Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCardona Gallo, Santiago Alonso
dc.contributor.authorZapata Hoyos, Martin Andrés
dc.date.accessioned2023-01-30T16:19:15Z
dc.date.available2023-01-30T16:19:15Z
dc.date.issued2022-11-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83181
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractLos lixiviados que se generan como subproducto de los procesos de descomposición y estabilización de los residuos sólidos urbanos confinados a la intemperie funcionan como medio de transporte de contaminantes hacia el suelo y las aguas subterráneas, impactándolos de manera significativa. Los metales pesados, hacen parte de los cuatro principales grupos de contaminantes que contienen los lixiviados, presentan como mayor característica que generan un alto riesgo de afectación a la salud humana, los ecosistemas hacia los cuales son naturalmente transportados y los receptores finales, debido a su alta toxicidad. Generalmente las concentraciones de metales pesados en los lixiviados de sistemas de disposición final de residuos sólidos urbanos son relativamente bajas, van desde microgramos por litro (µg/L) hasta algunos miligramos por litro (mg/L), considerando que las condiciones ambientales naturales de estos sistemas no favorecen la solubilización de cantidades mayores, sin embargo, son contaminantes de gran impacto. La presente investigación parte de la hipótesis que, en medios acuosos, como una pluma de lixiviados en un acuífero, estos contaminantes especian de diferentes formas, cada una con patrones diferentes de transporte, biodisponibilidad y toxicidad, además, sujetas a experimentar diferentes mecanismos de inmovilización o retardo, tanto en la zona vadosa como en la saturada, evitando que sus formas más tóxicas migren y alcancen receptores finales. Estos mecanismos son de tipo físico, químico y biológico, su eficiencia como proceso depende de las condiciones hidrogeológicas, mineralógicas e hidrogeoquímicas del sistema acuífero. El presente trabajo de investigación se enfoca en corroborar la anterior hipótesis en el estudio de caso del sistema acuífero contaminado que subyace el antiguo relleno sanitario Navarro de la ciudad de Santiago de Cali, Colombia, el cual en adelante se denominará DSFR Navarro. Para alcanzar el objetivo de la investigación, se evaluaron las condiciones hidrogeológicas e hidrogeoquímicas del acuífero, además de la clasificación y características físicas y mineralógicas de su fase sólida y de la capa que lo suprayace. Se levantó y procesó información primaria y secundaria; se realizaron análisis de laboratorio de los parámetros más significativos para la evaluación y caracterización de la fase líquida del acuífero y del lixiviado; se realizaron isotermas de adsorción para evaluar el potencial de la fase sólida del acuífero y la capa de suelo que lo suprayace para adsorber cadmio (Cd) y plomo (Pb) que fueron los metales pesados seleccionados para acometer la fase experimental de la investigación. Se corrió la solución analítica en una y tres dimensiones de la ecuación que representa el transporte de especies metálicas disueltas para evaluar la variación espaciotemporal de los metales en la pluma contaminante. La hipótesis se corrobora a partir de los resultados obtenidos en la fase experimental y la solución analítica de la ecuación de transporte. Se elaboró el modelo conceptual del sistema contaminado y la descripción y análisis del desarrollo del sitio como sistema de disposición final de residuos sólidos urbanos y fuente de contaminación. Se encontró que las características físicas y mineralógicas del material granular del acuífero y la capa que suprayace, favorecen el fenómeno de inmovilización de los contaminantes en estudio. (Texto tomado de la fuente)
dc.description.abstractThe leachate that comes from decomposition and stabilization of solid wastes at landfills represents a high risk of contamination to the environment as many contaminants are transported towards the soil and groundwater. Heavy metals are part of the main group of contaminates that are present in the leachate and due to their high toxicity, they represent a high risk to the human health and the ecosystems. General speaking, the concentrations of heavy metals at landfills are relatively low, ranging from some micrograms per liter (µg/L) to milligrams per liter (mg/L), nonetheless they represent a high risk of contamination to the environment. This research is based on the hypothesis that, contamination plume that is formed once the leachate reaches the aquifer is subject to different processes of transport, and bioavailability. In addition, heavy metals can be subject to different mechanisms of immobilization and retardation in both the saturated and unsaturated zone, preventing them from reaching final receptors. These mechanisms can be physical, chemical, and biological but in any case, the effectiveness of the process depends on the hydrogeological and hydrogeochemical conditions of the aquifer. This project, focus on demonstrate the influence of these mechanisms at the aquifer under the Navarro landfill located in Cali, Colombia. To achieve the main goal of the project, different hydrogeological and hydrogeochemical conditions of the aquifer were evaluated. In addition, a classification of the mineralogical and physical properties of the solids of the aquifer was performed. Desk and field information were collected, and laboratory studies were run to identify the most important parameters of the groundwater and the leachate. Once the results were obtained, adsorption isotherms of Cadmium (Cd) and lead (Pb) were depicted to evaluate the retardation potential of the aquifer solids. Moreover, a 3-D analytical transport model was run to evaluate the spatial and temporal variation of heavy metals present at the contamination plume. Additionally, a conceptual site model was constructed to depict the source-pathway-receptor of the contaminant. The hypothesis was demonstrated from the results of the tests performed and it can be concluded that the physical and mineralogical properties of the aquifer are key to the process of immobilization and retardation of heavy metals at the study site.
dc.format.extentxxiii, 218 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.titleInfluencia de las propiedades hidrogeológicas y químicas del acuífero que subyace el relleno sanitario Navarro de la ciudad de Santiago de Cali, en la movilidad de los metales pesados
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicos
dc.coverage.citySantiago de Cali, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesP. Kjeldsen, M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen, “Present and Long-Term Composition of MSW Landfill Leachate: A review,” Crit. Rev. Environ. Sci. Technol., vol. 32, No. 4, pp. 297–336, 2002, doi: 10.1080/10643380290813462.
dc.relation.referencesT. H. Christensen et al., “Biogeochemistry of Landfill Leachate Plumes,” Appl. Geochemistry, vol. 16, no. 7–8, pp. 659–718, 2001, doi: 10.1016/S0883-2927(00)00082-2.
dc.relation.referencesT. Christensen, R. Cossu, and R. Stegmann, Landfilling of Waste Leachate, 1st ed. CRC PRESS 1992. London. 540 pages
dc.relation.referencesA. Bagchi, “Natural Attenuation Mechanisms of Landfill Leachate and Effects of Various Factors on the Mechanisms.,” pp. 453–463, 1986.
dc.relation.referencesJ. J. Márquez Molina, “Análisis del Funcionamiento del Sistema Hídrico Subterráneo en el Área del Antiguo Relleno Sanitario de Navarro (Santiago de Cali, Colombia),” Tesis de Maestría. Universidad Nacional del Litoral, Argentina. 2011.
dc.relation.referencesJ. Alonso. Cárdenas León. “Efecto del Basurero de Navarro Sobre las Aguas Subterráneas en Cali, Colombia,” pp. 1–16. Tesis de Maestría. Universidad de Costa Rica.1996.
dc.relation.referencesD. L. Baun and T. H. Christensen, “Speciation of Heavy Metals in Landfill Leachate: A Review,” Waste Manag. Res., vol. 22, no. 1, pp. 3–23, 2004, doi: 10.1177/0734242X04042146.
dc.relation.referencesS.R QASIM and W. CHANG, “Sanitary Landfill Leachate - Genration, Control and Treatment.”. CRC PRESS. Boca Raton, FL, US. 1994.
dc.relation.referencesP. Alvares and W. Illman, Bioremediation and Natural Attenuation Process Fundamentals and Mathemetical Models. John Wiley and Sons. New Jersey.US. 2006.
dc.relation.referencesC.W. Fetter, T. Boving, D. Kreamer. “Contaminant Hydrogeology.” 3rd Edition. 2018. Waveland Press. Illinois. US. 647 pages.
dc.relation.referencesReglamentación Integral Participativa para la Gestión de las Aguas Subterráneas en el Departamento del Valle del Cauca. Corporación Autónoma Regional del Valle del Cauca CVC – Dirección Técnica Ambiental, Grupo de Recursos Hídricos. 2012.
dc.relation.referencesA. McMajon, J. Heatcote, M.Carey & A Erskine. Guide to Good Practice for the Development of Conceptual Model and the Selection and Application of Mathematical Models of Contaminant Transporte Processes in the Subsurface. National Groundwater & Contaminated Land Centre. Environmental Agency UK. 2001.
dc.relation.referencesC. Bethke, Geochemical and Biogeochemical Reaction Modeling. 2 nd Edition. CAMBRIDGE UNIVERSITY PRESS. Cambridge UK. 2007
dc.relation.referencesM. Aucott, “The Fate of Heavy Metals in Landfills : A Review by ‘ Industrial Ecology , Pollution Prevention and the NY-NJ Harbor ,’” Atmos. Environ., vol. 9, no. February, pp. 47–53, 2006
dc.relation.referencesKing Groundwater Science Inc, “Hydrogeological Assessment Tools for Modeling Transport of Metals in Groundwater”. Submitted to Ministry of Environment,Canada 2006
dc.relation.referencesG. Limousin, J. P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa, “Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement,” Appl. Geochemistry, vol. 22, no. 2, pp. 249–275, 2007, doi: 10.1016/j.apgeochem.2006.09.010
dc.relation.referencesN. Korsen, “Understanding Variation in Partition Coefficient, Kd, Values. United States Environmental Protection Agency. Office of Air and Radiation. EPA 402-R-99-004A. August 1999
dc.relation.referencesG. Slavinskienė and A. Jurevičius, “Speciation of Heavy Metals in the Homogeneous Sandy Aquifer Affected by Landfill Leachate,” Univers. J. Geosci., vol. 4, no. 1, pp. 8–14, 2.016, doi: 10.13189/ujg. 2016
dc.relation.referencesO. A. ROSALES, “Impacto del Basurero de Navarro Sobre la Calidad de las Aguas Subterráneas del Municipio de Cali.” Cali-Colombia.2004
dc.relation.referencesContraloría General de la República de Colombia, “Informe Contraloría Relleno Navarro,” . Bogotá, Colombia. 2013.
dc.relation.referencesJ. C. Echeverría, M. T. Morera, C. Mazkiarán, and J. J. Garrido, “Competitive Sorption of Heavy Metal by Soils. Isotherms and Fractional Factorial Experiments,” Environ. Pollut., vol. 101, no. 2, pp. 275–284, 1998, doi: 10.1016/S0269-7491(98)00038-4.
dc.relation.referencesC. S. Chen, C. H. Tu, S. J. Chen, and C. C. Chen, “Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site - A Case Study, Tainan City, Taiwan,” Int. J. Environ. Res. Public Health, vol. 13, no. 5, 2016, doi: 10.3390/ijerph13050467.
dc.relation.referencesG. Laallam, “Transport and Retention of Heavy Metals in Contaminated Soil and Groundwater A case study from Pukeberg Glassworks in Smaland, Sweden,” Msc Thesis. Stockholm University, Sweden. 44 pages, 2017
dc.relation.referencesK. S. Smith, “Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits,”. U.S. Geological Survey. Dencer. CO, U.S. Rev. Econ. Geol., vol. 6A-6B, pp. 161–182, 1999.
dc.relation.referencesT. Christensen, P. Bjerg, and P. Kjeldsen, “Natural Attenuation: A Feasible Approach to Remediation of Ground Water Pollution at Landfills.” Groundwater Research Centre at the Technical University of Denmark.2000
dc.relation.referencesB. Berkowitz, I. Dror, and B. Yaron, Contaminant Geochemistry Interactions and Transport in the Subsurface Environment. Springer – Verlag, Berlin - Heildelberg. 2008
dc.relation.referencesN. P. Nikolaidis, H. Sheng. “Conceptual Site Modelling for Evaluating Contaminant Mobility and Pump-and-Treat Remediation,” Glob. NEST JournalGlobal NEST Int. J., vol. 2, no. 1, pp. 67–76, 2000, doi: 10.30955/gnj.000114.
dc.relation.referencesD. Læ. Jensen, A. Ledin, and T. H. Christensen, “Speciation of Heavy Metals in Landfill-Leachate Polluted Groundwater,” Water Res., vol. 33, no. 11, pp. 2642–2650, 1999, doi: 10.1016/S0043-1354(98)00486-2.
dc.relation.referencesF. Payne, J. Quinnan, and S. Potter, Remediation Hydraulics. CRC PRESS. Boca Raton, FL, U.S. 439 pages. 2005.
dc.relation.referencesJ. Pitchtel, Fundamentals of Site Remediation for Metal and Hydrocarbon-Contaminated Soils, Goberment Institutes. 2 nd Edition. Lanham , Meryland. U.S. 2007.
dc.relation.referencesA. Bourg, “Mobilization of Heavy Metals as Affected by pH and Redox Coditions,” Chapter. 1995, doi: 10.1007/978-3-642-79418-6
dc.relation.referencesM. Aral, Environmental Modeling and Health Risk Analysis (Acts/Risk). Georgia Institute of Technology. Atlanta. Georgia. U.S. Springer 2010.
dc.relation.referencesR. Mandle, “Groundwater Modeling Guidance,” Groundwater Modeling Program. Michigan Department of Environmental Quality, 2020, doi: 10.2110/scn.94.32.0208.
dc.relation.referencesU. Förstner, R. Allan, and W. Salomons, Heavy Metals Problems and Solutions, Springer. 409 pages. 1995.
dc.relation.referencesT. A. Batty, “Examining the Use of the Partition Coefficient in Quantifying Sorption of Heavy Metals in Permo-Triassic Sandstone Aquifers,”. Doctoral Thesis. Department of Earth Sciences, University of Birmingham. July, 2015.
dc.relation.referencesT. Uddh Söderberg et al., “Metal Solubility and Transport at a Contaminated Landfill Site – From the Source Zone into the Groundwater,” Sci. Total Environ., vol. 668, pp. 1064–1076, 2.019, doi: 10.1016/j.scitotenv.2019.03.013.
dc.relation.referencesS. Xie, Y. Ma, P. J. Strong, and W. P. Clarke, “Fluctuation of Dissolved Heavy Metal Concentrations in the Leachate from Anaerobic Digestion of Municipal Solid Waste in Commercial Scale Landfill Bioreactors: The Effect of pH and Associated Mechanisms,” J. Hazard. Mater., vol. 299, pp. 577–583, 2015, doi: 10.1016/j.jhazmat.2015.07.065
dc.relation.referencesV. Ishchenko, “Prediction of Heavy Metals Concentration in the Leachate: a Case Study of Ukrainian Waste,” J. Mater. Cycles Waste Manag., vol. 20, no. 3, pp. 1892–1900, 2018, doi: 10.1007/s10163-018-0740-7
dc.relation.referencesH. Wilson, T. Tumwitique, X. Xie, L. Zhang. “Redox Control on Trace Element Geochemistry and Provenance of Ground Water in Fractured Basement of Blantityre, Malawy”. Journal of African Earth Sciences. 2014
dc.relation.referencesSolid Waste Landfill Desig Course – University of Wiscounsin at Madison, College of Engineering. 2013
dc.relation.referencesStandard Guide for Developing Conceptual Site Models for Contaminated Sites. ASTM E1689 – 95 2014.
dc.relation.referencesJ. M. Rodríguez, R. Marín. “Fisicoquímica de Aguas.” Ediciones Diaz de Santos, 1999. 466 paginas. Madrid.
dc.relation.referencesS. J. Deverel, S. Goldberg, and R. Fujii, Chemistry of Trace Elements in Soils and Groundwater, Chapter. 2011.
dc.relation.references“Speciation, Mobility and Bioanailability of Metals in the Enviroment.,” in Metals in Society and in the Environment, Chapter. 2001.
dc.relation.referencesK. M. G. Mostofa et al., Complexation of Dissolved Organic Matter With Trace Metal Ions in Natural Waters, no. 9783642322228. 2013.
dc.relation.referencesJ. Nolan, S. Watts, and B. Proctor, “A Case Study in the Use of 3-Dimensional Ground Water Modeling and Solute Transport Engines as a Tool in Site Assessment,” Environ. Pollut., vol. 3, no. 2, pp. 55–64, 2014, doi: 10.5539/ep.v3n2p55.
dc.relation.referencesC. Tonsberg, Development of Analitical Groundwater Contaminant Transpot Model Msc Thesis. Hydrologic Science and Enggeniering. Colorado School of Mines.2014
dc.relation.referencesG. Sposito, The Surface Chemistry of Solids, Oxford University Press. 245 pages. 1984.
dc.relation.referencesC. Zheng, M. C. Hill, and G. Cao, “MT3DMS: Model use, calibration, and validation,” no. July 2012, 2013, doi: 10.13031/2013.42263.
dc.relation.referencesM. Matura, V. Ettler, J. Jezek, M. Mihaljevit, and O. Sebek, “Asociation of Trace Elements with Colloidal Fractions in Leachates from Closed and Active Municipal Solid Waste Landfills.” Journal of Hazardous Materials. Vol 183. 15 November 2010, pages 541-548.
dc.relation.referencesM. S. SANCHEZ PINZON, “Contaminación por Metales Pesados en el Botadero de Basura de Moravia en Medellín: Transferencia a Flora y Fauna y Evaluación del Potencial Fitorremediador de Especies Nativas e Introducidas.,” Tesis Doctoral. Universidad Javeriana. Bogotá, Colombia. 2010.
dc.relation.referencesE. Carvajal Flórez, “Modelo de Sorción para la Remoción de Cobre y Plomo de Lixiviados de Rellenos Sanitarios,” Tesis Doctoral. Universidad Nacional de Colombia, Sede Medellín. 2019.
dc.relation.referencesS. G. Lu and Q. F. Xu, “Competitive Adsorption of Cd, Cu, Pb and Zn by Different Soils of Eastern China,” Environ. Geol., vol. 57, no. 3, pp. 685–693, 2009, doi: 10.1007/s00254-008-1347-4.
dc.relation.referencesM. Goltz and J. Huang, “Analytical Modeling of Solute Transport in Groundwater,” Anal. Model. Solute Transp. Groundw., John Wiley and Sons, HoboKen, New Jersey. 2017, doi: 10.1002/9781119300281.
dc.relation.referencesP. A. Domenico and F.W, Schwartz, Physical and Chemical Hydrogeology. 2 nd Edition. John Wiley and Sons. 554 pages. 1997.
dc.relation.referencesV. L. Batu, Applied Flow and Solute Transport Modeling in Aquifers. CRC Taylor & Francis Group. Boca Raton, FL, U.S. 698 pages. 2006.
dc.relation.referencesJ. F. Devlin, A. Brookfield, B. Huang, and P. C. Schillig, “Using the Domenico Solution to Teach Contaminant Transport Modeling,” J. Geosci. Educ., vol. 60, no. 2, pp. 123–132, 2012, doi: 10.5408/11-230.1.
dc.relation.referencesU. Patrick, “Analysis of Thermodynamics, Kinetics and Equilibrium Isotherm on Fe3+/Fe2+ Adsorption onto Palm Kernel Shell Activated Carbon (PKSAC): A Low-cost Adsorbent,” Am. Chem. Sci. J., vol. 4, no. 3, pp. 298–325, 2014, doi: 10.9734/acsj/2014/7149.
dc.relation.referencesM. P. Anderson & W.W. WOESSNER, Applied Groundwater Modeling – Simulation of Flow and Advective Transport. Academic Press, INC, San Diego, California, U.S. 381 pages. 1992.
dc.relation.referencesBritish Columbia – Ministery of Environment. Guidelines for Groundwater Modelling to Assess Impacts of Proposed Natural Resource Development Activities. 2012.
dc.relation.referencesR. Mitchel, G. Ji-Dong, “Environmental Microbiology,”. 2 nd. Hoboken, N.J.: Wiley-Blackwell. 389 pages. 2010.
dc.relation.referencesR.G. Ford, R.T. Wilkin “Monitored Natural Attenuation of Inorganic Contaminants in Ground Water” vol. 1 Technical Basis for Assessment. United States Environmental Protection Agency EPA. 2007.
dc.relation.referencesR. Yong, C.N. Mulligan., “Natural Attenuation of Contaminants in Soils”, Lewis Publishers.Boca Raton FL, US, 336 pages. 2003.
dc.relation.referencesNational Academy of Sciences. 'Natural Attenuation for Groundwater Remediation,' National Research Council, Committee on Intrinsic Remediation, National Academy Press, Washington, D.C. 2000
dc.relation.referencesF. Gambazzi, J. Payet, “Metals Transfer from Soil to Water, Models and Theory”. Snowman. 2008
dc.relation.referencesW. Fike, “Sorption of Cadmium, Copper, Lead, and Zinc as Influenced by ionics strength, pH. And selected soil Componentes,” Dissertation submitted to the Faculty of The Virginia Polytechnic Institue and State University in partial fulfillment of The Requirements for the degree of Doctor of Philosophy in Crop and Soil Environmental Sciences. Virginia, US, 2001
dc.relation.referencesE.R. Weiner, “Applications of Environmental Aquatic Chemistry a Practical Guide” 3 ed. CRC Press. 2013
dc.relation.referencesI.M. Ugwu, O.A. Igbokwe, “Sorption of Heavy Metals on Clay Minerals and Oxides: A Review” Published in Intech Open. 2019.
dc.relation.referencesYoung Do, N. and Park, H. I., “A Study on Adsorption of Pb, Cu, Zn and Cd onto Natural Clay” . International Journal Environmental Reseach., 5(2) pages 413 – 424 Spring 2011.
dc.relation.referencesAigberua, AO; Tarawou, JT: ABASU, CY. “Effect of Oxidation – Reduction Fluctuation on Metal Mobility of Speciated Metals and Arsenic in Botton Sediments of Middleton River, Bayelsa State, Nigeria. Vol.22 (9) 1511- 1517 September 2018.
dc.relation.referencesT. Measho, M. Fuerhacker, “Simultaneous Adsorption of Heavy Metals from Roadway Stormwater Runoff Using Different Filter Media in Column Studies” Published in Water 2018, 10, 1160; doi:10.3390.
dc.relation.referencesMohamed Abdelwaheb, Khaoula Jebali, Hatem Dhaouadi, Sonia Dridi-Dhaouadi, “Adsorption of Nitrate, Phosphate, Nickel and Lead on Soils: Risk of Groundwater Contamination” Published in Ecotoxicology and Environmental Safety 179 (2019) 182–18.
dc.relation.referencesP.C. Gomes. M. Fontes, “Selectivity Sequence and Competitive of Heavy Metals by Brazilian Soils”. Published in Soil Sci Soc. Am. J. 65:1115-1121. 2001
dc.relation.referencesRobert G. Ford, Richard T. Wilkin, & Robert W. Puls, “Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 2 Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium”. EPA Environmental Protection Agency. United States. 2007.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcResiduos urbanos
dc.subject.lembResiduos sólidos
dc.subject.lembSanitary landfills
dc.subject.lembRellenos sanitarios
dc.subject.proposalDisposición final de residuos
dc.subject.proposalLixiviados de rellenos sanitarios
dc.subject.proposalMovilidad de metales pesados
dc.subject.proposalAcuífero
dc.subject.proposalHidrogeología
dc.subject.proposalHidrogeoquímica
dc.subject.proposalModelo de transporte
dc.subject.proposalSolid wastes final disposal
dc.subject.proposalLandfill leachate
dc.subject.proposalHeavy metals mobility
dc.subject.proposalHydrogeology
dc.subject.proposalHydrogeochemistry
dc.subject.proposalTransport model
dc.title.translatedInfluence of the hydrogeological and chemical Properties of the aquifer that underlies the Navarro sanitary landfill of the city of Santiago de Cali, on the mobility of heavy metals
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito