Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorEcheverry Vargas, Luver
dc.contributor.advisorOCAMPO CARMONA, LUZ MARINA
dc.contributor.advisorGallego Suarez, Dario de Jesus
dc.contributor.authorPardo Saray, Juan Jose
dc.date.accessioned2023-01-26T13:59:18Z
dc.date.available2023-01-26T13:59:18Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83137
dc.descriptionilustraciones, diagramas
dc.description.abstractCon el auge de políticas ambientas más restrictivas la industria de galvanizado por inmersión en caliente ha identificado un potencial riesgo ambiental en los vertimientos de baños gastados de decapado, los cuales, pueden significar pérdidas económicas a largo plazo. Esto motiva la investigación acerca de procesos capaces de minimizar los vertimientos y recuperar el ácido gastado. En esta tesis se propone el estudio de la recuperación de estos ácidos para su posterior reutilización con la reacción de quelación-precipitación con ácido oxálico y ácido tartárico, para ello, se preparó una solución de simulada de los baños gastados de decapado. Que sirvieron como referencia para simulaciones de dinámica molecular en sistemas que emulaban las condiciones de las reacciones de precipitación-quelación. Estas simulaciones lograron replicar mediciones de densidades con un máximo error del 5%, además, mediante las funciones de distribución radial se determinó que los grupos de mayor interacción entre los iones metálicos y los ácidos orgánicos son los oxígenos pertenecientes a los grupos carboxílicos, implicando una posible reacción entre los iones y los ácidos carboxílicos. Posteriormente, basados en la solución simulada se estudió el efecto en la remoción del ion Fe+2 variando el %Zn en solución y la cantidad acido oxálico y ácido tartárico agregado. Con lo anterior se identificó existe una correlación fuerte entre el ácido oxálico y la remoción de Fe+2, logrando un máximo de remoción del 86% de Fe+2 y 55% de Zn+2 con un exceso de ácido oxálico, además, se evidencio que a las condiciones del experimento planteado el ácido tartárico y el zinc en solución no se correlacionan con la precipitación del Fe. Finalmente, se ejecutó un análisis de sostenibilidad multicriterio para comparar las reacciones de neutralización más comunes en el tratamiento de estos baños gastados y la reacción de precipitación-quelación, para lograr esto se realizaron encuestas a expertos que arrojaron que para este tipo de problemas el factor ambiental es el más importante. Por otro lado, al estimar los impactos observamos que la quelación tiene una ventaja en respecto a la contaminación cuerpos de agua y toxicidad de la reacción de la reacción quelación-precipitación son menores comparados con la neutralización. (Texto tomado de la fuente)
dc.description.abstractWith the rise of more news environmental policies, the hot-dip galvanizing industry has identified a potential environmental risk in the dumping of spent pickling baths, which can mean long-term economic losses. This motivates research into processes to minimize discharges and recovering spent acid. This thesis proposes the study of the recovery of these acids for subsequent reuse with the reaction of chelation-precipitation with oxalic acid and tartaric acid, for this, a simulated solution of spent pickling baths was prepared. They served as a reference for molecular dynamics simulations in systems that emulated the conditions of precipitation-chelation reactions. These simulations managed to replicate density measurements with a maximum error of 5%, in addition, through the radial distribution functions it was determined that the groups of greatest interaction between metal ions and organic acids are oxygens belonging to carboxylic groups, implying a possible reaction between ions and carboxylic acids. Subsequently, based on the simulated solution, the effect on the removal of the Fe+2 ion was studied, varying the %Zn in solution and the amount of oxalic acid and tartaric acid added. With the above was identified there is a strong correlation between oxalic acid and the removal of Fe+2, achieving a maximum removal of 86% of Fe+2 and 55% of Zn+ 2 with an excess of oxalic acid, in addition, it was evidenced that the conditions of the experiment raised tartaric acid and zinc in solution do not correlate with the precipitation of Fe. Finally, a multicriteria sustainability analysis was executed to compare the most common neutralization reactions in the treatment of these spent baths and the precipitation-chelation reaction, to achieve this, surveys were conducted with experts who showed that for this type of problems the environmental factor is the most important. On the other hand, when estimating the impacts, we observe that chelation has an advantage over contamination bodies of water and toxicity of the reaction of the chelation-precipitation reaction are lower compared to neutralization.
dc.format.extent147 páginnas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleProcesos de recuperación de ácidos gastados de decapado mediante la precipitación de metales pesados con ácido oxálico y ácido tartárico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbdulkarim, B. I., Abu-Hassan, M. A., Ibrahim, R. R. K., Zaini, M. A. A., Ali, A. M., Hussein, A. S., Su, S. M., & Halim, M. I. M. (2017). Characterisation of Galvanic Sludge from Hot Dip Galvanising Process for Metal Surface Treatment. https://doi.org/10.9790/1813-0610023740
dc.relation.referencesAdham, K. (2006). ENERGY CONSUMPTION FOR IRON CHLORIDE PYROHYDROLYSIS: A COMPARISON BETWEEN FLUIDIZED BEDS AND SPRAY ROASTERS. https://www.researchgate.net/publication/346006016
dc.relation.referencesAdham, K. (2006). ENERGY CONSUMPTION FOR IRON CHLORIDE PYROHYDROLYSIS: A COMPARISON BETWEEN FLUIDIZED BEDS AND SPRAY ROASTERS. https://www.researchgate.net/publication/346006016
dc.relation.referencesAmerican Galvanizers Association. (2008). Sustainable Development and Hot-Dip Galvanizing. www.galvanizeit.org
dc.relation.referencesAmerican Galvanizers Association. (2015). Galvanizado en Caliente para Protección Contra la Corrosión.
dc.relation.referencesAndersen, H. C. (1982). Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations.
dc.relation.referencesANDI. (2013). Guía práctica de galvanizado por inmersión en caliente. 64. http://www.galvanizadocolombia.com/index.php/publicaciones?task=document.viewdoc&id=6
dc.relation.referencesArguillarena, A., Margallo, M., & Urtiaga, A. (2021). Carbon footprint of the hot-dip galvanisation process using a life cycle assessment approach. Cleaner Engineering and Technology, 2. https://doi.org/10.1016/j.clet.2021.100041
dc.relation.referencesArguillarena, A., Margallo, M., Urtiaga, A., & Irabien, A. (2021). Life-cycle assessment as a tool to evaluate the environmental impact of hot-dip galvanisation. Journal of Cleaner Production, 290, 125676. https://doi.org/10.1016/j.jclepro.2020.125676
dc.relation.referencesBascone, D., Cipollina, A., Morreale, M., Randazzo, S., Santoro, F., & Micale, G. (2016). Simulation of a regeneration plant for spent pickling solutions via spray roasting. Desalination and Water Treatment, 57(48–49), 23405–23419. https://doi.org/10.1080/19443994.2015.1137146
dc.relation.referencesBerendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The Missing Term in Effective Pair Potentialst. In J. Phys. Chem (Vol. 91).
dc.relation.referencesBermeo Garay, M. (2017). Neutralización: Aplicado a Aguas Residuales. http://142.93.18.15:8080/jspui/bitstream/123456789/69/1/COMPLETO_neutralizacion-mod.pdf
dc.relation.referencesBurckhard, S. R., Schwab, A. P., & Banks, M. K. (1995). The effects of organic acids on the leaching of heavy metals from mine tailings. Journal of Hazardous Materials, 41(2–3), 135–145. https://doi.org/10.1016/0304-3894(94)00104-O
dc.relation.referencesCampano, B. R. (2012). The Kleingarn Regenerated Spent Acid at Increasing Ferrous ( Fe + 2 ) and Ferric ( Fe + 3 ) Chloride Content. 1–18.
dc.relation.referencesCarrasco, V. (2012). Estudio Computacional de los Mecanismos Estructurales Involucrados en las Trasnformaciones de Fase en Fluidos.
dc.relation.referencesCarrillo-Abad, J., García-Gabaldón, M., Ortega, E., & Pérez-Herranz, V. (2012). Recovery of zinc from spent pickling solutions using an electrochemical reactor in presence and absence of an anion-exchange membrane: Galvanostatic operation. Separation and Purification Technology, 98, 366–374. https://doi.org/10.1016/j.seppur.2012.08.006
dc.relation.referencesChapin, E., & Bell, J. (1931). THE SOLUBILITY OF OXALIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.
dc.relation.referencesClementi, E., Corongiu, G., Jönsson, B., & Romano, S. (1980). Monte Carlo simulations of water clusters around Zn++ and a linear Zn++·CO2 complex. The Journal of Chemical Physics, 72(1), 260–263. https://doi.org/10.1063/1.438886
dc.relation.referencesCsicsovszki, G., Kékesi, T., & Török, T. I. (2005). Selective recovery of Zn and Fe from spent pickling solutions by the combination of anion exchange and membrane electrowinning techniques. Hydrometallurgy, 77(1–2), 19–28. https://doi.org/10.1016/j.hydromet.2004.10.020
dc.relation.referencesCulcasi, A., Gueccia, R., Randazzo, S., Cipollina, A., & Micale, G. (2019). Design of a novel membrane-integrated waste acid recovery process from pickling solution. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117623
dc.relation.referencesCunha, T. N. D., Trindade, D. G., Canesin, M. M., Effting, L., de Moura, A. A., Moisés, M. P., Costa Junior, I. L., & Bail, A. (2021). Reuse of Waste Pickling Acid for the Production of Hydrochloric Acid Solution, Iron(II) Chloride and Magnetic Iron Oxide: An Eco-Friendly Process. Waste and Biomass Valorization, 12(3), 1517–1528. https://doi.org/10.1007/s12649-020-01079-1
dc.relation.referencesCurtiss, L. A., Woods Halley, J., Hautman, J., & Rahman, A. (1986). Nonadditivity of ab initio pair potentials for molecular dynamics of multivalent transition metal ions in water. The Journal of Chemical Physics, 86(4), 2319–2327. https://doi.org/10.1063/1.452130
dc.relation.referencesDevi, A., Singhal, A., Gupta, R., & Panzade, P. (2014). A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Technologies and Environmental Policy, 16(8), 1515–1527. https://doi.org/10.1007/s10098-014-0726-7
dc.relation.referencesFinlayson, B. A., Finlayson, B. A., & Engineering, C. (2016). Ullmann ’ s Encyclopedia of Industrial Chemistry. October. https://doi.org/10.1002/14356007.b01
dc.relation.referencesFlett, D. S. (2005). Solvent extraction in hydrometallurgy: The role of organophosphorus extractants. Journal of Organometallic Chemistry, 690(10), 2426–2438. https://doi.org/10.1016/j.jorganchem.2004.11.037
dc.relation.referencesGuardia, E., & Padrd, J. A. (1990a). MOLECULAR DYNAMICS SIMULATION OF FERROUS AND FERRk IONS IN WATER. In Chemical Physics (Vol. 144).
dc.relation.referencesGurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. In Membranes (Vol. 10, Issue 7, pp. 1–93). MDPI AG. https://doi.org/10.3390/membranes10070146
dc.relation.referencesGylien, O., & Salkauskas, M. (1998). Precipitation of metal ions by organic acids as a mean for metal recovery and decontamination of wastewater. In Journal of Radioanalytical and Nuclear Chemistry (Vol. 229, Issue 2).
dc.relation.referencesGyliene, O., Juskenas, R., & Salkauskas, M. (1997). The Use of Organic Acids as Precipitants for Metal Recovery from Galvanic Solutions *. In 111È115 J. Chem. T ech. Biotechnol (Vol. 70).
dc.relation.referencesHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). SOFTWARE Open Access Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. In Journal of Cheminformatics (Vol. 4). http://www.jcheminf.com/content/4/1/17
dc.relation.referencesHaris, N. I. N., Sobri, S., Yusof, Y. A., & Kassim, N. K. (2021). An overview of molecular dynamic simulation for corrosion inhibition of ferrous metals. In Metals (Vol. 11, Issue 1, pp. 1–22). MDPI AG. https://doi.org/10.3390/met11010046
dc.relation.referencesHernández-Betancur, J. D. (2018). Detección de los puntos críticos del proceso de galvanizado por inmersión en caliente: un enfoque hacia la sostenibilidad y el desarrollo sostenible. May, 169. https://doi.org/10.13140/RG.2.2.19244.56960
dc.relation.referencesHockney, R. W., & Eastwood, J. W. (1988). Computer Simulation Using Particles.
dc.relation.referencesHoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. In PHYSICAL REVIEW A (Vol. 31).
dc.relation.referencesHumphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
dc.relation.referencesIdrissi, A., Sokotic’, F., & Turrell, G. (1996). LIQUIDS Molecular dynamics simulation of HCI in liquid CCl4. In Journal of Molecular Liquids (Vol. 70).
dc.relation.referencesIHOBE. (2000). LIBRO BLANCO PARA MINIMIZACION DE RESIDUOS Y EMISIONES GALVANIZADO EN CALIENTE (D. D. O. D. T. V. Y. M. AMBIENTE, Ed.; 1st ed.). IHOBE.
dc.relation.referencesIZA. (2014). Zinc in the Environment understanding the science.
dc.relation.referencesJensen, K. P., & Jorgensen, W. L. (2006). Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. Journal of Chemical Theory and Computation, 2(6), 1499–1509. https://doi.org/10.1021/ct600252r
dc.relation.referencesJorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids.
dc.relation.referencesKarkoszka, T. (2017). Environmental Assessment of the Hot-Dip. 56, 188–190.
dc.relation.referencesKneifelt, C. L., Newton, M. D., & Friedman, H. L. (1994). LIQUIDS SIMULATION OF SOLVENT ISOTOPE EFFECTS ON AQUEOUS FERROUS AND FERRIC IONSt. In Journal of Molecular Liquids (Vol. 60).
dc.relation.referencesKoch, G. (2017). Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101105-8.00001-2
dc.relation.referencesLaaksonen, A., & Westlund, P. O. (1991). A molecular dynamics simulation of hcl a study of the vibrational dephasing mechanism. Molecular Physics, 73(3), 663–683. https://doi.org/10.1080/00268979100101451
dc.relation.referencesLawrence, M. E. (1996). Chloride Pyrohydrolysis Lixiviant Regeneration and Metal Separation.
dc.relation.referencesLee, K. R., Kim, J., & Jang, J. G. (2017). Recovery of zinc in spent pickling solution with oxalic acid. Korean Chemical Engineering Research, 55(6), 785–790. https://doi.org/10.9713/kcer.2017.55.6.785
dc.relation.referencesLevesque, D., Weis, J. J., & Oxtoby, D. W. (1983). A molecular dynamics simulation of rotational and vibrational relaxation in liquid HCl. The Journal of Chemical Physics, 79(2), 917–925. https://doi.org/10.1063/1.445868
dc.relation.referencesLevine, B. G., Stone, J. E., & Kohlmeyer, A. (2011). Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming. Journal of Computational Physics, 230(9), 3556–3569. https://doi.org/10.1016/j.jcp.2011.01.048
dc.relation.referencesLevitt, M., & Lifson, S. (1969). Refinement of Protein Conformations using a Macromolecular Energy Mhimization Procedure. In J. Mol. Biol (Vol. 46).
dc.relation.referencesLevitt, M., & Warshel, A. (1975). Computer simulation of protein folding. Nature, 253(5494), 694–698. https://doi.org/10.1038/253694a0
dc.relation.referencesLi, P., Roberts, B. P., Chakravorty, D. K., & Merz, K. M. (2013). Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. Journal of Chemical Theory and Computation, 9(6), 2733–2748. https://doi.org/10.1021/ct400146w
dc.relation.referencesLiu, S., Yang, H., Yang, Y., Guo, Y., & Qi, Y. (2017). Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor. Frontiers of Environmental Science and Engineering, 11(1). https://doi.org/10.1007/s11783-017-0902-1
dc.relation.referencesMansur, M. B., Rocha, S. D. F., Magalhães, F. S., & Benedetto, J. dos S. (2008). Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction. Journal of Hazardous Materials, 150(3), 669–678. https://doi.org/10.1016/j.jhazmat.2007.05.019
dc.relation.referencesMarder, A. R. (2000). The metallurgy of zinc-coated steel. Progress in Materials Science, 45(3), 191–271. https://doi.org/https://doi.org/10.1016/S0079-6425(98)00006-1
dc.relation.referencesMark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
dc.relation.referencesMartinez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157–2164. https://doi.org/10.1002/jcc.21224
dc.relation.referencesMcDONALD, I. R. (2002). NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Molecular Physics, 100(1), 95–105. https://doi.org/10.1080/00268970110088947
dc.relation.referencesMetropolis, N., Rosenbluch, A., Rosenbluch, M., & Teller, A. (1952). Equation of State Calculation by Fast Computing Machines. The Journal of Chemical Physics, 21(6).
dc.relation.referencesMohammed, A. M., Loeffler, H. H., Inada, Y., Tanada, K. I., & Funahashi, S. (2005). Quantum mechanical/molecular mechanical molecular dynamic simulation of zinc(II) ion in water. Journal of Molecular Liquids, 119(1–3), 55–62. https://doi.org/10.1016/j.molliq.2004.10.008
dc.relation.referencesMorgan, B., & Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution - basic principles and a simple heuristic description. Chemosphere, 68(11), 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015
dc.relation.referencesMoucča, F., Lísal, M., & Smith, W. R. (2012). Molecular simulation of aqueous electrolyte solubility. 3. alkali-halide salts and their mixtures in water and in hydrochloric acid. Journal of Physical Chemistry B, 116(18), 5468–5478. https://doi.org/10.1021/jp301447z
dc.relation.referencesNaznin, M., Choi, J., Shin, W. S., & Choi, J. (2017a). Removal of metal ions from electrochemical decontamination solution using organic acids. Separation Science and Technology (Philadelphia), 52(18), 2886–2896. https://doi.org/10.1080/01496395.2017.1375955
dc.relation.referencesNosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519. https://doi.org/10.1063/1.447334
dc.relation.referencesOcampo, L., Gallego, D. de J., Carvajal, E., Arroyave, D., Suárez, P., & Díaz, S. (2020). METÁLICOS EN EL SUR DEL VALLE DE ABURRA Casos de estudio : Galvanizado en caliente y Cobreado. RED UNAL MED PARA LA SOSTENIBILIDAD AMBIENTAL.
dc.relation.referencesPacheco-Blas, M. del A., & Vicente, L. (2019). Molecular dynamics simulation of removal of heavy metals with sodium dodecyl sulfate micelle in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578. https://doi.org/10.1016/j.colsurfa.2019.123613
dc.relation.referencesPadro, J. A., & Guardia, E. (1996). LIQUIDS MOLECULAR DYNAMICS SIMULATION OF HCI IN LIQUID Ar. In Journal of Molecular Liquids (Vol. 70).
dc.relation.referencesPathak, A., Roy, A., & Manna, M. (2016). Recovery of zinc from industrial waste pickling liquor. Hydrometallurgy, 163, 161–166. https://doi.org/10.1016/j.hydromet.2016.04.006
dc.relation.referencesPietrucci, F., Boero, M., & Andreoni, W. (2021). How natural materials remove heavy metals from water: mechanistic insights from molecular dynamics simulations. Chemical Science, 12(8), 2979–2985. https://doi.org/10.1039/d0sc06204a
dc.relation.referencesRache, J., & Suarez, M. (2014). INTRODUCCIÓN A LA TERMODINÁMICA ESTADÍSTICA: FOTONES Y FONONES. http://fronterasdelconocimiento.com/w3/?p=2253
dc.relation.referencesRandazzo, S., Caruso, V., Ciavardelli, D., Micale, G., & Morreale, M. (2019). Recovery of zinc from spent pickling solutions by liquid–liquid extraction using tbp. Desalination and Water Treatment, 157, 110–117. https://doi.org/10.5004/dwt.2019.24111
dc.relation.referencesRegel-Rosocka, M. (2010). A review on methods of regeneration of spent pickling solutions from steel processing. Journal of Hazardous Materials, 177(1–3), 57–69. https://doi.org/10.1016/j.jhazmat.2009.12.043
dc.relation.referencesRegel-Rosocka, M., Cieszynska, A., & Wisniewski, M. (2007). Methods of regeneration of spent pickling solutions from steel treatment plants. Polish Journal of Chemical Technology, 9(2), 42–45. https://doi.org/10.2478/v10026-007-0023-x
dc.relation.referencesRemsungnen, T., & Rode, B. M. (2004). Molecular dynamics simulation of the hydration of transition metal ions: The role of non-additive effects in the hydration shells of Fe2+ and Fe3+ ions. Chemical Physics Letters, 385(5–6), 491–497. https://doi.org/10.1016/j.cplett.2004.01.016
dc.relation.referencesRossi, B., Marquart, S., & Rossi, G. (2017). Comparative life cycle cost assessment of painted and hot-dip galvanized bridges. Journal of Environmental Management, 197, 41–49. https://doi.org/10.1016/j.jenvman.2017.03.022
dc.relation.referencesRyckaert, J.-P., Ciccotti+, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. In JOURNAL OF COMPUTATIONAL. PHYSICS (Vol. 23).
dc.relation.referencesSalehi, H. S., Ramdin, M., Moultos, O. A., & Vlugt, T. J. H. (2019). Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations. Fluid Phase Equilibria, 497, 10–18. https://doi.org/10.1016/j.fluid.2019.05.022
dc.relation.referencesSambasivarao, S. v., & Acevedo, O. (2009). Development of OPLS-AA force field parameters for 68 unique ionic liquids. Journal of Chemical Theory and Computation, 5(4), 1038–1050. https://doi.org/10.1021/ct900009a
dc.relation.referencesSastri, V. S., Pickling, A., Wells, A. O., Industry, M., Packaging, P. E., & Display, P. (2010). Sastri2010. 2990–3000.
dc.relation.referencesSerna, J., Díaz Martinez, E. N., Narváez Rincón, P. C., Camargo, M., Gálvez, D., & Orjuela, Á. (2016). Multi-criteria decision analysis for the selection of sustainable chemical process routes during early design stages. Chemical Engineering Research and Design, 113, 28–49. https://doi.org/10.1016/j.cherd.2016.07.001
dc.relation.referencesSOPRIN. (2014). Safety Data Sheet Multiacid.
dc.relation.referencesSOPRIN. (2016). HYDROCHLORIC ACID REGENERATION UNIT WITH MULTIACID HYDROCHLORIC ACID REGENERATION UNIT WITH MULTIACID :
dc.relation.referencesTang, J., Pei, Y., Hu, Q., Pei, D., & Xu, J. (2016). The Recycling of Ferric Salt in Steel Pickling Liquors: Preparation of Nano-sized Iron Oxide. Procedia Environmental Sciences, 31, 778–784. https://doi.org/10.1016/j.proenv.2016.02.071
dc.relation.referencesTripathi, A. (2020). Extraction of Heavy Metals from CETP Sludge using Low Molecular Weight Organic Acids-a Batch Study. In IJESC. http://ijesc.org/
dc.relation.referencesTuñón, I. (2010). TEMA 1. Termodinámica Estadística: Fundamentos y Sistemas de Partículas Independientes. Parte I: Fundamentos 1. Introducción a la Termodinámica Estadística 2. Estados de un Sistema. Relación entre las Propiedades Macroscópicas
dc.relation.referencesVerlet, L. (1967). Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 169
dc.relation.referencesVerma, A., Kore, R., Corbin, D. R., & Shiflett, M. B. (2019). Metal Recovery Using Oxalate Chemistry: A Technical Review. Industrial and Engineering Chemistry Research, 58(34), 15381–15393. https://doi.org/10.1021/acs.iecr.9b02598
dc.relation.referencesWalco S.A. (1997). Todo Sobre los Quelatos.
dc.relation.referencesWan, G., Lv, F., Yang, Y., & Wang, X. (2016). Synthesis of Iron Oxide Yellow from Spent Pickling Solutions. https://doi.org/10.1051/06091
dc.relation.referencesWorld Steel Association. (2020). World Steel in Figures. World Steel Association, 30 April, 1–8. http://www.worldsteel.org/wsif.php
dc.relation.referencesWorld Steel Association. (2021). 2021-World-Steel-in-Figures.
dc.relation.referencesXu, Y. (2008). Heavy Metal Complexes Wastewater Treatment with Chelation Precipitation. IEEE Engineering in Medicine and Biology Society.
dc.relation.referencesYellishetty, M., Ranjith, P. G., & Tharumarajah, A. (2010). Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resources, Conservation and Recycling, 54(12), 1084–1094. https://doi.org/10.1016/j.resconrec.2010.03.003
dc.relation.referencesZhang, W., Lu, B., Tang, H., Zhao, J., & Cai, Q. (2015). Reclamation of acid pickling waste: A facile route for preparation of single-phase Fe3O4 nanoparticle. Journal of Magnetism and Magnetic Materials, 381, 401–404. https://doi.org/10.1016/j.jmmm.2015.01.037
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembDecapado de metales
dc.subject.lembAcido oxálico
dc.subject.lembAcido tartárico
dc.subject.lembMetals - pickling
dc.subject.proposalPrecipitación de oxalatos
dc.subject.proposalReutilización de residuos
dc.subject.proposalBaños gastados de decapado
dc.subject.proposalSimulación de dinámica molecular.
dc.subject.proposalOxalic acid
dc.subject.proposalChelation
dc.subject.proposalWaste reuse
dc.subject.proposalSpent pickling acids
dc.subject.proposalMolecular dynamics simulation
dc.title.translatedRecovery processes for spent acids from pickling through the precipitation of heavy metals with oxalic acid and tartaric acid
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología
dc.contributor.orcidEcheverry Vargas, Luver [0000-0001-7365-4361]
dc.contributor.orcidOCAMPO CARMONA, LUZ MARINA [0000-0002-8117-1391]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito