Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSalguero, Gustavo
dc.contributor.authorBeltran Ricaurte, Karl Michael
dc.date.accessioned2023-01-30T16:54:07Z
dc.date.available2023-01-30T16:54:07Z
dc.date.issued2022-11-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83183
dc.descriptionIlustraciones, fotografías a color,
dc.description.abstractLas inmunoterapias basadas en células estromales mesenquimales (CEM) representan herramientas para el tratamiento de enfermedades inflamatorias. Sin embargo, su aplicación clínica actualmente es un reto. La biodistribución de las CEM parece ser deficiente, lo que promueve la activación de la apoptosis y la liberación de cuerpos apoptóticos (AB). Dado que recientemente se ha propuesto una interacción entre los AB derivados de las CEM (CEM-AB) y componentes del sistema inmunitario, en este proyecto se demostró que los CEM-AB ejercen efectos inmunomoduladores sinérgicos en modelos de inflamación in-vitro. Para lo anterior, se obtuvieron CEM de la gelatina de Wharton (WJ) mediante un proceso de disgregación. La exposición a la irradiación gama (25Gy) indujo eficazmente la apoptosis; tal y como demostraron la fragmentación del ADN, la translocación de fosfatidilserina, la expresión de caspasas 3/7 y la pérdida de permeabilidad de la membrana. Los CEM-AB se aislaron, caracterizaron y utilizaron para los ensayos inmunológicos. Tras la activación de linfocitos humanos con perlas anti- CD3/anti-CD28, los CEM-AB no indujeron una inmunosupresión directa, en comparación con controles de células viables. Sin embargo, el pre-condicionamiento de monocitos/macrófagos humanos CD14+ con CEM-AB indujo un fenotipo M2 y desencadenó un potente efecto inhibidor de la proliferación de linfocitos (>90%). El tratamiento con cuerpos apoptóticos también indujo la sobreexpresión de moléculas de punto de control inmunológico y la secreción diferencial de factores de crecimiento. En conjunto, estos hallazgos sugieren que los CEM-AB mejoran la acción inmunosupresora preexistente de las CEM, confiriendo a los macrófagos un fenotipo M2 durante la inflamación. (Texto tomado de la fuente)
dc.description.abstractImmunotherapies based on mesenchymal stromal cells (MSC) represent tools for the treatment of inflammatory diseases. However, their clinical application is currently challenging. The biodistribution of MSC appears to be poor, which promotes the activation of apoptosis and the release of apoptotic bodies (AB). Since an interaction between MSCderived AB (MSC-AB) and components of the immune system has recently been proposed, in this project we demonstrated that MSC-AB exert synergistic immunomodulatory effects in in-vitro models of inflammation. For this purpose, MSC were obtained from Wharton's gelatin (WJ) by a disaggregation process. Exposure to gamma irradiation (25Gy) effectively induced apoptosis; as demonstrated by DNA fragmentation, phosphatidylserine translocation, caspases 3/7 expression and loss of membrane permeability. MSC-AB were isolated, characterized and used for immunological assays. Upon activation of human lymphocytes with anti-CD3/anti-CD28 beads, MSC-AB did not induce direct immunosuppression compared to viable cell controls. However, preconditioning of CD14+ human monocytes/macrophages with MSC-AB induced an M2 phenotype and triggered a potent inhibitory effect on lymphocyte proliferation (>90%). Treatment with apoptotic bodies also induced overexpression of immune checkpoint molecules and differential secretion of growth factors. Taken together, these findings suggest that MSC-AB enhance the preexisting immunosuppressive action of MSC by conferring an M2 phenotype to macrophages during inflammation.
dc.format.extentix, 77 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología
dc.titleEvaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Inmunología
dc.contributor.researchgroupUnidad de Terapias Avanzadas IDCBIS
dc.description.degreelevelMaestría
dc.description.researchareaTerapias avanzadas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá - Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlmeida-Porada, G., Atala, A. J., & Porada, C. D. (2020). Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Molecular Therapy - Methods and Clinical Development, 16(March), 204–224. https://doi.org/10.1016/j.omtm.2020.01.005
dc.relation.referencesBehar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M., & Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 4(3), 279–287. https://doi.org/10.1038/mi.2011.3
dc.relation.referencesBrock, C. K., Wallin, S. T., Ruiz, O. E., Samms, K. M., Mandal, A., Sumner, E. A., & Eisenhoffer, G. T. (2019). Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-09010-6
dc.relation.referencesCañas-Arboleda, M., Beltrán, K., Medina, C., Camacho, B., & Salguero, G. (2020). Human platelet lysate supports efficient expansion and stability of wharton’s jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors. International Journal of Molecular Sciences, 21(17), 1–19. https://doi.org/10.3390/ijms21176284
dc.relation.referencesCaplan, H., Olson, S. D., Kumar, A., George, M., Prabhakara, K. S., Wenzel, P., Bedi, S., Toledano-Furman, N. E., Triolo, F., Kamhieh-Milz, J., Moll, G., & Cox, C. S. (2019). Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in Immunology, 10(July), 1645. https://doi.org/10.3389/fimmu.2019.01645
dc.relation.referencesCassatella, M. A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., & Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29(6), 1001–1011. https://doi.org/10.1002/stem.651
dc.relation.referencesChiesa, S., Morbelli, S., Morando, S., Massollo, M., Marini, C., Bertoni, A., Frassoni, F., Bartolomé, S. T., Sambuceti, G., Traggiai, E., & Uccelli, A. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389. https://doi.org/10.1073/pnas.1103650108
dc.relation.referencesCruz-Barrera, M., Flórez-Zapata, N., Lemus-Diaz, N., Medina, C., Galindo, C. C., González- Acero, L. X., Correa, L., Camacho, B., Gruber, J., & Salguero, G. (2020). Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Frontiers in Immunology, 11(September), 1–19. https://doi.org/10.3389/fimmu.2020.575488
dc.relation.referencesde Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S., Shankar, A. S., O’Flynn, L., Elliman, S. J., Roy, D., Betjes, M. G. H., Newsome, P. N., Baan, C. C., & Hoogduijn, M. J. (2018). Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells, 36(4), 602–615. https://doi.org/10.1002/stem.2779
dc.relation.referencesDel Papa, B., Sportoletti, P., Cecchini, D., Rosati, E., Balucani, C., Baldoni, S., Fettucciari, K., Marconi, P., Martelli, M. F., Falzetti, F., & Di Ianni, M. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187. https://doi.org/10.1002/eji.201242643
dc.relation.referencesDesch, A. N., Randolph, G. J., Murphy, K., Gautier, E. L., Kedl, R. M., Lahoud, M. H., Caminschi, I., Shortman, K., Henson, P. M., & Jakubzick, C. V. (2011). CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. Journal of Experimental Medicine, 208(9), 1789–1797. https://doi.org/10.1084/jem.20110538
dc.relation.referencesEMA. (2009). EPAR summary for the public, ChondroCelect, INN-characterised viable autologous cartilage cells expanded ex vivo expressing specific marker proteins. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Summary_for_the_public/human/000878/WC500026033.pdf
dc.relation.referencesFournel, S., Neichel, S., Dali, H., Farci, S., Maillère, B., Briand, J.-P., & Muller, S. (2003). CD4 + T Cells from (New Zealand Black × New Zealand White)F 1 Lupus Mice and Normal Mice Immunized Against Apoptotic Nucleosomes Recognize Similar Th Cell Epitopes in the C Terminus of Histone H3 . The Journal of Immunology, 171(2), 636– 644. https://doi.org/10.4049/jimmunol.171.2.636
dc.relation.referencesFujita, H., Yamamoto, M., Ogino, T., Kobuchi, H., Ohmoto, N., Aoyama, E., Oka, T., Nakanishi, T., Inoue, K., & Sasaki, J. (2014). Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro. Cell Biochemistry and Function, 32(1), 77–86. https://doi.org/10.1002/cbf.2974
dc.relation.referencesGabr, M. M., Zakaria, M. M., Refaie, A. F., Abdel-Rahman, E. A., Reda, A. M., Ali, S. S., Khater, S. M., Ashamallah, S. A., Ismail, A. M., Ismail, H. E. D. A., El-Badri, N., & Ghoneim, M. A. (2017). From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BioMed Research International, 2017. https://doi.org/10.1155/2017/3854232
dc.relation.referencesGalleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T. S., Von Bonin, M., Barbieri, L., Halai, K., Ward, S., Weng, L., Chakraverty, R., Lombardi, G., Watt, F. M., Orchard, K., Marks, D. I., Apperley, J., Bornhauser, M., Walczak, H., ... Dazzi, F. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 9(416). https://doi.org/10.1126/scitranslmed.aam7828
dc.relation.referencesGao, S., Mao, F., Zhang, B., Zhang, L., Zhang, X., Wang, M., Yan, Y., Yang, T., Zhang, J., Zhu, W., Qian, H., & Xu, W. (2014). Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Experimental Biology and Medicine, 239(3), 366–375. https://doi.org/10.1177/1535370213518169
dc.relation.referencesGao, W. X., Sun, Y. Q., Shi, J., Li, C. L., Fang, S. Bin, Wang, D., Deng, X. Q., Wen, W., & Fu, Q. L. (2017). Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Research and Therapy, 8(1), 1–16. https://doi.org/10.1186/s13287-017-0499-0
dc.relation.referencesGhahremani Piraghaj, M., Soudi, S., Ghanbarian, H., Bolandi, Z., Namaki, S., & Hashemi, S. M. (2018). Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sciences, 212(September), 203–212. https://doi.org/10.1016/j.lfs.2018.09.052
dc.relation.referencesHyvärinen, K., Holopainen, M., Skirdenko, V., Ruhanen, H., Lehenkari, P., Korhonen, M., Käkelä, R., Laitinen, S., & Kerkelä, E. (2018). Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Frontiers in Immunology, 9(APR), 1–13. https://doi.org/10.3389/fimmu.2018.00771
dc.relation.referencesIglesias-López, C., Agustí, A., Obach, M., & Vallano, A. (2019). Regulatory framework for advanced therapy medicinal products in Europe and United States. Frontiers in Pharmacology, 10(JULY), 1–14. https://doi.org/10.3389/fphar.2019.00921
dc.relation.referencesInternational, R., Report, A., & No, P. (2005). Al Pr Od Uc T N O Lo Ng Er Ho. 44(June 2004), 2005.
dc.relation.referencesJames, R., Haridas, N., & Deb, K. D. (2019). Clinical applications of mesenchymal stem cells. In Biointegration of Medical Implant Materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102680-9.00005-6
dc.relation.referencesJoshua M. Hare, Joel E. Fishman, A. W. H. (2017). Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. J Autism Dev Disord, 47(3), 549– 562. https://doi.org/10.1001/jama.2012.25321.Comparison
dc.relation.referencesLee, D. S., Yi, T. G., Lee, H. J., Kim, S. N., Park, S., Jeon, M. S., & Song, S. U. (2014). Mesenchymal stem cells infected with Mycoplasma arginini secrete complement C3 to regulate immunoglobulin production in b lymphocytes. Cell Death and Disease, 5(4), 1–9. https://doi.org/10.1038/cddis.2014.147
dc.relation.referencesLiu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., Liu, X., Li, C., Xuan, K., Zhou, J., Deng, Z., Liu, S., & Jin, Y. (2020). Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 16(12), 2140–2155. https://doi.org/10.1080/15548627.2020.1717128
dc.relation.referencesLiu, S., Jiang, L., Li, H., Shi, H., Luo, H., Zhang, Y., Yu, C., & Jin, Y. (2014). Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. Journal of Investigative Dermatology, 134(10), 2648–2657. https://doi.org/10.1038/jid.2014.169
dc.relation.referencesLufkin, S. V. and T. (2013). Bridging the gap: understanding embryonic IVD. Cellular and Developmental Biology, 10(2), 54–56. https://doi.org/10.1002/stem.68.Mesenchymal
dc.relation.referencesMa, Q., Liang, M., Wu, Y., Ding, N., Duan, L., Yu, T., Bai, Y., Kang, F., Dong, S., Xu, J., & Dou, C. (2019). Mature osteoclast- derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Journal of Biological Chemistry, 294(29), 11240–11247. https://doi.org/10.1074/jbc.RA119.007625
dc.relation.referencesMACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood- biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes- porcine-collagen-membrane
dc.relation.referencesMahmoudi, M., Taghavi-Farahabadi, M., Rezaei, N., & Hashemi, S. M. (2019). Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. International Immunopharmacology, 74(June), 105689. https://doi.org/10.1016/j.intimp.2019.105689
dc.relation.referencesMansnerus, J. (2017). Commercialisation of Advanced Therapies : - A Study of the EU Regulation on Advanced Therapy Medical Products. In Regulatory Rapporteur (Vol. 14, Issue 6). www.topra.org
dc.relation.referencesMedication, A., Mellitus, D., & Reply, S. (2005). Etters to the. Psychiatry: Interpersonal and Biological Processes, March, 395–401.
dc.relation.referencesNémeth, K., Leelahavanichkul, A., Yuen, P. S. T., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., & Mezey, É. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/10.1038/nm.1905
dc.relation.referencesPetrenko, Y., Vackova, I., Kekulova, K., Chudickova, M., Koci, Z., Turnovcova, K., Kupcova Skalnikova, H., Vodicka, P., & Kubinova, S. (2020). A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-61167-z
dc.relation.referencesPhan, T. K., Ozkocak, D. C., & Poon, I. K. H. (2020). Unleashing the therapeutic potential of apoptotic bodies. Biochemical Society Transactions, 48(5), 2079–2088. https://doi.org/10.1042/BST20200225
dc.relation.referencesPROVENGE (sipuleucel-T) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy- products/provenge-sipuleucel-t
dc.relation.referencesRadrizzani, M., Soncin, S., Cicero, V. Lo, Andriolo, G., Bolis, S., & Turchetto, L. (2016). Quality control assays for clinical-grade human mesenchymal stromal cells: Methods for ATMP release. Methods in Molecular Biology, 1416, 313–337. https://doi.org/10.1007/978-1-4939-3584-0_19
dc.relation.referencesRaffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., Ottonello, L., & Pistoia, V. (2008). Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells,26(1), 151–162. https://doi.org/10.1634/stemcells.2007-0416
dc.relation.referencesReis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9(NOV), 1–14. https://doi.org/10.3389/fimmu.2018.02538
dc.relation.referencesSaas, P., Daguindau, E., & Perruche, S. (2016). Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells, 34(6), 1464–1473. https://doi.org/10.1002/stem.2361
dc.relation.referencesSacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011
dc.relation.referencesSarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N. J., & Rice, C. M. (2018). Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy, 20(1), 21–28. https://doi.org/10.1016/j.jcyt.2017.08.007
dc.relation.referencesShin, J. Y., Park, H. J., Kim, H. N., Oh, S. H., Bae, J. S., Ha, H. J., & Lee, P. H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy, 10(1), 32–44. https://doi.org/10.4161/auto.26508
dc.relation.referencesSong, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 41(9), 653–664. https://doi.org/10.1016/j.tips.2020.06.009
dc.relation.referencesSotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359
dc.relation.referencesSung, P. H., Chang, C. Lo, Tsai, T. H., Chang, L. T., Leu, S., Chen, Y. L., Yang, C. C., Chua, S., Yeh, K. H., Chai, H. T., Chang, H. W., Chen, H. H., & Yip, H. K. (2013). Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research and Therapy, 4(6), 9–15. https://doi.org/10.1186/scrt385
dc.relation.referencesten Ham, R. M. T., Hoekman, J., Hövels, A. M., Broekmans, A. W., Leufkens, H. G. M., & Klungel, O. H. (2018). Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. Molecular Therapy - Methods and Clinical Development, 11(December), 121–130. https://doi.org/10.1016/j.omtm.2018.10.003
dc.relation.referencesTherapies, A. (2012). Reflection paper on classification of advanced therapy medicinal products Reflection paper on classification of Advanced Therapy Medicinal Products Table of contents. Therapy, 44(April), 1–19.
dc.relation.referencesUgurlu, B., & Karaoz, E. (2020). Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochemica, 122(8), 151634. https://doi.org/10.1016/j.acthis.2020.151634
dc.relation.referencesVamvakas, S., Martinalbo, J., Pita, R., & Isaac, M. (2011). On the edge of new technologies (advanced therapies, nanomedicines). Drug Discovery Today: Technologies, 8(1), e21–e28. https://doi.org/10.1016/j.ddtec.2011.04.001
dc.relation.referencesWang, G., Zhang, S., Wang, F., Li, G., Zhang, L., & Luan, X. (2013). Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biology International, 37(2), 137–148. https://doi.org/10.1002/cbin.10024
dc.relation.referencesWeiss, D. J., English, K., Krasnodembskaya, A., Isaza-Correa, J. M., Hawthorne, I. J., & Mahon, B. P. (2019). The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Frontiers in Immunology, 10(JUN), 1–12. https://doi.org/10.3389/fimmu.2019.01228
dc.relation.referencesWobma, H., & Satwani, P. (2021). Mesenchymal stromal cells: Getting ready for clinical primetime. Transfusion and Apheresis Science, January, 103058. https://doi.org/10.1016/j.transci.2021.103058
dc.relation.referencesXu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Bioscience Reports, 39(1), 1–17. https://doi.org/10.1042/BSR20180992
dc.relation.referencesYamaguchi, H., Maruyama, T., Urade, Y., & Nagata, S. (2014). Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014(3), 1–15. https://doi.org/10.7554/eLife.02172
dc.relation.referencesYan, Z., Zhuansun, Y., Chen, R., Li, J., & Ran, P. (2014). Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Experimental Cell Research, 324(1), 65–74. https://doi.org/10.1016/j.yexcr.2014.03.013
dc.relation.referencesYang, S., Mao, Y., Zhang, H., Xu, Y., An, J., & Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry, 177, 63–75. https://doi.org/10.1016/j.ejmech.2019.05.019
dc.relation.referencesZhao, Q., Ren, H., & Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2(1), 3–20. https://doi.org/10.1016/j.jocit.2014.12.001
dc.relation.referencesZheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47(1), 22–30. https://doi.org/10.1093/rheumatology/kem284
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembInflamación
dc.subject.lembInflammation
dc.subject.lembTécnicas inmunológicas
dc.subject.lembImmunological techniques
dc.subject.proposalCélulas estromales mesenquimales
dc.subject.proposalCuerpos apoptóticos
dc.subject.proposalInmunomodulación
dc.subject.proposalMacrófagos
dc.subject.proposalLinfocitos
dc.title.translatedEvaluation of the immunomodulatory effect of apoptotic bodies of Wharton's jelly mesenchymal stromal stromal cells
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameInstituto Distrital de Ciencia, Biotecnologia e Innovación en Salud
dcterms.audience.professionaldevelopmentEstudiantes


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito