Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorBastos Pardo, Victor Hugo
dc.contributor.authorRincón Carreño, Cristhian
dc.contributor.authorMartínez Suárez, Eber Arturo
dc.date.accessioned2023-01-24T12:48:54Z
dc.date.available2023-01-24T12:48:54Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83079
dc.descriptionilustraciones, graficas
dc.description.abstractObjetivo: Describir las características de los tumores gliales de la población del Hospital de San Rafael de Tunja entre 2017 y 2021. Metodología: Estudio observacional, unicéntrico y retrospectivo de 51 casos del periodo 2017 - 2021, las variables demográficas, clínicas, imagenológicas, funcionales y de supervivencia fueron analizadas. Se empleó RStudio v2022.07.2 para análisis estadístico. Resultados: Hay menor sobrevida en pacientes con glioma grado IV (sobrevida media 505.18 dias SD +/-169.3) comparado con gliomas de menor grado (grado III sobrevida media 1862.3 SD +/- 668.7) (Log Rank <0.0001). No hay diferencias entre el tipo de cirugía, quimioterapia, radioterapia, lateralidad, invasión cuerpo calloso, mRankin de ingreso entre los diferentes grados tumorales (Kruskal Wallis p > 0.05) El tratamiento oncológico está asociado a mayor sobrevida independientemente del subtipo histológico (Kaplan Meier Log Rank 0.023) y mayor duración con puntaje mRankin menor o igual a 2 (Log Rank 0.0023). Hay menor sobrevida para el escenario Glioblastoma IDH no mutado (p 0.012 Log Rank). A menor valor ADC, mayor puntaje en el mRankin de ingreso (Tau Score -0.249 p 0.029, Spearman Rho -0.324 p 0.028) y a mayor valor ADC, mayor sobrevida (Tau Score 0.199 p 0.046, Spearman Rho 0.310 P 0.032). Conclusiones: Uno de los primeros estudios en Colombia que documenta que la presencia de la mutación del gen IDH, mayor valor ADC y el tratamiento oncológico (independiente del tipo) están asociados a una mayor sobrevida y funcionalidad (Texto tomado de la fuente)
dc.description.abstractObjective: To describe the characteristics of glial tumors in the population of Hospital de San Rafael de Tunja between 2017 and 2021. Methodology: Observational, single-center and retrospective study of 51 cases from the period 2017 - 2021, demographic, clinical, imaging and functional survival variables were analyzed. RStudio v2022.07.2 was used for statistical analysis. Results: There is lower survival in patients with grade IV glioma (mean survival 505.18 days SD +/-169.3) compared with lower grade gliomas (grade III mean survival 1862.3 SD +/- 668.7) (Log Rank <0.0001). There are no differences in the type of surgery, chemotherapy, radiotherapy, laterality, corpus callosum invasion, and admission mRankin between different tumor grades (Kruskal Wallis p > 0.05) Oncology treatment is associated with greater survival regardless of the histological subtype (Kaplan Meier Log Rank 0.023) and longer duration with mRankin score less than or equal to 2 (Log Rank 0.0023). There is lower survival for the non-mutated IDH glioblastoma scenario (p 0.012 Log Rank). Lower ADC values are correlated with higher admission mRankin score (Tau Score -0.249 p 0.029, Spearman Rho -0.324 p 0.028) and higher ADC values, with greater survival rates (Tau Score 0.199 p 0.046, Spearman Rho 0.310 P 0.032). Conclusions: One of the first studies in Colombia to document that the presence of the IDH mutation, a higher ADC value, and cancer treatment (regardless of the type) are associated with higher survival and functionality outcomes.
dc.format.extent97 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
dc.subject.otherCuerpo Calloso
dc.subject.otherGlioblastoma
dc.subject.otherGlioma
dc.subject.otherMutación
dc.subject.otherQuimioterapia
dc.subject.otherRadioterapia
dc.subject.otherSupervivencia
dc.subject.otherCorpus Callosum
dc.subject.otherDrug Therapy
dc.subject.otherGlioblastoma
dc.subject.otherMutation
dc.subject.otherRadiotherapy
dc.subject.otherPopulation
dc.titleCaracterización de los casos de tumores gliales del sistema nervioso central en un hospital de referencia de alta complejidad en la ciudad de Tunja, departamento de Boyacá - Colombia
dc.typeTrabajo de grado - Especialidad Médica
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Neurocirugía
dc.contributor.hostingInstitutionHospital Universitario San Rafael de Tunja
dc.coverage.cityhttp://vocab.getty.edu/page/tgn/7005077
dc.description.degreelevelEspecialidades Médicas
dc.description.degreenameEspecialista en Neurocirugía
dc.description.methodsTIPO DE ESTUDIO Descriptivo tipo retrospectivo POBLACIÓN OBJETIVO Población con patología oncológica glial del sistema nervioso central. Se incluirán todos los pacientes que cuenten con diagnóstico histopatológico y/o dentro del criterio CIE-10 de tumor glial manejado en el hospital San Rafael de Tunja en el periodo de 2017 a 2021 cuyos datos estén almacenados en los archivos de la institución. CRITERIOS INCLUSIÓN Paciente con tumor glial de SNC tratado en el Hospital San Rafael de Tunja Que haya recibido diagnóstico y/o tratamiento quirúrgico definitivo para su respectiva patología en el Hospital San Rafael de Tunja. CRITERIOS EXCLUSIÓN - Pacientes que no cuenten con confirmación histopatológica (o radiológica cuando la confirmación histopatología no es pertinente o factible ej. tumores difusos de línea media del tallo) en el Hospital San Rafael de Tunja. Pacientes de los que no se disponga de la totalidad de la Historia Clínica. RECOLECCIÓN DE DATOS La recolección de datos clínico patológicos se obtuvieron a partir del censo quirúrgico del servicio de Neurocirugía del Hospital San Rafael de Tunja, así como el filtro CIE-10 para tumores de sistema nervioso central clasificación WHO dentro del repositorio de patología del Hospital San Rafael de Tunja y de las historias clínicas determinadas en archivo físico y en el software de soporte que actualmente opera en la institución. La obtención de las variables imagenológicas se obtuvieron a partir de las imágenes almacenadas en el servicio principal de radiología de dicha institución. Para el cálculo de los valores del mapa ADC de las lesiones se estableció el punto con el valor más bajo así como el promedio empleando el corte de la circunferencia del mayor diámetro de la lesión en el T1 con gadolinio y que no incluyese áreas de hemorragia o necrosis vista en T2 eco gradiente/SWI. Se contó con aval del comité de ética del Hospital San Rafael de Tunja para la obtención, interpretación y publicación de los datos del presente estudio. ANÁLISIS ESTADÍSTICO Se realizó un estudio descriptivo correlacional y se realizó un análisis de supervivencia utilizando el software libre RStudio versión 2022.07.2 576. La clasificación las variables mencionadas en la tabla fueron de tipo cualitativo o cuantitativo y si eran de carácter nominal u ordinal en el primer escenario y el caso de las cuantitativas éstas últimas a su vez se definieron si tenían distribución normal con la prueba de Shapiro Wilky y su el grado de homogeneidad con las pruebas de Bartlett, Fligner y Levene. Para la comparación de grupos independientes cuyas variables fueron de tipo cualitativo nominal y ordinal se empleó la prueba de Chi cuadrado, en el caso de que los grupos en la contaran con variables de distribución normal se realizó ANOVA de una vía y cuanto eran de distribución no normal se realizó la prueba de Kruskal Wallis. Para la correlación de variables tipo ADC se emplearon los coeficientes de Spearman o Kendall Tau. Para las variables con significancia estadística (tipo de tumor y terapia oncológica) se estimó supervivencia mediante análisis de Kaplan Meier. Se determinó como significancia estadística un valor p menor a 0.05.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSchwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma [Internet]. Vol. 2, Nature Clinical Practice Neurology. 2006 [cited 2022 Nov 9]. p. 494–503. Available from: https://www.nature.com/articles/ncpneuro0289
dc.relation.referencesWeller M, Wick W, Aldape K. Glioma. Nat Rev Dis [Internet]. 2015 [cited 2022 Nov 9];1:1–18. Available from: https://www.nature.com/articles/nrdp201517
dc.relation.referencesGonzález-Aguilar A, Hernández AH, Peiro-Osuna P, Gutiérrez-Aceves A, Reyes-Moreno I. Biomarcadores moleculares implicados en la nueva clasificación de la Organización Mundial de la Salud en gliomas. Neurol Neurocir y Psiquiatr [Internet]. 2018 [cited 2022 Nov 9];46(1):4–13. Available from: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=79423
dc.relation.referencesWen PY, Packer RJ. The 2021 WHO Classification of Tumors of the Central Nervous System: Clinical implications [Internet]. Vol. 23, Neuro-Oncology. 2021 [cited 2022 Nov 9]. p. 1215–7. Available from: https://academic.oup.com/neuro-oncology/article-abstract/23/8/1231/631121
dc.relation.referencesYang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022 Dec 1;21(1).
dc.relation.referencesPellerino A, Caccese M, Padovan M, Cerretti G, Lombardi G. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging. 2022 Oct 1.
dc.relation.referencesFrancis SS, Ostrom QT, Cote DJ, Smith TR, Claus E, Barnholtz-Sloan JS. The Epidemiology of Central Nervous System Tumors [Internet]. Vol. 36, Hematology/Oncology Clinics of North America. 2022 [cited 2022 Nov 10]. p. 23–42. Available from: https://www.hemonc.theclinics.com/article/S0889-8588(21)00115-5/abstract
dc.relation.referencesMorgan LL. The epidemiology of glioma in adults: A “state of the science” review [Internet]. Vol. 17, Neuro-Oncology. 2015 [cited 2022 Nov 9]. p. 623–6. Available from: https://academic.oup.com/neuro-oncology/article-abstract/16/7/896/1927249
dc.relation.referencesJones D, Hutter B, Jäger N, Korshunov A, … MK-N, 2013 U. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet [Internet]. 2013 [cited 2022 Nov 17];45(8):927–32. Available from: https://www.nature.com/articles/ng.2682
dc.relation.referencesGronych J, Korshunov A, Bageritz J, Milde T, Jugold M, Hambardzumyan D, et al. An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. J Clin Invest [Internet]. 2011 [cited 2022 Nov 17];121(4):1344–8. Available from: https://www.jci.org/articles/view/44656
dc.relation.referencesSchreck KC, Grossman SA, Pratilas CA. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors [Internet]. Vol. 11, Cancers. 2019 [cited 2022 Nov 17]. Available from: https://www.mdpi.com/523400
dc.relation.referencesBuhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F, et al. The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clin Cancer Res [Internet]. 2019 [cited 2022 Nov 17];25(6):1851–66. Available from: https://aacrjournals.org/clincancerres/article-abstract/25/6/1851/82502
dc.relation.referencesSchindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol [Internet]. 2011 Mar [cited 2022 Nov 17];121(3):397–405. Available from: https://link.springer.com/article/10.1007/s00401-011-0802-6
dc.relation.referencesKoelsche C, Sahm F, Wöhrer A, Jeibmann A, Schittenhelm J, Kohlhof P, et al. BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol. 2014;24(3):221–9.
dc.relation.referencesRobinson JP, Vanbrocklin MW, Guilbeault AR, Signorelli DL, Brandner S, Holmen SL. Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation. Oncogene [Internet]. 2010 [cited 2022 Nov 17];29(3):335–44. Available from: https://www.nature.com/articles/onc2009333
dc.relation.referencesBakhtiary H, Barzegar M, Shiva S, Poorshiri B, Hajalioghli P, Herizchi Ghadim H. The Effect of Everolimus on Subependymal Giant Cell Astrocytoma (SEGA) in Children with Tuberous Sclerosis Complex. Iran J Child Neurol [Internet]. 2021 [cited 2022 Nov 17];15(4):15–25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570625/
dc.relation.referencesSahm F, Reuss D, Koelsche C, Capper D, Schittenhelm J, Heim S, et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol [Internet]. 2014 Oct 1 [cited 2022 Nov 17];128(4):551–9. Available from: https://link.springer.com/article/10.1007/s00401-014-1326-7
dc.relation.referencesWatanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol [Internet]. 2009 [cited 2022 Nov 17];117(6):653–6. Available from: https://link.springer.com/article/10.1007/s00401-009-0528-x
dc.relation.referencesReitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism [Internet]. Vol. 102, Journal of the National Cancer Institute. 2010 [cited 2022 Nov 17]. p. 932–41. Available from: https://academic.oup.com/jnci/article-abstract/102/13/932/870923
dc.relation.referencesSierra Benítez EM, León Pérez MQ, Laud Rodríguez L, Carrillo Comas AL, Pérez Ortiz L, Rodríguez Ramos E. Gliomas malignos: biología molecular y detalles oncogenéticos. Rev medica electron [Internet]. 2018 [cited 2022 Nov 17];40(4):1100–11. Available from: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=83248
dc.relation.referencesSahm F, Koelsche C, Meyer J, Pusch S, Lindenberg K, Mueller W, et al. CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol. 2012 Jun;123(6):853–60.
dc.relation.referencesOhgaki H, Dessen P, Jourde B. Genetic pathways to glioblastoma: a population-based study. Cancer Res [Internet]. 2004 [cited 2022 Nov 17];64(19):6892–9. Available from: https://aacrjournals.org/cancerres/article-abstract/64/19/6892/511738
dc.relation.referencesHuang LE, Cohen AL, Colman H, Jensen RL, Fults DW, Couldwell WT. IGFBP2 expression predicts IDH-mutant glioma patient survival. Oncotarget [Internet]. 2017 [cited 2022 Nov 17];8(1):191–202. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352106/
dc.relation.referencesSturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DTW, Konermann C, et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell [Internet]. 2012 [cited 2022 Nov 17];22(4):425–37. Available from: https://www.sciencedirect.com/science/article/pii/S1535610812003649
dc.relation.referencesAppin CL, Brat DJ. Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis [Internet]. Vol. 22, Advances in Anatomic Pathology. 2015 [cited 2022 Nov 17]. p. 50–8. Available from: https://journals.lww.com/anatomicpathology/fulltext/2015/01000/Molecular_Pathways_in_Gliomagenesis_and_Their.3.aspx
dc.relation.referencesCrespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, et al. Molecular and Genomic Alterations in Glioblastoma Multiforme. Am J Pathol. 2015 Jul 1;185(7):1820–33.
dc.relation.referencesBuczkowicz P, Hoeman C, Rakopoulos P, …, Pajovic S. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet [Internet]. 2014 [cited 2022 Nov 17];46(5):451–6. Available from: https://www.nature.com/articles/ng.2936
dc.relation.referencesHashizume R, Andor N, Ihara Y, Lerner R. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med [Internet]. 2014 [cited 2022 Nov 17];20(12):1394–6. Available from: https://www.nature.com/articles/nm.3716
dc.relation.referencesGarcía Figueiras R, Padhani AR, Vilanova JC, Goh V, Villalba Martín YC. Imagen funcional tumoral. Parte 1. Radiologia [Internet]. 2010 [cited 2022 Nov 23];52(2):115–25. Available from: https://www.sciencedirect.com/science/article/pii/S0033833810000494
dc.relation.referencesBrynolfsson P, Nilsson D, Henriksson R, Hauksson J, Karlsson M, Garpebring A, et al. ADC texture—an imaging biomarker for high‐grade glioma? Wiley Online Libr [Internet]. 2014 Oct 1 [cited 2022 Nov 23];41(10). Available from: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4894812
dc.relation.referencesChenevert TL, Malyarenko DI, Galbán CJ, Gomez-Hassan DM, Sundgren PC, Tsien CI, et al. Comparison of Voxel-Wise and Histogram Analyses of Glioma ADC Maps for Prediction of Early Therapeutic Change. Tomogr (Ann Arbor, Mich) [Internet]. 2019 [cited 2022 Nov 23];5(1):7–14. Available from: https://www.mdpi.com/987256
dc.relation.referencesVan Den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: A clinician’s perspective. Acta Neuropathol. 2010 Sep;120(3):297–304.
dc.relation.referencesWu CC, Jain R, Radmanesh A, Poisson LM, Guo WY, Zagzag D, et al. Predicting genotype and survival in glioma using standard clinical MR imaging apparent diffusion coefficient images: A pilot study from the cancer genome atlas. Am J Neuroradiol [Internet]. 2018 [cited 2022 Nov 23];39(10):1814–20. Available from: http://www.ajnr.org/content/39/10/1814.abstract
dc.relation.referencesWang YY, Wang K, Li SW, Wang JF, Ma J, Jiang T, et al. Patterns of tumor contrast enhancement predict the prognosis of anaplastic gliomas with IDH1 mutation. Am J Neuroradiol [Internet]. 2015 [cited 2022 Nov 23];36(11):2023–9. Available from: http://www.ajnr.org/content/36/11/2023.short
dc.relation.referencesBush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Vol. 40, Neurosurgical Review. Springer Verlag; 2017.
dc.relation.referencesBarone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev. 2014 Jan 28;2014(1).
dc.relation.referencesLeroy HA, Vermandel M, Lejeune JP, Mordon S, Reyns N. Fluorescence guided resection and glioblastoma in 2015: A review. Lasers Surg Med. 2015 Jul 1;47(5):441–51.
dc.relation.referencesStupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987–96.
dc.relation.referencesVan Den Bent MJ, Brandes AA, Taphoorn MJB, Kros JM, Kouwenhoven MCM, Delattre JY, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: Long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol [Internet]. 2013 [cited 2022 Nov 23];31(3):344–50. Available from: https://www.academia.edu/download/70440691/Adjuvant_Procarbazine_Lomustine_and_Vinc20210928-13739-1moobfh.pdf
dc.relation.referencesWait SD, Prabhu RS, Burri SH, Atkins TG, Asher AL. Polymeric drug delivery for the treatment of glioblastoma [Internet]. Vol. 17, Neuro-Oncology. 2015 [cited 2022 Nov 23]. p. ii9–23. Available from: https://academic.oup.com/neuro-oncology/article-abstract/17/suppl_2/ii9/1073974
dc.relation.referencesCollins SA, Shah AH, Ostertag D, Kasahara N, Jolly DJ. Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer [Internet]. Vol. 21, Expert Opinion on Biological Therapy. Taylor and Francis Ltd.; 2021 [cited 2022 Nov 23]. p. 1199–214. Available from: https://www.tandfonline.com/doi/abs/10.1080/14712598.2021.1902982
dc.relation.referencesEllingson BM, Lai A, Harris RJ, Selfridge JM, Yong WH, Das K, et al. Probabilistic radiographic atlas of glioblastoma phenotypes. Am Soc Neuroradiol [Internet]. 2013 Mar [cited 2022 Dec 15];34(3):533–40. Available from: http://www.ajnr.org/content/34/3/533.short
dc.relation.referencesDe Luca C, Virtuoso A, Papa M, Certo F, Barbagallo GMV, Altieri R. Regional Development of Glioblastoma: The Anatomical Conundrum of Cancer Biology and Its Surgical Implication. Cells 2022, Vol 11, Page 1349 [Internet]. 2022 Apr 15 [cited 2022 Dec 15];11(8):1349. Available from: https://www.mdpi.com/2073-4409/11/8/1349/htm
dc.relation.referencesAl-Holou WN, Hodges TR, Everson RG, Freeman J, Zhou S, Suki D, et al. Perilesional Resection of Glioblastoma Is Independently Associated with Improved Outcomes. Neurosurgery. 2020 Jan 1;86(1):112–21.
dc.relation.referencesShofty B, Constantini S, Bokstein F, Ram Z, Ben-Sira L, Freedman S, et al. Optic pathway gliomas in adults. Neurosurgery [Internet]. 2014 [cited 2022 Dec 15];74(3):273–9. Available from: https://academic.oup.com/neurosurgery/article-abstract/74/3/273/2447594
dc.relation.referencesHa H, Lim JH. Managing Side Effects of Cytotoxic Chemotherapy in Patients With High Grade Gliomas. Brain Tumor Res Treat [Internet]. 2022 [cited 2022 Dec 15];10(3):158. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353159/
dc.relation.referencesXue C, Zhang B, Deng J, Liu X, Li S, Zhou J. Differentiating Giant Cell Glioblastoma from Classic Glioblastoma With Diffusion-Weighted Imaging. World Neurosurg. 2021 Feb 1;146:e473–8.
dc.relation.referencesHan Y, Yan LF, Wang X Bin, Sun YZ, Zhang X, Liu ZC, et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: A region of interest based analysis. BMC Cancer [Internet]. 2018 [cited 2022 Dec 15];18(1). Available from: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-4114-2
dc.relation.referencesWang X, Chen XZ, Shi L, Dai JP. Glioma grading and IDH1 mutational status: assessment by intravoxel incoherent motion MRI. Clin Radiol [Internet]. 2019 [cited 2022 Dec 15];74(8):651.e7-651.e14. Available from: https://www.sciencedirect.com/science/article/pii/S0009926019301643
dc.relation.referencesChaulagain D, Smolanka V, Smolanka A. Diagnosis and Management of Astrocytoma: a literature review. Int Neurol J [Internet]. 2022 [cited 2022 Dec 15];18:2022. Available from: https://dspace.uzhnu.edu.ua/jspui/handle/lib/44453
dc.relation.referencesDurand-Muñoz C, Flores-Alvarez E, Moreno-Jimenez S, Roldan-Valadez E. Preoperative apparent diffusion coefficient values and tumour region volumes as prognostic biomarkers in glioblastoma: correlation and progression-free survival analyses. Insights Imaging. 2019 Dec 1;10(1).
dc.relation.referencesLeibetseder A, Leitner J, Mair MJ, Meckel S, Hainfellner JA, Aichholzer M, et al. Prognostic factors in adult brainstem glioma: a tertiary care center analysis and review of the literature. J Neurol [Internet]. 2022 [cited 2022 Dec 15];269(3):1574–90. Available from: https://link.springer.com/article/10.1007/s00415-021-10725-0
dc.relation.referencesKondo M, Uchiyama Y. Apparent diffusion coefficient histogram analysis for prediction of prognosis in glioblastoma. J Neuroradiol. 2018 Jul 1;45(4):236–41.
dc.relation.referencesKurokawa R, Baba A, Kurokawa M, Capizzano A, Hassan O, Johnson T, et al. Pretreatment ADC Histogram Analysis as a Prognostic Imaging Biomarker for Patients with Recurrent Glioblastoma Treated with Bevacizumab: A Systematic Review and Meta-analysis. Am J Neuroradiol [Internet]. 2022 Feb 1 [cited 2022 Dec 15];43(2):202–6. Available from: http://www.ajnr.org/content/43/2/202
dc.relation.referencesLópez-Cadena, A. F., Moreno-Gómez, L. Ángela, & Guerrero-Gómez, D. A. (2021). Valores del coeficiente de difusión aparente en el diagnóstico diferencial de los tumores de la fosa posterior en población pediátrica de Colombia. Revista De La Facultad De Medicina, 70(1), e90537. Available from: https://doi.org/10.15446/revfacmed.v70n1.90537.
dc.relation.referencesR. Stupp, M. Brada, M.J. van den Bent, J.-C. Tonn, G. Pentheroudakis on behalf of the ESMO Guidelines Working Group. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up,CNS malignancies, volume 25, supplement 3, 93-101, september 01, 2014. Available from: DOI:https://doi.org/10.1093/annonc/mdu050.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMapa de coeficiente de difusión aparente
dc.subject.proposalmRankin Score
dc.subject.proposalEscala de Rankin Modificado
dc.subject.proposalSurvival rate
dc.subject.proposalTasa de supervivencia
dc.subject.proposalTunja
dc.subject.proposalTunja
dc.subject.proposalColombia
dc.subject.proposalGlial Tumour
dc.subject.proposalTumor glial
dc.subject.proposalColombia
dc.subject.proposalApparent Coefficient Diffusion Map
dc.subject.proposalADC
dc.subject.proposalADC
dc.title.translatedCharacterization of glial tumors cases of central nervous system in a high complexity referral hospital in Tunja, Boyacá - Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos
dc.contributor.orcidRincón Carreño, Cristhian [0000-0002-7968-7604]


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito