Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCangrejo Aljure, Libia Denisse
dc.contributor.advisorDelgado Fernández, Tatiana
dc.contributor.authorVásquez Rodríguez, Jimmy Alexander
dc.date.accessioned2023-01-26T16:38:05Z
dc.date.available2023-01-26T16:38:05Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83143
dc.descriptionilustraciones, graficas
dc.description.abstractDe cara al desarrollo alcanzado en los últimos años en el cual paradigmas como Internet de las Cosas plantean retos en diferentes niveles tecnológicos, las redes de datos evolucionaron, haciéndose programables, más autónomas y con la posibilidad de prescindir de infraestructuras de hardware dedicadas. Surgieron así las redes Definidas por Software, SDN´s, mostrando beneficios relevantes para el despliegue de diversas soluciones y en particular para entornos IoT. Los entornos IoT demandan redes, programables, interoperables, escalables, seguras y que garanticen el cumplimiento de estándares de calidad del servicio. Todas estas demandas representan desafíos para las redes de datos, que han sido abordados en modelos de SDN, con la capacidad de gestionar eficientemente la información de los objetos IoT, garantizando aspectos como la seguridad, la calidad en los datos y la interoperabilidad. Por tanto, la idea de desarrollar un procedimiento de evaluación técnica sensible a parámetros técnicos de las arquitecturas IoT es un método que enriquece la toma de estas decisiones. Esta propuesta provee un procedimiento para la selección estructurada, definido en cuatro etapas, a saber, el análisis conceptual, el modelamiento del método de evaluación técnica, la comparación de los criterios y la validación de las alternativas, procedimiento orientado a la identificación de la mejor solución tecnológica. (Texto tomado de la fuente)
dc.description.abstractIn view of the development achieved in recent years in which paradigms such as the Internet of Things pose challenges at different technological levels, data networks have evolved, becoming programmable, more autonomous and with the possibility of dispensing with dedicated hardware infrastructures. Thus, Software Defined Networks, SDNs, emerged, showing relevant benefits for the deployment of various solutions and in particular for IoT environments. IoT environments demand networks that are programmable, interoperable, scalable, secure and that guarantee compliance with service quality standards. All these demands represent challenges for data networks, which have been addressed in SDN models, with the ability to efficiently manage the information of IoT objects, guaranteeing aspects such as security, data quality and interoperability. Therefore, the idea of developing a technical evaluation procedure sensitive to technical parameters of IoT architectures is a method that enriches the making of these decisions. This proposal provides a procedure for the structured selection, defined in four stages, namely, the conceptual analysis, the modeling of the technical evaluation method, the comparison of the criteria and the validation of the alternatives, a procedure aimed at identifying the best technological solution.
dc.format.extent111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDefinición de un procedimiento orientado a la evaluación técnica de la arquitectura de red IoT definida por software
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.contributor.researchgroupANGeoSc
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Telecomunicaciones
dc.description.methods• Metodología de Investigación Mixta • Metodología de Investigación Interdisciplinaria (MIR) • Metodología de revisión sistemática de la literatura (SLR) • Metodología del proceso analítico jerárquico (AHP)
dc.description.researchareaRedes definidas por software
dc.description.researchareaInternet de las Cosas
dc.description.researchareaTelecomunicaciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá - Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAggarwal, S., & Kumar, N. (2019). Fog Computing for 5G-Enabled Tactile Internet: Research Issues, Challenges, and Future Research Directions. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01430-4
dc.relation.referencesAhmed, A. I. A., Gani, A., Hamid, S. H. A., Abdelmaboud, A., Syed, H. J., Habeeb Mohamed, R. A. A., & Ali, I. (2019). Service management for iot: Requirements, taxonomy, recent advances and open research challenges. IEEE Access, 7, 155472–155488. https://doi.org/10.1109/ACCESS.2019.2948027
dc.relation.referencesAhmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos, A. v. (2017). The role of big data analytics in Internet of Things. Computer Networks, 129, 459–471. https://doi.org/10.1016/j.comnet.2017.06.013
dc.relation.referencesAlaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10–28. https://doi.org/10.1016/j.jnca.2017.04.002
dc.relation.referencesAl-Hubaishi, M. (2019). Integrating SDN-Enabled Wireless Sensor Networks Into the Internet. http://www.iotlab.sakarya.edu.trhttp://www.iotlab.
dc.relation.referencesAnadiotis, A.-C. G., Morabito, G., Palazzo, S., & Member, S. (2016). An SDN-Assisted Framework for Optimal Deployment of MapReduce Functions in WSNs; An SDN-Assisted Framework for Optimal Deployment of MapReduce Functions in WSNs. IEEE Transactions on Mobile Computing, 15. https://doi.org/10.1109/TMC.2015.2496582
dc.relation.referencesAndrew Lerner. (2021). SD-BRANCH Gartner 2021. Hype Cycle for Enterprise Networking, 2020 . https://blogs.gartner.com/andrew-lerner/2020/07/09/sd-branch/
dc.relation.referencesBaktir, A. C., Ozgovde, A., & Ersoy, C. (2017). How Can Edge Computing Benefit from Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Communications Surveys and Tutorials, 19(4), 2359–2391. https://doi.org/10.1109/COMST.2017.2717482
dc.relation.referencesBello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62. https://doi.org/10.1016/j.adhoc.2016.06.010
dc.relation.referencesBera, S., Misra, S., & Vasilakos, A. v. (2017). Software-Defined Networking for Internet of Things: A Survey. IEEE INTERNET OF THINGS JOURNAL, 4(6). https://doi.org/10.1109/JIOT.2017.2746186
dc.relation.referencesBERNAT, R. (2015). OpenDaylight SDN controller platform. Tesis.
dc.relation.referencesBiolchini, J., Gomes Mian, P., Candida Cruz Natali, A., & Horta Travassos, G. (2005). Systematic Review in Software Engineering.
dc.relation.referencesBizanis, N., & Kuipers, F. A. (2016). SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access, 4, 5591–5606. https://doi.org/10.1109/ACCESS.2016.2607786
dc.relation.referencesBoer, S. J. de (Sirp J. (1989). Decision methods and techniques in methodical engineering design. https://books.google.com/books/about/Decision_methods_and_techniques_in_metho.html?hl=es&id=VnmxAAAACAAJ
dc.relation.referencesBojacá Acosta, Jorge. (2004). XYZ investigación pedagógica. Estado del arte. Semilleros. Logos-edit
dc.relation.referencesBorgia, E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31. https://doi.org/10.1016/j.comcom.2014.09.008
dc.relation.referencesBröring, A., Seeger, J., Papoutsakis, M., Fysarakis, K., & Caracalli, A. (2020). Networking-aware IoT application development. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030897
dc.relation.referencesCenteno, A. G., Manuel, C., Vergel, R., & Calderón, C. A. (2014). Controladores SDN , elementos para su selección y evaluación. Revista Telem@tica, 13(3), 10–20.
dc.relation.referencesChen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682
dc.relation.referencesChica Pedraza, G. (2012). Estudio y Analisis de la Viabilidad de la Implementacion de Tecnologıa PLT UNAL. Tesis Universidad Nacional de Colombia.
dc.relation.referencesCitrix Systems. (2015). sdn-role-of-application-delivery-network-services-citrix. Citrix Systems, Inc
dc.relation.referencesČolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17–39. https://doi.org/10.1016/j.comnet.2018.07.017
dc.relation.referencesCreswell, J. W., & Garrett, A. L. (2008). The “movement” of mixed methods research and the role of educators. In South African Journal of Education.
dc.relation.referencesDarabseh, A., & Freris, N. M. (2019). A software-defined architecture for control of IoT cyberphysical systems. Cluster Computing, 22(4), 1107–1122. https://doi.org/10.1007/s10586-018-02889-8
dc.relation.referencesDas, R. K., Ahmed, N., Pohrmen, F. H., Maji, A. K., & Saha, G. (2020). 6LE-SDN: An Edge-Based Software-Defined Network for Internet of Things; 6LE-SDN: An Edge-Based Software-Defined Network for Internet of Things. IEEE INTERNET OF THINGS JOURNAL, 7(8). https://doi.org/10.1109/JIOT.2020.2990936
dc.relation.referencesDas, S., Talayco, D., & Sherwood, R. (2013a). Software-Defined Networking and OpenFlow. In Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-401673-6.00017-9
dc.relation.referencesDas, S., Talayco, D., & Sherwood, R. (2013b). Software-Defined Networking and OpenFlow. In Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition (pp. 427–445). Elsevier Inc. https://doi.org/10.1016/B978-0-12-401673-6.00017-9
dc.relation.referencesDeCusatis, C. (2013). Network Architectures and Overlay Networks. Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition, 321–337. https://doi.org/10.1016/B978-0-12-401673-6.00013-1
dc.relation.referencesEl-Mougy, A., Ibnkahla, M., & Hegazy, L. (2015). Software-defined wireless network architectures for the Internet-of-Things; Software-defined wireless network architectures for the Internet-of-Things. https://doi.org/10.1109/LCNW.2015.7365931
dc.relation.referencesF. Almeida. (2018). STRATEGIES TO PERFORM A MIXED METHODS STUDY (ALMEIDA). Open Access Publishing Group .
dc.relation.referencesFarris, I., Taleb, T., Khettab, Y., & Song, J. (2019). A Survey on Emerging SDN and NFV Security Mechanisms for IoT Systems. IEEE Communications Surveys & Tutorials, 21(1), 812–837. https://doi.org/10.1109/COMST.2018.2862350
dc.relation.referencesFelipe, D., & Gómez, B. (n.d.). OPENFLOW: EL PROTOCOLO DEL FUTURO* (Issue 93).
dc.relation.referencesFlauzac, O., Gonzalez, C., & Nolot, F. (2016). Developing a Distributed Software Defined Networking Testbed for IoT. Procedia Computer Science, 83(Ant), 680–684. https://doi.org/10.1016/j.procs.2016.04.151
dc.relation.referencesFortinet INC. (n.d.). Soluciones Secure SD-WAN: Rápidas, escalables & flexibles | Fortinet. Retrieved August 15, 2022, from https://www.fortinet.com/lat/products/sd-wan
dc.relation.referencesFortinet INC. (2021). SD-WAN / SD-Branch Architecture for Enterprise. https://blog.fortinet.com
dc.relation.referencesGalluccio, L., Milardo, S., Morabito, G., & Palazzo, S. (2015). SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for WIreless SEnsor networks; SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for WIreless SEnsor networks. In 2015 IEEE Conference on Computer Communications (INFOCOM). https://doi.org/10.1109/INFOCOM.2015.7218418
dc.relation.referencesGartner. (2021). Magic Quadrant Gartner . https://www.gartner.es/es/metodologias/magic-quadrant
dc.relation.referencesGooley Jason. (2021). Cisco Software-Defined Network. Copyright © 2021 Cisco Systems, Inc.
dc.relation.referencesGuan, Z., Bertizzolo, L., Demirors, E., & Melodia, T. (2021). WNOS: Enabling Principled Software-Defined Wireless Networking; WNOS: Enabling Principled Software-Defined Wireless Networking. IEEE/ACM TRANSACTIONS ON NETWORKING, 29(3). https://doi.org/10.1109/TNET.2021.3064824
dc.relation.referencesH. Tobi, & Jarl K. Kampen. (2017). Research design the methodology for interdisciplinary (Tobi).
dc.relation.referencesHajian, E., Khayyambashi, M. R., & Movahhedinia, N. (2022). A Mechanism for Load Balancing Routing and Virtualization Based on SDWSN for IoT Applications. https://doi.org/10.1109/ACCESS.2022.3164693
dc.relation.referencesHatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I., & Demetriou, G. (2018). The Industrial Internet of Things as an enabler for a Circular Economy Hy-LP: A novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Computer Communications, 119, 127–137. https://doi.org/10.1016/j.comcom.2018.02.007
dc.relation.referencesHu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined network and OpenFlow: From concept to implementation. In IEEE Communications Surveys and Tutorials (Vol. 16, Issue 4, pp. 2181–2206). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/COMST.2014.2326417
dc.relation.referencesIbrahim Naser, J., & Jawad Kadhim, A. (2020). Multicast routing strategy for SDN-cluster based MANET. International Journal of Electrical and Computer Engineering (IJECE), 10(5), 4447–4457. https://doi.org/10.11591/ijece.v10i5.pp4447-4457
dc.relation.referencesIntegrated cisco and unix network architectures. (2008). Equal-Cost Multi-Path (ECMP) Routing. Chapter 8. Static Routing Concepts. http://etutorials.org/Networking/Integrated+cisco+and+unix+network+architectures/Chapter+8.+Static+Routing+Concepts/Equal-Cost+Multi-Path+ECMP+Routing/
dc.relation.referencesInteroperabilidad - Arquitectura TI. (n.d.). Retrieved August 5, 2022, from https://www.mintic.gov.co/arquitecturati/630/w3-propertyvalue-8117.html
dc.relation.referencesJain, V., Yatri, V., Kanchan, & Kapoor, C. (2019). Software defined networking: State-of-the-art. Journal of High Speed Networks, 25(1), 1–40. https://doi.org/10.3233/JHS-190601
dc.relation.referencesJarraya, Y., Madi, T., & Debbabi, M. (2014). A survey and a layered taxonomy of software-defined networking. In IEEE Communications Surveys and Tutorials (Vol. 16, Issue 4, pp. 1955–1980). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/COMST.2014.2320094
dc.relation.referencesJuan.Rodrigo. (2019). Application-aware routing y SD-WAN. Teldat Blog - Connectando El Mundo SDWAN. https://www.teldat.com/blog/es/application-aware-routing-y-sd-wan/
dc.relation.referencesJuniper INC. (2014). Understanding IEEE 802.3ad Link Aggregation. Technical Documentation - Support - Juniper Networks. https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/802.3ad-link-aggregation-understanding.html
dc.relation.referencesKamal, Z., Mohammed, A., Sayed, E., & Ahmed, A. (2017). Internet of Things Applications , Challenges and Related Future Technologies Internet of Things Applications , Challenges and Related Future Technologies. World Scient Ific News, 67(February), 126–148.
dc.relation.referencesKaragiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). A Survey on Application Layer Protocols for the Internet of Things. Transaction on IoT and Cloud Computing, 3(1), 11–17. https://doi.org/10.5281/ZENODO.51613
dc.relation.referencesKirichek, R., Vladyko, A., Zakharov, M., & Koucheryavy, A. (2016). Model networks for Internet of Things and SDN; Model networks for Internet of Things and SDN. https://doi.org/10.1109/ICACT.2016.7423280
dc.relation.referencesKitchenham, B. (2007). Source: “Guidelines for performing Systematic Literature Reviews in SE”, Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering.
dc.relation.referencesKitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. In Information and Software Technology (Vol. 55, Issue 12, pp. 2049–2075). Elsevier B.V. https://doi.org/10.1016/j.infsof.2013.07.010
dc.relation.referencesKobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., Weissmann, P., & McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151–175. https://doi.org/10.1016/j.bjp.2013.10.011
dc.relation.referencesKreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76. https://doi.org/10.1109/JPROC.2014.2371999
dc.relation.referencesKristen Gloss. (n.d.). IoT authentication and authorization. How to Use IoT Authentication and Authorization for Security. Retrieved August 16, 2022, from https://www.techtarget.com/iotagenda/feature/How-to-use-IoT-authentication-and-authorization-for-security
dc.relation.referencesLantz, B., & O’Connor, B. (2015). A Mininet-based Virtual Testbed for Distributed SDN Development. Computer Communication Review, 45(4), 365–366. https://doi.org/10.1145/2785956.2790030
dc.relation.referencesLe, N. T., Hossain, M. A., Islam, A., Kim, D.-Y., Choi, Y.-J., & Jang, Y. M. (2016). Survey of promising technologies for 5g networks. Mobile Information Systems, 2016, 1–26. https://doi.org/10.1155/2016/2676589
dc.relation.referencesLeón Garcia, O. (2000). Tomar decisiones dificiles. 305.
dc.relation.referencesLi, G., Wu, J., Li, J., Zhou, Z., & Guo, L. (2018). SLA-Aware Fine-Grained QoS Provisioning for Multi-Tenant Software-Defined Networks. https://doi.org/10.1109/ACCESS.2017.2761553
dc.relation.referencesLi, X., Li, D., Wan, J., Liu, C., & Imran, M. (2018). Adaptive Transmission Optimization in SDN-Based Industrial Internet of Things With Edge Computing; Adaptive Transmission Optimization in SDN-Based Industrial Internet of Things With Edge Computing. IEEE INTERNET OF THINGS JOURNAL, 5(3), 1351. https://doi.org/10.1109/JIOT.2018.2797187
dc.relation.referencesLiu, Y., Kuang, Y., Xiao, Y., & Xu, G. (2018). SDN-Based Data Transfer Security for Internet of Things. IEEE Internet of Things Journal, 5(1), 257–268. https://doi.org/10.1109/JIOT.2017.2779180
dc.relation.referencesM. del Socorro García. (2009). Métodos para la comparación de alternativas SAD.
dc.relation.referencesM. Fetters, & JF. Molina-Azorin. (2017). The Journal of Mixed Methods Research Starts a New Decade. Journal of Mixed Methods Research.
dc.relation.referencesM. S, G. (2009). Métodos para la comparación de alternativas SAD. Tesis UPCT.
dc.relation.referencesMaimó, L. F., Celdrán, A. H., Perales Gómez, Á. L., García Clemente, F. J., Weimer, J., & Lee, I. (2019). Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments. Sensors (Switzerland), 19(5). https://doi.org/10.3390/s19051114
dc.relation.referencesMalcolm Betts. (2014). TR_SDN_ARCH_1.0_06062014. Open Networking Foundation.
dc.relation.referencesMaría, J., & Jiménez, M. (2010). EL PROCESO ANALÍTICO JERÁRQUICO (AHP).
dc.relation.referencesMarsden., C. T. (2017). Network neutrality: From policy to law to regulation. In Network neutrality: From policy to law to regulation. Manchester University Press. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073492282&partnerID=40&md5=68f85dfe22d42fe7ea6c21f95ec1a225
dc.relation.referencesMartinez-julia, P., & Skarmeta, A. F. (2014). Empowering the Internet of Things with Software Defined Networking. IPv6 for the Internet of Things. iot6.eu/sites/default/files/imageblock/IoT6 - SDN - IoT.pdf
dc.relation.referencesMcKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., & Turner, J. (2013). OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communication Review, 38(2), 69. https://doi.org/10.1145/1355734.1355746
dc.relation.referencesMorabito, R., & Jimenez, J. (2020). IETF Protocol Suite for the Internet of Things: Overview and Recent Advancements. IEEE Communications Standards Magazine, 4(2), 41–49. https://doi.org/10.1109/MCOMSTD.001.1900014
dc.relation.referencesMoreno, J. C. (2015). Estudio de las redes definidas por software y escenarios virtuales de red orientados al aprendizaje.
dc.relation.referencesMoreno, J. M. (2012). EL PROCESO ANALÍTICO JERÁRQUICO (AHP). FUNDAMENTOS, METODOLOGÍA Y APLICACIONES.
dc.relation.referencesMouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Communications Surveys and Tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153
dc.relation.referencesNguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure communication protocols for the Internet of Things. Ad Hoc Networks, 32, 17–31. https://doi.org/10.1016/j.adhoc.2015.01.006
dc.relation.referencesOSORIO, J. C. O. , J. (2008). Analitic hierarchic process and multicriteria decisión making. Application example. UTP.
dc.relation.referencesPerera, C., McCormick, C., Bandara, A. K., Price, B. A., & Nuseibeh, B. (2016). Privacy-by-Design Framework for Assessing Internet of Things Applications and Platforms. Proceedings of the 6th International Conference on the Internet of Things - IoT’16, 83–92. https://doi.org/10.1145/2991561.2991566
dc.relation.referencesPetticrew, M., & Roberts, H. (2005). Systematic Reviews in the Social Sciences A PRACTICAL GUIDE.
dc.relation.referencesR. Burke Johnson, & Anthony J. Onwuegbuzie. (2004). A research paradigm whose time has come. Educational Researcher (Johnson, R., & Onwuegbuzie).
dc.relation.referencesRashidi, B., Fung, C., & Bertino, E. (2017). A Collaborative DDoS Defence Framework Using Network Function Virtualization. IEEE Transactions on Information Forensics and Security, 12(10), 2483–2497. https://doi.org/10.1109/TIFS.2017.2708693
dc.relation.referencesRed Hat, Inc. (2018). ¿Qué es la virtualización? Https://Www.Redhat.Com/Es/Topics/Virtualization/What-Is-Virtualization. https://www.redhat.com/es/topics/virtualization/what-is-virtualization
dc.relation.referencesRehmani, M. H., Davy, A., Jennings, B., & Assi, C. (2019). Software Defined Networks-Based Smart Grid Communication: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 21(3), 2637–2670. https://doi.org/10.1109/COMST.2019.2908266
dc.relation.referencesSaaty, T. L. (2008a). Decision making with the analytic hierarchy process. In Int. J. Services Sciences (Vol. 1, Issue 1).
dc.relation.referencesSaaty, T. L. (2008b). Decision making with the analytic hierarchy process. In Int. J. Services Sciences (Vol. 1, Issue 1).
dc.relation.referencesSaaty, T. L. (2008c). The Analytic Hierarchy/Network Process. In Rev. R. Acad. Cien. Serie A. Mat. VOL (Vol. 102, Issue 2).
dc.relation.referencesSalman, O., Elhajj, I., Chehab, A., & Kayssi, A. (2018). IoT survey: An SDN and fog computing perspective. Computer Networks, 143, 221–246. https://doi.org/10.1016/j.comnet.2018.07.020
dc.relation.referencesSanjay, U., Steve. Woo, & Dan, P. (2018). SD_WAN_For_Dummies_VMware_2nd_SpecialEdition. Book.
dc.relation.referencesSerrano, D., & Guerri, J. (2015). Redes Definidas por Software (SDN): OpenFlow. 1–43. https://articulosit.files.wordpress.com/2013/10/sdn.pdf%0Ahttps://riunet.upv.es/bitstream/handle/10251/62801/SERRANO - Redes Definidas por Software (SDN): OpenFlow.pdf?sequence=3
dc.relation.referencesSher DeCusatis, C. J., & Carranza, A. (2013). Cloud Computing Data Center Networking. In Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition (pp. 365–386). Elsevier Inc. https://doi.org/10.1016/B978-0-12-401673-6.00015-5
dc.relation.referencesSikeridis, D., Papapanagiotou, I., Rimal, B. P., & Devetsikiotis, M. (2017). A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors. http://arxiv.org/abs/1710.01476
dc.relation.referencesSood, K., Yu, S., & Xiang, Y. (2016). Software-Defined Wireless Networking Opportunities and Challenges for Internet-of-Things: A Review. IEEE Internet of Things Journal, 3(4), 453–463. https://doi.org/10.1109/JIOT.2015.2480421
dc.relation.referencesSouri, A., Norouzi, M., Asghari, P., Rahmani, A. M., & Emadi, G. (2020). A systematic literature review on formal verification of software-defined networks. Transactions on Emerging Telecommunications Technologies, 31(2), 1–23. https://doi.org/10.1002/ett.3788
dc.relation.referencesSouza, R., Dias, K., & Fernandes, S. (n.d.). NFV Data Centers: A Systematic Review. https://doi.org/10.1109/ACCESS.2020.2973568
dc.relation.referencesSouza, R., Dias, K., & Fernandes, S. (2020). NFV Data Centers: A Systematic Review. IEEE Access, 8, 51713–51735. https://doi.org/10.1109/ACCESS.2020.2973568
dc.relation.referencesSun, X., & Ansari, N. (2016). EdgeIoT: Mobile Edge Computing for the Internet of Things; EdgeIoT: Mobile Edge Computing for the Internet of Things. https://doi.org/10.1109/MCOM.2016.1600492CM
dc.relation.referencesTaherkordi, A., Zahid, F., Verginadis, Y., & Horn, G. (2018). Future Cloud Systems Design: Challenges and Research Directions. IEEE Access, 6, 74120–74150. https://doi.org/10.1109/ACCESS.2018.2883149
dc.relation.referencesTheodorou, T., & Mamatas, L. (2017). CORAL-SDN: A Software-Defined Networking Solution for the Internet of Things. https://www.ansible.com/
dc.relation.referencesTsai, P.-W., Piccialli, F., Tsai, C.-W., Luo, M.-Y., & Yang, C.-S. (2017). Control frameworks in network emulation testbeds: A survey. Journal of Computational Science, 22, 148–161. https://doi.org/10.1016/j.jocs.2017.03.003
dc.relation.referencesVargas, M. G., Galeano Higuita, C., & Jaramillo Muñoz, A. (2015). EL ESTADO DEL ARTE- UNA METODOLOGÍA DE INVESTIGACIÓN. Revista Colombiana de Ciencias Sociales, 20.
dc.relation.referencesVaryani, N., Zhang, Z.-L., & Dai, D. (2020). QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks. https://doi.org/10.1109/ACCESS.2020.2995558
dc.relation.referencesVelasquez, K., Abreu, D. P., Assis, M. R. M., Senna, C., Aranha, D. F., Bittencourt, L. F., Laranjeiro, N., Curado, M., Vieira, M., Monteiro, E., & Madeira, E. (2018). Fog orchestration for the Internet of Everything: state-of-the-art and research challenges. Journal of Internet Services and Applications, 9(1). https://doi.org/10.1186/s13174-018-0086-3
dc.relation.referencesVučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., & Guizzetti, R. (2015). OSCAR: Object security architecture for the Internet of Things. Ad Hoc Networks, 32, 3–16. https://doi.org/10.1016/j.adhoc.2014.12.005
dc.relation.referencesWette, P., Dräxler, M., Schwabe, A., Wallaschek, F., Zahraee, M. H., & Karl, H. (2014). MaxiNet: Distributed Emulation of Software-Defined Networks. https://doi.org/10.1109/IFIPNetworking.2014.6857078
dc.relation.referencesWood, T., Ramakrishnan, K. K., Hwang, J., Liu, G., & Zhang, W. (2015). Toward a software-based network: integrating software defined networking and network function virtualization; Toward a software-based network: integrating software defined networking and network function virtualization. https://doi.org/10.1109/MNET.2015.7113223
dc.relation.referencesXiong, B., Yang, K., Zhao, J., Li, W., & Li, K. (2016). Performance evaluation of OpenFlow-based software-defined networks based on queueing model. Computer Networks, 102, 172–185. https://doi.org/10.1016/j.comnet.2016.03.005
dc.relation.referencesXu, T., Gao, D., Dong, P., Zhang, H., Heng Foh, C., & Chao, H.-C. (2016). Defending Against New-Flow Attack in SDN-Based Internet of Things. https://doi.org/10.1109/ACCESS.2017.2666270
dc.relation.referencesZerifi, M., Ezzouhairi, A., & Boulaalam, A. (2020). Overview on SDN and NFV based architectures for IoT environments: challenges and solutions; Overview on SDN and NFV based architectures for IoT environments: challenges and solutions. https://doi.org/10.1109/ICDS50568.2020.9268779
dc.relation.referencesZhang, X., Yu, S., Zhang, J., & Xu, Z. (2019). Forwarding Rule Multiplexing for Scalable SDN-Based Internet of Things. IEEE Internet of Things Journal, 6(2), 3373–3385. https://doi.org/10.1109/JIOT.2018.2882855
dc.relation.referencesZhu, T., Dhelim, S., Zhou, Z., Yang, S., & Ning, H. (2017). An architecture for aggregating information from distributed data nodes for industrial internet of things. Computers and Electrical Engineering, 58, 337–349. https://doi.org/10.1016/j.compeleceng.2016.08.018
dc.relation.referencesZunino, C., Valenzano, A., Obermaisser, R., & Petersen, S. (2020). Factory Communications at the Dawn of the Fourth Industrial Revolution. Computer Standards and Interfaces, 71. https://doi.org/10.1016/j.csi.2020.103433
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPERT (ANALISIS DE REDES)
dc.subject.lembPert (Network analysis)
dc.subject.proposalSDN-IoT
dc.subject.proposalRedes definidas por software
dc.subject.proposalInternet de las cosas
dc.subject.proposalSDN
dc.subject.proposalInteroperabilidad
dc.subject.proposalSeguridad
dc.subject.proposalQoS
dc.subject.proposalSoftware-defined network
dc.subject.proposalSDN-IoT
dc.subject.proposalInteroperability
dc.subject.proposalSecurity
dc.subject.proposalData quality
dc.subject.proposalInternet of things
dc.title.translatedDefinition of a procedure oriented to the technical evaluation of the IoT network architecture defined by software
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito