesWei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a
dc.relation.referencesWei, S. F., Lian, J. S., & Jiang, Q. (2009). Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 255(15), 6978–6984. https://doi.org/10.1016/j.apsusc.2009.03.023
dc.relation.referencesWeng, L., Ju, P., Li, H., Yan, L., & Liu, L. (2017). Preparation and characterization of multi shape ZnO/PVDF composite materials. Journal Wuhan University of Technology, Materials Science Edition, 32(4), 958–962. https://doi.org/10.1007/s11595-017-1696-5
dc.relation.referencesWhiter, R. A., Narayan, V., & Kar-Narayan, S. (2014). A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Advanced Energy Materials, 4(18), 1–7. https://doi.org/10.1002/aenm.201400519
dc.relation.referencesWilson, S., & Laing, R. (2019). Fabrics and garments as sensors: A research update. In Sensors (Switzerland) (Vol. 19, Issue 16). https://doi.org/10.3390/s19163570
dc.relation.referencesXu, B., & Cai, Z. (2008). Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Applied Surface Science, 254(18), 5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160
dc.relation.referencesXu, L.-L., Guo, M.-X., Liu, S., & Bian, S.-W. (2015). Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Advances, 5(32), 25244–25249. https://doi.org/10.1039/C4RA16063K
dc.relation.referencesYaghoubidoust, F., Salimi, E., Wicaksono, D. H. B., & Nur, H. (2020). Physical and electrochemical appraisal of cotton textile modified with polypyrrole and graphene/reduced graphene oxide for flexible electrode. Journal of the Textile Institute, 0(0), 1–13. https://doi.org/10.1080/00405000.2020.1835171
dc.relation.referencesYang, Gang, Tian, M. Z., Huang, P., Fu, Y. F., Li, Y. Q., Fu, Y. Q., Wang, X. Q., Li, Y., Hu, N., & Fu, S. Y. (2021). Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon, 173, 736–743. https://doi.org/10.1016/j.carbon.2020.11.066
dc.relation.referencesYang, Geng, Pang, G., Pang, Z., Gu, Y., Mantysalo, M., & Yang, H. (2019). Non-Invasive Flexible and Stretchable Wearable Sensors with Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 12, 34–71. https://doi.org/10.1109/RBME.2018.2887301
dc.relation.referencesYang, J., Zhang, Y., Li, Y., Wang, Z., Wang, W., An, Q., & Tong, W. (2021). Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Materials Today Communications, 26. https://doi.org/10.1016/j.mtcomm.2020.101629
dc.relation.referencesYang leng. (2008). Characterization of Surfaces and Nanostructures Academic and Industrial Applications Characterization of Solid Materials and Heterogeneous Catalysts From Structure to Surface Reactivity Characterization Techniques for Polymer Nanocomposites Basic Concepts.
dc.relation.referencesYang, R., Qin, Y., Li, C., Dai, L., & Wang, Z. L. (2009). Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 94(2), 4–6. https://doi.org/10.1063/1.3072362
dc.relation.referencesYi, G. C., Wang, C., & Park, W. Il. (2005). ZnO nanorods: Synthesis, characterization and applications. Semiconductor Science and Technology, 20(4). https://doi.org/10.1088/0268-1242/20/4/003
dc.relation.referencesYi, J., Song, Y., Cao, Z., Li, C., & Xiong, C. (2021). Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators. Composites Science and Technology, 215(August), 109011. https://doi.org/10.1016/j.compscitech.2021.109011
dc.relation.referencesYu, D., Zhao, J., Wang, W., Qi, J., & Hu, Y. (2019). Mono-acrylated isosorbide as a bio-based monomer for the improvement of thermal and mechanical properties of poly(methyl methacrylate). RSC Advances, 9(61), 35532–35538. https://doi.org/10.1039/c9ra07548h
dc.relation.referencesYu, J., Wu, W., Dai, D., Song, Y., Li, C., & Jiang, N. (2014). Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. Macromolecular Research, 22(1), 19–25. https://doi.org/10.1007/s13233-014-2009-x
dc.relation.referencesYu, Q., Weng, P., Han, L., Yin, X., Chen, Z., Hu, X., Wang, L., & Wang, H. (2019). Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 26(12), 7523–7535. https://doi.org/10.1007/s10570-019-02592-w
dc.relation.referencesYue, R., Ramaraj, S. G., Liu, H., Elamaran, D., Elamaran, V., Gupta, V., Arya, S., Verma, S., Satapathi, S., hayawaka, Y., & Liu, X. (2022). A review of flexible lead-free piezoelectric energy harvester. Journal of Alloys and Compounds, 918, 165653. https://doi.org/10.1016/j.jallcom.2022.165653
dc.relation.referencesZapata-Hernandez, C., Durango-Giraldo, G., Cacua, K., & Buitrago-Sierra, R. (2020). Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, 0(0), 1–11. https://doi.org/10.1080/00405000.2020.1865507
dc.relation.referencesZeyrek Ongun, M., Oguzlar, S., Kartal, U., Yurddaskal, M., & Cihanbegendi, O. (2021). Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sciences, 122(October), 106772. https://doi.org/10.1016/j.solidstatesciences.2021.106772
dc.relation.referencesZhang, D., Zhang, X., Li, X., Wang, H., Sang, X., Zhu, G., & Yeung, Y. (2022). Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. European Polymer Journal, 166(December 2021), 110956. https://doi.org/10.1016/j.eurpolymj.2021.110956
dc.relation.referencesZhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/624520
dc.relation.referencesZhang, Z., Chen, Y., & Guo, J. (2019). ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 105, 212–218. https://doi.org/10.1016/j.physe.2018.09.007
dc.relation.referencesZhao, C., Jia, C., Zhu, Y., & Zhao, T. (2021). An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors, 21(15). https://doi.org/10.3390/s21155144
dc.relation.referencesZhao, M., Wang, Z., & Mao, S. X. (2004). Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope.
dc.relation.referencesZhao, Z., Dai, Y., Dou, S. X., & Liang, J. (2021). Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 20, 100690. https://doi.org/10.1016/j.mtener.2021.100690
dc.relation.referencesZhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., & Lee, P. S. (2020). All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 72, 104676. https://doi.org/10.1016/j.nanoen.2020.104676
dc.relation.referencesZhou, Z., Zhao, Y., & Cai, Z. (2010). Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Applied Surface Science, 256(14), 4724–4728. https://doi.org/10.1016/j.apsusc.2010.02.081
dc.relation.referencesZhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341(April), 113552. https://doi.org/10.1016/j.sna.2022.113552
dc.relation.referencesZhu, M., Shi, Q., He, T., Yi, Z., Ma, Y., Yang, B., Chen, T., & Lee, C. (2019). Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano. https://doi.org/10.1021/acsnano.8b08329
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembOxido de cinc
dc.subject.lembDispositivos piezoeléctricos
dc.subject.lembPiezoelectric devices
dc.subject.proposalÓxido de zinc
dc.subject.proposalSalida eléctrica
dc.subject.proposalSensor
dc.subject.proposalPENG
dc.subject.proposalTextil
dc.subject.proposalZinc oxide
dc.subject.proposalElectrical output
dc.subject.proposalSensor
dc.subject.proposalPENG
dc.subject.proposalTextiles
dc.title.translatedDevelopment of a piezoelectric nanogenerator for applications in biomedical sensors
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología
dc.contributor.orcidZapata Hernandez, Juan Camilo [0000-0002-8664-5867]
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=bhXNtYcAAAAJ&hl=es


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito