Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRoa Rojas, Jairo
dc.contributor.authorCardona Vásquez, Jorge Andrés
dc.date.accessioned2023-01-27T14:10:38Z
dc.date.available2023-01-27T14:10:38Z
dc.date.issued2022-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83161
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractEl presente trabajo muestra un detallado estudio de materiales basados en manganitas de tierras raras RMnO3 (R = ion de tierras raras). En la literatura hay diversos reportes que muestran que las propiedades estructurales, magnéticas, eléctricas, y ópticas de estos materiales, dependen de la naturaleza del ion de tierras raras, así como de su tamaño. Tomando como punto de partida las manganitas de tierras raras con gadolinio (Gd) y disprosio (Dy), se realizaron sustituciones en las posiciones de los iones R y Mn para dar lugar a la familia de materiales dada por la formula genérica R2AMn3-xCoxO9, donde A un ion alcalinotérreo (Ca o Sr) y x determina el grado de sustitución de iones de cobalto (Co) en las posiciones de los iones de manganeso (Mn). Estas sustituciones buscaban fundamentalmente inducir estados de valencia mixta en los iones Mn, para generar ferromagnetismo en los materiales, de igual manera, se buscaba reforzar este comportamiento con la introducción de iones Co en las posiciones Mn. La síntesis de los materiales se realizó por medio de la técnica de reacción de estado sólido convencional, partiendo de precursores de alta pureza (>99%) disponibles comercialmente. Por medio de la técnica de difracción de rayos X se realizó el seguimiento de la evolución del proceso de síntesis. Este análisis mostró que a partir de un tratamiento térmico con temperaturas máximas de 1473 K es posible la obtención de fases de alta pureza y cristalinidad para todos los materiales estudiados. La caracterización estructural del sistema se llevó a cabo por medio del refinamiento Rietveld de los patrones de difracción medidos sobre las muestras finales, observando que todos los materiales de la familia presentan una simetría ortorrómbica con grupo espacial Pbnm (No. 62). Así mismo, el refinamiento permitió estudiar el comportamiento de los parámetros de red, distorsiones y rotaciones octaédricas del sistema, evidenciando la estabilización estructural (aumento del grado de simetría) de los materiales al aumentar el radio iónico del ion A o aumentar el grado de sustitución x, acercando la celda unitaria a la simetría tetragonal. El comportamiento magnético de los materiales fue estudiado por medio de medidas de magnetización en función de la temperatura en ciclos de enfiado a campo cero (ZFC) y de enfriamiento con campo aplicado (FC), observando un carácter paramagnético a temperatura ambiente, con transiciones de fase por debajo de 100 K a estados ferromagnético y antiferromagnético que compiten entre sí, viéndose favorecido el antiferromagnetismo por debajo de 50 K y el ferromagnetismo entre 50 K y 100 K. Finalmente, la respuesta eléctrica de los materiales fue estudiada mediante curvas de impedancia compleja en función de la temperatura en un rango de 70 K a 300 K con frecuencias aplicadas de 100 Hz, 1kHz, 10 kHz y 100 kHz, observando un comportamiento semiconductor en todo el rango de temperatura y transiciones de fase dependientes de la frecuencia asociadas con los mecanismos de transporte y relajación dieléctrica de los materiales. (Texto tomado de la fuente).
dc.description.abstractThis work shows a detailed study of materials based on rare earth manganites RMnO3 (R = rare earth ion). In the literature there are several reports showing that the structural, magnetic, electrical and optical properties of these materials depend on the nature of the rare earth ion, as well as its size. Taking the rare earth manganites with gadolinium (Gd) and dysprosium (Dy) as a starting point, substitutions were made in the positions of the R and Mn ions to give rise to the family of materials given by the generic formula R2AMn3-xCoxO9, where A binding alkaline earth (Ca or Sr) and x determines the degree of substitution of cobalt (Co) ions at the manganese (Mn) ion positions. These substitutions sought to induce states of mixed valence in the Mn ions, to generate ferromagnetism in the materials, additionally, they sought to reinforce this behavior with the introduction of Co ions in the Mn positions. Synthesis of the materials was carried out by the conventional solid state reaction technique, starting from commercially available high purity precursors (>99%). Through the X-ray diffraction technique, the evolution of the synthesis process was monitored. This analysis showed that from a thermal treatment with maximum temperatures of 1473 K it is possible to obtain phases of high purity and crystallinity for all materials. Structural characterization of the system was carried out through the Rietveld refinement of the diffraction patterns measured on the final samples, observing that all the materials of the family present an orthorhombic symmetry with a Pbnm space group (No. 62). Likewise, the refinement allowed studying the behavior of the lattice parameters, distortions and octahedral rotations of the system, evidencing the structural stabilization (increase in the degree of symmetry) of the materials by increasing the ionic radius of the A ion or increasing the degree of substitution. x, bringing the unit cell closer to tetragonal symmetry. The magnetic behavior of the materials was studied by means of measurements of magnetization as a function of temperature in zero field cooling (ZFC) and field cooling (FC) loops, observing a paramagnetic character at room temperature, with phase transitions below 100 K to competing ferromagnetic and antiferromagnetic states, showing that the antiferromagnetism being favored below 50 K and ferromagnetism dominates between 50 K and 100 K. Finally, the electrical response of the materials was studied using complex impedance curves as a function of temperature in a range from 70 K to 300 K with applied frequencies of 100 Hz. , 1kHz, 10kHz, and 100kHz, observing semiconductor behavior over the entire temperature range and frequency-dependent phase transitions associated with the dielectric relaxation and transport mechanisms of materials.
dc.format.extentxxv, 133 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleSíntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.notesIncluye anexos
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaCiencia y tecnología de materiales cerámicos y compuestos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesW. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, no. 7104, pp. 759–765, Aug. 2006, doi: 10.1038/nature05023
dc.relation.referencesY. Zhou, J. Zhang, B. Li, Y. Su, B. Kang, and S. Cao, “Converse magnetoelectric effect in nano-microscale lead-free multiferroic composite,” Curr. Appl. Phys., vol. 11, no. 3, pp. S232–S235, May 2011, doi: 10.1016/j.cap.2011.01.008
dc.relation.referencesG. Qian et al., “Enhanced Ferromagnetic, Ferroelectric, and Dielectric Properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 Ceramics,” J. Electron. Mater., vol. 46, no. 11, pp. 6717–6726, Nov. 2017, doi: 10.1007/s11664-017-5689-0
dc.relation.referencesA. Shukla, R. N. P. Choudhary, and A. K. Thakur, “Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic,” J. Phys. Chem. Solids, vol. 70, no. 11, pp. 1401–1407, Nov. 2009, doi: 10.1016/j.jpcs.2009.08.015
dc.relation.referencesS. Idrissi, O. Mounkachi, L. Bahmad, and A. Benyoussef, “Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods,” Comput. Condens. Matter, p. e00617, Nov. 2021, doi: 10.1016/j.cocom.2021.e00617
dc.relation.referencesM. A. Bousahla et al., “DFT study on the crystal structure, optoelectronic, and thermoelectric properties of lead-free inorganic A2PdBr6 (A = K, Rb, and Cs) perovskites,” Mater. Today Commun., vol. 30, p. 103061, Mar. 2022, doi: 10.1016/j.mtcomm.2021.103061
dc.relation.referencesR. J. D. Tilley, Perovskites Structure–Property Relationships, 1st ed. John Wiley & Sons, Ltd (2016)
dc.relation.referencesR. M. Hazen, S. S. American, and N. June, “Perovskites gives rise to materials that have a wide array of electrical properties,” Sci. Am., vol. 258, no. 6, pp. 74–81, 1988, doi: 10.2307/24989124
dc.relation.referencesM. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. Sect. B, vol. 57, pp. 725–738, 2001
dc.relation.referencesM. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier, “B-cation arrangements in double perovskites,” Prog. Solid State Chem., vol. 22, no. 3, pp. 197–233, 1993, doi: 10.1016/0079-6786(93)90004-B
dc.relation.referencesA. M. Glazer, “Simple ways of determining perovskite structures,” Acta Crystallogr. Sect. A, vol. 31, no. 6, pp. 756–762, 1975, doi: 10.1107/S0567739475001635
dc.relation.referencesG. King and P. M. Woodward, “Cation ordering in perovskites,” J. Mater. Chem., vol. 20, no. 28, pp. 5785–5796, 2010, doi: 10.1039/b926757c
dc.relation.referencesT. A. Kaplan and S. D. Mahanti, Physics of Manganites, 4th ed. New York: Springer US, 2013. doi: 10.1007/b114807
dc.relation.referencesS. Dong and J.-M. Liu, “Recent Progress of Multiferroic Perovskite Manganites,” vol. 26, no. 9, pp. 1–26, 2012, doi: 10.1142/S0217984912300049
dc.relation.referencesK. F. Wang, J. M. Liu, and Z. F. Ren, “Multiferroicity: The coupling between magnetic and polarization orders,” Adv. Phys., vol. 58, no. 4, pp. 321–448, 2009, doi: 10.1080/00018730902920554
dc.relation.referencesL. Fuentes, “Magnetic-Coupling Properties in Polycrystals,” Textures Microstruct., vol. 30, no. 3–4, pp. 167–189, 1998, doi: 10.1155/tsm.30.167
dc.relation.referencesIUCr, International Tables for Crystallography, vol. A. Chester, England: International Union of Crystallography, 2006. doi: 10.1107/97809553602060000100
dc.relation.referencesC. Kittel, Introduction to solid state physics, 7th ed. Willey & Song, 1996
dc.relation.referencesL. Fuentes-Cobas, A. Muñoz-Romero, M. Montero-Cabrera, L. Fuentes-Montero, and M. Fuentes-Montero, “Predicting the Coupling Properties of Axially-Textured Materials,” Materials (Basel)., vol. 6, no. 11, pp. 4967–4984, Oct. 2013, doi: 10.3390/ma6114967
dc.relation.referencesL. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, and P. Scardi, “Rietveld refinement guidelines,” J. Appl. Crystallogr., vol. 32, no. 1, pp. 36–50, Feb. 1999, doi: 10.1107/S0021889898009856
dc.relation.referencesK. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials. Boston, MA: Springer US, 2003. doi: 10.1007/b100503
dc.relation.referencesJ. A. Cardona Vasquez, “Producción y Caracterización de Nuevos Materiales Multiferróicos de la Familia RMn 1-x Fe x O 3 (R = Ho, Dy, Gd),” 2014
dc.relation.referencesN. A. Spaldin, Magnetic Materials. Cambridge: Cambridge University Press, 2010. doi: 10.1017/CBO9780511781599
dc.relation.referencesW. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering : an integrated approach, 5th ed. 2015
dc.relation.referencesS. Burbano De Ercilla, E. Burbano García, and C. García Muñoz, Fisica General, Madrid: Editorial Tébar, S.L., 2003
dc.relation.referencesS.-J. Cho, M.-J. Uddin, and P. Alaboina, “Chapter three - Review of Nanotechnology for Cathode Materials in Batteries,” 2017. doi: 10.1016/B978-0-323-42977-1/00003-0
dc.relation.referencesE. S. Thian and S. M. Best, “Si-substituted hydroxyapatite,” in Bioceramics and their Clinical Applications, Elsevier Inc., 2008, pp. 424–437. doi: 10.1533/9781845694227.2.424
dc.relation.referencesS. Pathreeker, S. Reed, P. Chando, and I. D. Hosein, “A study of calcium ion intercalation in perovskite calcium manganese oxide,” J. Electroanal. Chem., vol. 874, p. 114453, Oct. 2020, doi: 10.1016/j.jelechem.2020.114453
dc.relation.referencesV. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition. Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-09579-0
dc.relation.referencesA. M. Shuvaev, A. A. Mukhin, and A. Pimenov, “Magnetic and magnetoelectric excitations in multiferroic manganites,” J. Phys. Condens. Matter, vol. 23, no. 11, 2011, doi: 10.1088/0953-8984/23/11/113201
dc.relation.referencesJ. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, “Hexagonal versus perovskite phase of manganite RMn O3 (R=Y, Ho, Er, Tm, Yb, Lu),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 74, no. 1, pp. 1–7, 2006, doi: 10.1103/PhysRevB.74.014422
dc.relation.referencesR. Choithrani, M. N. Rao, S. L. Chaplot, N. K. Gaur, and R. K. Singh, “Structural and phonon dynamical properties of perovskite manganites: (Tb, Dy, Ho)MnO3,” J. Magn. Magn. Mater., vol. 323, no. 12, pp. 1627–1635, 2011, doi: 10.1016/j.jmmm.2011.01.026
dc.relation.referencesO. Peña, M. Bahout, Y. Ma, D. Gutiérrez, P. Durán, and C. Moure, “Interacting networks and spin reversal in (RE, Ca)MnO3,” in Physica C: Superconductivity and its Applications, Aug. 2004, vol. 408–410, no. 1–4, pp. 641–642. doi: 10.1016/j.physc.2004.03.091
dc.relation.referencesM. Mouallem-Bahout, O. Peña, D. Gutierrez, P. Duran, C. Moure, and P. Burlet, “Peculiar magnetic properties of (Dy,Ca)MnO 3.” [Online]. Available: www.elsevier.com/locate/ssc
dc.relation.referencesT. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The HighScore suite,” Powder Diffr., vol. 29, no. S2, pp. S13–S18, Dec. 2014, doi: 10.1017/S0885715614000840
dc.relation.referencesM. W. Lufaso and P. M. Woodward, “SPuDS Users Guide,” 2020. [Online]. Available: https://www.unf.edu/~michael.lufaso/spuds/manual.pdf
dc.relation.referencesA. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748. 2004
dc.relation.referencesB. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr., vol. 34, no. 2, pp. 210–213, Apr. 2001, doi: 10.1107/S0021889801002242
dc.relation.referencesK. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, Dec. 2011, doi: 10.1107/S0021889811038970
dc.relation.referencesQuantum Design, Physical Property Measurement System, Vibrating Sample Magnetometer (VSM) Option User’s Manual, A-2., vol. Part No. 1096-100. 2004
dc.relation.referencesS. Foner, “Versatile and Sensitive Vibrating‐Sample Magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959, doi: 10.1063/1.1716679
dc.relation.referencesE. M. Girotto and I. A. Santos, “Medidas de resistividade elétrica dc em sólidos: como efetuá-las corretamente,” Rev. Química Nov., vol. 25, no. 4, pp. 639–647, 2002
dc.relation.referencesS. Gates-Rector and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr., vol. 34, no. 4, pp. 352–360, Dec. 2019, doi: 10.1017/S0885715619000812
dc.relation.referencesS. Gražulis et al., “Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration,” Nucleic Acids Res., vol. 40, no. D1, pp. D420–D427, Jan. 2012, doi: 10.1093/nar/gkr900
dc.relation.referencesA. Vaitkus, A. Merkys, and S. Gražulis, “Validation of the Crystallography Open Database using the Crystallographic Information Framework,” J. Appl. Crystallogr., vol. 54, no. 2, pp. 661–672, Apr. 2021, doi: 10.1107/S1600576720016532
dc.relation.referencesJ. Hu and H. Qin, “Magnetoimpedance effect at various temperatures for manganite La0.7Ca0.3MnO3-δ,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 100, no. 3, pp. 304–306, 2003, doi: 10.1016/S0921-5107(03)00123-5
dc.relation.referencesR. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551
dc.relation.referencesG. Blaise, “Charge localization and transport in disordered dielectric materials,” J. Electrostat., vol. 50, no. 2, pp. 69–89, Jan. 2001, doi: 10.1016/S0304-3886(00)00027-9
dc.relation.referencesYet-Ming Chiang, Dunbar P. Birnie, and W. David Kingery, Physical ceramics: principles for ceramic science and engineering, vol. 34. 1996. doi: 10.5860/CHOICE.34-1566
dc.relation.referencesP. Lakhani, M. Unadkat, P. Solanki, J. H. Markana, M. Ranjan, and B. Kataria, “Structural, electrical transport and optical properties of doped La0.7Ca0.3MnO3 ceramics,” Bol. la Soc. Esp. Ceram. y Vidr., 2021, doi: 10.1016/j.bsecv.2021.07.003
dc.relation.referencesJ. J. Sprague and H. L. Tuller, “Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate,” J. Eur. Ceram. Soc., vol. 19, no. 6–7, pp. 803–806, Jun. 1999, doi: 10.1016/S0955-2219(98)00319-7
dc.relation.referencesV. Kharton et al., “Oxygen ionic conductivity of Ti-containing strontium ferrite,” Solid State Ionics, vol. 133, no. 1–2, pp. 57–65, Aug. 2000, doi: 10.1016/S0167-2738(00)00738-4
dc.relation.referencesM. Bourguiba, Z. Raddaoui, A. Dhahri, M. Chafra, J. Dhahri, and M. A. Garcia, “Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite,” J. Mater. Sci. Mater. Electron., vol. 31, no. 14, pp. 11810–11818, Jul. 2020, doi: 10.1007/s10854-020-03733-9
dc.relation.referencesL. Singh, I. W. Kim, B. Cheol Sin, A. Ullah, S. Kook Woo, and Y. Lee, “Study of dielectric, AC-impedance, modulus properties of 0.5Bi0.5Na0.5TiO3·0.5CaCu3Ti4O12 nano-composite synthesized by a modified solid state method,” Mater. Sci. Semicond. Process., vol. 31, pp. 386–396, Mar. 2015, doi: 10.1016/j.mssp.2014.12.025
dc.relation.referencesC. Ge et al., “Metal-Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquid-Gated Manganite Films,” Adv. Mater. Interfaces, vol. 2, no. 17, p. 1500407, Nov. 2015, doi: 10.1002/admi.201500407
dc.relation.referencesM. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, “Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites,” Science (80-. )., vol. 285, no. 5433, pp. 1540–1542, Sep. 1999, doi: 10.1126/science.285.5433.1540
dc.relation.referencesT. Z. Ward, Z. Gai, X. Y. Xu, H. W. Guo, L. F. Yin, and J. Shen, “Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots,” Phys. Rev. Lett., vol. 106, no. 15, p. 157207, Apr. 2011, doi: 10.1103/PhysRevLett.106.157207
dc.relation.referencesA. Ben Jazia Kharrat, K. Khirouni, and W. Boujelben, “Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route,” Phys. Lett. A, vol. 382, no. 48, pp. 3435–3448, Dec. 2018, doi: 10.1016/j.physleta.2018.10.010
dc.relation.referencesS. V. Zubkov, I. A. Parinov, and Y. A. Kuprina, “The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0),” Electronics, vol. 11, no. 2, p. 277, Jan. 2022, doi: 10.3390/electronics11020277
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalManganita
dc.subject.proposalPerovskita
dc.subject.proposalRefinamiento Rietveld
dc.subject.proposalSusceptibilidad magnética
dc.subject.proposalImpedancia compleja
dc.subject.proposalPerovskite
dc.subject.proposalManganite
dc.subject.proposalRietveld refinement
dc.subject.proposalMagnetic susceptibility
dc.subject.proposalComplex impedance
dc.subject.unescoTecnología de materiales
dc.subject.unescoMaterials engineering
dc.subject.unescoMagnetismo
dc.subject.unescoMagnetism
dc.subject.unescoPropiedad eléctrica
dc.subject.unescoElectrical properties
dc.title.translatedSynthesis and characterization of the new material with triple perovskite structure R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 and 1.5)
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito