Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorQuintero Quintero, Jesús María
dc.contributor.authorCubides Garzón, Holman Enrique
dc.date.accessioned2023-01-31T13:11:50Z
dc.date.available2023-01-31T13:11:50Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83198
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractLa forma más común en que los ritmos circadianos de las diferentes funciones del cuerpo humano se sincronizan es con los ciclos día - noche de la luz natural. Cuando se rompe esta sincronización puede conllevar a cambios físicos, mentales y de conducta en los seres humanos. Los sensores de luz en la retina envían dos tipos de señales: una que llega a la corteza visual del cerebro y proporciona el sentido de la visión. Otra generada por el tejido ganglionar de la retina que llega al núcleo supraquiasmático en el cerebro, el cual usa la glándula pineal para dicha sincronización. La luz que llega al núcleo supraquiasmático se le denomina luz circadiana efectiva. Por esta razón la luz percibida a lo largo del día (sea de origen solar o eléctrico), contribuye al arrastre (sincronización o des-sincronización) de los ciclos circadianos. Uno de los ciclos circadianos más evidente en el cuerpo humano es el de vigilia - sueño, el cual está regulado a la secreción de la hormona melatonina; Es por esto que es muy importante el tipo de iluminación al que están sometidas las personas que trabajan en ambientes donde no hay iluminación natural. La iluminación melanópica tiene en cuenta el efecto que puede producir en el estímulo circadiano para generar un correcto arrastre o sincronización de los ciclos circadianos en los usuarios de dicha iluminación. La medición del estímulo circadiano está siendo utilizada a nivel mundial en numerosos trabajos de investigación y diseño. Un ejemplo es la aplicación en hospitales que estudian la enfermedad del alzhéimer e iluminación en oficinas. Varias investigaciones han demostrado que el espectro, el nivel de luz y el tiempo de exposición a una fuente de luz puede adelantar o retrasar nuestro reloj biológico influenciando así el sistema circadiano. El objetivo principal de este trabajo es exponer la herramienta de cálculo de iluminación basada en el estímulo circadiano desarrollada. La implementación de la herramienta de cálculo en el diseño de iluminación plantea la necesidad de inclusión de características espectrales o colorimétricas como la temperatura de color (CCT) y Duv. La herramienta permite también la comparación con otros estándares para el cálculo del estímulo circadiano. Con el uso de la herramienta de cálculo del Estímulo Circadiano (CS), se encontró que a partir del cambio de espectro de una fuente de luz LED de 4 canales, se pueden lograr valores de estímulo circadiano CS adecuados para cualquiera de los horarios establecidos según recomendación UL. Se encontró que el valor de CS es muy sensible a la configuración del CERC (contribución espectral de la respuesta circadiana) dada por variaciones muy pequeñas en el Duv de la fuente de iluminación. De igual manera se evidenció que contrario a lo que se esperaría, existen configuraciones espectrales con CERC cálido que inducirían estímulo circadiano para generar estado de alerta, y espectros con CERC frío serían capaces de reducirlo. En el caso de estudio del diseño de iluminación, se logró cumplir con el estándar UL24480 gracias al ajuste de SPD con iluminación dinámica. Por último, se compararon los estándares actuales de iluminación circadiana con el fin de evaluar las diferencias y similitudes en pro de establecer un criterio de diseño adecuado que contemple dichos estándares. (Texto tomado de la fuente)
dc.description.abstractThe most common way in which the circadian rhythms of the different functions of the human body are synchronized with the day-night cycles of natural light. When this synchronization is broken it can lead to physical, mental and behavioral changes in human beings. Light sensors in the retina send two types of signals: one that reaches the visual cortex of the brain and provides the sense of vision. Another generated by the retinal ganglion tissue that reaches the suprachiasmatic nucleus in the brain, which uses the pineal glands for that function. The light that reaches the suprachiasmatic nucleus is called effective circadian light. For this reason, the light perceived throughout the day (whether of solar or electrical origin), contributes to the entrainment (synchronization or desynchronization) of the circadian cycles. One of the most evident circadian cycles in the human body is the wake-sleep cycle, which is regulated by the secretion of the hormone melatonin; This is why the type of lighting to which people who work in environments where there is no natural lighting is very important. Melanopic lighting takes into account the effect that it can produce on the circadian stimulus to generate a correct entrainment or animation of the circadian cycles in the users of that lighting. The measurement of the circadian stimulus is being used worldwide in numerous research and design works. An example is the application in hospitals that study Alzheimer's disease and lighting in offices. Several investigations have shown that both the biological spectrum and the light level of a light source and the time of exposure can advance or delay our clock, thus influencing the circadian system. The main objective of this work is to expose the lighting calculation tool based on the developed circadian stimulus. The implementation of the calculation tool in lighting design raises the need to include spectral or colorimetric characteristics such as color temperature (CCT) and Duv. The tool also allows the comparison with other standards for the calculation of the circadian stimulus. With the use of the Circadian Stimuli (CS) calculation tool, it was found that with the spectrum change of a 4-channel LED light source, appropriate CS circadian stimulus values can be achieved for any of the schedules established according to UL recommendation. It was found that the value of CS is very sensitive to the configuration of the CERC (circadian response spectral contribution) given by very small variations in the Duv of the light source. Similarly, it was shown that contrary to what would be expected, there are spectral configurations with warm CERC that would induce circadian stimulation to generate alertness, and spectra with cold CERC would be able to reduce it. In the lighting design case study, compliance with the UL24480 standard was achieved by adjusting the SPD with dynamic lighting. Finally, the current circadian lighting standards were compared in order to evaluate the differences and similarities in order to establish an adequate design criterion that contemplates some standards.
dc.format.extent124 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc640 - Gestión del hogar y vida familiar::643 - Equipamiento de vivienda y hogar
dc.subject.ddc720 - Arquitectura::728 - Edificios residenciales y relacionados
dc.titleDiseño de una herramienta de cálculo basada en el estímulo de los ritmos circadianos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupGrupo de Investigación en Metrología, Iluminación y Radiometría - Matisse
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaIluminación
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAmerican national standard practice on lighting for educational facilities, 19 (2013).
dc.relation.referencesBabilon, S., Beck, S., & Khanh, T. Q. (2021). A field test of a simplified method of estimating circadian stimulus. Lighting Research and Technology, 1±15. https://doi.org/10.1177/14771535211044664
dc.relation.referencesBelenky, M. A., Smeraski, C. A., Provencio, I., Sollars, P. J., & Pickard, G. E. (2003). Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. Journal of Comparative Neurology, 460(3). https://doi.org/10.1002/cne.10652
dc.relation.referencesBerson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070±1073. https://doi.org/10.1126/science.1067262
dc.relation.referencesBrown, T. M., Brainard, G. C., Cajochen, C., Czeisler, C. A., Hanifin, J. P., Lockley, S. W., Lucas, R. J., Münch, M., OHagan, J. B., Peirson, S. N., Price, L. L. A., Roenneberg, T., Schlangen, L. J. M., Skene, D. J., Spitschan, M., Vetter, C., Zee, P. C., & Wright, K. P. (2022). Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biology, 20(3). https://doi.org/10.1371/journal.pbio.3001571
dc.relation.referencesBullough, J. D., Van Derlofske, J., & Yan, H. (2001). Evaluation of automotive stop lamps using incandescent and sweeping neon and LED light sources. SAE Technical Papers. https://doi.org/10.4271/2001-01-0301
dc.relation.referencesCajochen, C., Zeitzer, J. M., Czeisler, C. A., & Dijk, D. J. (2000). Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behavioural Brain Research, 115(1). https://doi.org/10.1016/S0166-4328(00)00236-9
dc.relation.referencesCIE. (2005). Lighting of outdoor work places (p. 30). CIE Central Bureau. https://doi.org/CIE S 015/E:2005
dc.relation.referencesCIE Central Bureau. (2018). CIE. S 026/E:2018. CIE System for Metrology of Optical Radiation for ipRGCǦ Influenced Responses to Light. CIE Central Bureau.
dc.relation.referencesCIE TC 1-48. (2004). CIE 015:2004 Colorimetry, 3rd Edition. CIE 015:2004 Colorimetry, 3rd Edition.
dc.relation.referencesDavis, W. (2010). Color quality scale. Optical Engineering, 49(3). https://doi.org/10.1117/1.3360335
dc.relation.referencesFigueiro, M. G., Kalsher, M., Steverson, B. C., Heerwagen, J., Kampschroer, K., & Rea, M. S. (2019). Circadian-effective light and its impact on alertness in office workers. Lighting Research and Technology, 51(2), 171±183. https://doi.org/10.1177/1477153517750006
dc.relation.referencesFigueiro, M. G., Plitnick, B., & Rea, M. S. (2016). Research Note: A self-luminous light table IRU SHUVRQV ZLWK $O]KHLPHU¶V GLVHDVH Lighting Research and Technology, 48(2). https://doi.org/10.1177/1477153515603881
dc.relation.referencesFigueiro, Mariana G., Hunter, C. M., Higgins, P. A., Hornick, T. R., Jones, G. E., Plitnick, B., Brons, J., & Rea, M. S. (2015). Tailored lighting intervention for persons with dementia and caregivers living at home. Sleep Health, 1(4). https://doi.org/10.1016/j.sleh.2015.09.003
dc.relation.referencesFigueiro, Mariana G., Sahin, L., Wood, B., & Plitnick, B. (2016). Light at Night and Measures of Alertness and Performance: Implications for Shift Workers. Biological Research for Nursing, 18(1). https://doi.org/10.1177/1099800415572873
dc.relation.referencesGooley, J. J., Mien, I. H., St. Hilaire, M. A., Yeo, S. C., Chua, E. C. P., van Reen, E., Hanley, C. J., Hull, J. T., Czeisler, C. A., & Lockley, S. W. (2012). Melanopsin and Rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. Journal of Neuroscience, 32(41). https://doi.org/10.1523/JNEUROSCI.1321-12.2012
dc.relation.referencesGooley, J. J., Rajaratnam, S. M. W., Brainard, G. C., Kronauer, R. E., Czeisler, C. A., & Lockley, S. W. (2010). Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Science Translational Medicine, 2(31). https://doi.org/10.1126/scitranslmed.3000741
dc.relation.referencesHattar, S., Liao, H. W., Takao, M., Berson, D. M., & Yau, K. W. (2002). Melanopsincontaining retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065±1070. https://doi.org/10.1126/science.1069609
dc.relation.referencesHattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S., Douglas, R. H., Hankins, M. W., Lem, J., Biel, M., Hofmann, F., Foster, R. G., & Yau, K. W. (2003). Melanopsin and rod²cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424(6944), 76±81. https://doi.org/10.1038/nature01761
dc.relation.referencesHouser, K. W., & Esposito, T. (2021). Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Frontiers in Neurology, 12(January), 1±13. https://doi.org/10.3389/fneur.2021.630553
dc.relation.referencesKolb, H. (1995). Simple Anatomy of the Retina. In Webvision: The Organization of the Retina and Visual System.
dc.relation.referencesLaboratories, U. (2019). Design Guideline for Promoting Circadian Entrainment with Light for Day-Active People (underwriters Laboratories (ed.); 1st ed.). https://www.shopulstandards.com/ProductDetail.aspx?UniqueKey=36592&ShowFre eviewModal=1&ShowFreeviewModal=1
dc.relation.referencesLucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., Figueiro, M. Provencio, I., Skene, D. J., & Brainard, G. C. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37(1), 1±9. https://doi.org/10.1016/j.tins.2013.10.004
dc.relation.referencesMalacara, D. (2011). Color Vision and Colorimetry: Theory and Applications, Second Edition. In Color Vision and Colorimetry: Theory and Applications, Second Edition. https://doi.org/10.1117/3.881172
dc.relation.referencesNowozin, C., Wahnschaffe, A., Rodenbeck, A., Zeeuw, J. de, Hädel, S., Kozakov, R., Schöpp, H., Münch, M., & Kunz, D. (2017). Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness. Current Alzheimer Research, 14(10). https://doi.org/10.2174/1567205014666170523094526
dc.relation.referencesPanda, S., Provencio, I., Tu, D. C., Pires, S. S., Rollag, M. D., Castrucci, A. M., Pletcher, M. T., Sato, T. K., Wiltshire, T., Andahazy, M., Kay, S. A., Van Gelder, R. N., & Hogenesch, J. B. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science, 301(5632). https://doi.org/10.1126/science.1086179
dc.relation.referencesPenders, T. M., Stanciu, C. N., Schoemann, A. M., Ninan, P. T., Bloch, R., & Saeed, S. A. (2016). Bright light therapy as augmentation of pharmacotherapy for treatment of depression: A systematic review and meta-analysis. In Primary Care Companion to the Journal of Clinical Psychiatry (Vol. 18, Issue 5). https://doi.org/10.4088/PCC.15r01906
dc.relation.referencesPerera, S., Eisen, R., Bhatt, M., Bhatnagar, N., de Souza, R., Thabane, L., & Samaan, Z. (2016). Light therapy for non-seasonal depression: systematic review and metaanalysis. BJPsych Open, 2(2). https://doi.org/10.1192/bjpo.bp.115.001610
dc.relation.referencesRea, M. S., Figueiro, M. G., Bierman, A., & Hamner, R. (2012a). Erratum: Modeling the spectral sensitivity of the human circadian system (Lighting Research and Technology (2012) 44:4 (386-396) DOI: 10.1177/1477153511430474)). Lighting Research and Technology, 44(4), 516. https://doi.org/10.1177/1477153512467607
dc.relation.referencesRea, M. S., Figueiro, M. G., Bierman, A., & Hamner, R. (2012b). Modelling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4), 386±396. https://doi.org/10.1177/1477153511430474
dc.relation.referencesRea, Mark S., Figueiro, M. G., Bullough, J. D., & Bierman, A. (2005). A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2), 213±228. https://doi.org/10.1016/j.brainresrev.2005.07.002
dc.relation.referencesRogério dos Santos Alves; Alex Soares de Souza, et all. (2014). Light and Human Health: An Overview of the Impact of Optical Radiation on Visual, Circadian, Neuroendocrine, and Neurobehavioral Responses. Igarss 2014, 1, 1±5.
dc.relation.referencesRüger, M., Gordijn, M. C. M., Beersma, D. G. M., De Vries, B., & Daan, S. (2006). Time-ofday-dependent effects of bright light exposure on human psychophysiology: Comparison of daytime and nighttime exposure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 290(5). https://doi.org/10.1152/ajpregu.00121.2005
dc.relation.referencesSahin, L., & Figueiro, M. G. (2013). Alerting effects of short-wavelength (blue) and longwavelength (red) lights in the afternoon. Physiology and Behavior, 116±117. https://doi.org/10.1016/j.physbeh.2013.03.014
dc.relation.referencesSchmidt, T. M., Do, M. T. H., Dacey, D., Lucas, R., Hattar, S., & Matynia, A. (2011). Melanopsin-positive intrinsically photosensitive retinal ganglion cells: From form to function. Journal of Neuroscience, 31(45). https://doi.org/10.1523/JNEUROSCI.4132-11.2011
dc.relation.referencesSciences, N. I. of G. M. (2020). circadian-rhythms. Bethesda. https://www.nigms.nih.gov/education/fact -sheets/Pages/circadianrhythmsspanish.aspx
dc.relation.referencesSkeldon, A. C., Phillips, A. J. K., & Dijk, D. J. (2017). The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: A modeling approach. In Scientific Reports (Vol. 7). https://doi.org/10.1038/srep45158
dc.relation.referencesSnodderly, D. M., Brown, P. K., Delori, F. C., & Auran, J. D. (1984). The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Investigative Ophthalmology and Visual Science, 25(6), 660±673
dc.relation.referencesSouman, J. L., Borra, T., de Goijer, I., Schlangen, L. J. M., Vlaskamp, B. N. S., & Lucassen, M. P. (2018). Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature. Journal of Biological Rhythms, 33(4). https://doi.org/10.1177/0748730418784041
dc.relation.referencesStockman, A., MacLeod, D. I. A., & Johnson, N. E. (1993). Spectral sensitivities of the human cones. Journal of the Optical Society of America A, 10(12). https://doi.org/10.1364/josaa.10.002491
dc.relation.referenceste Kulve, M., Schlangen, L. J. M., & van Marken Lichtenbelt, W. D. (2019). Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52352-
dc.relation.referencesTruong, W., Trinh, V., & Khanh, T. Q. (2020). Circadian stimulus ± A computation model with photometric and colorimetric quantities. Lighting Research and Technology, 52(6). https://doi.org/10.1177/1477153519887423
dc.relation.referencesTruong, William, Zandi, B., Trinh, V. Q., & Khanh, T. Q. (2020). Circadian metric ± Computation of circadian stimulus using illuminance, correlated colour temperature and colour rendering index. Building and Environment, 184. https://doi.org/10.1016/j.buildenv.2020.107146
dc.relation.referencesUS DOE. (2016). Solid-State Lighting R&D Plan. In Electronic Publishing (Issue June).
dc.relation.referencesWagiman, K. R., Abdullah, M. N., Hassan, M. Y., Mohammad Radzi, N. H., Abu Bakar, A. H., & Kwang, T. C. (2020). Lighting system control techniques in commercial buildings: Current trends and future directions. Journal of Building Engineering, 31, 101342. https://doi.org/10.1016/J.JOBE.2020.101342
dc.relation.referencesYosten, G. L. C. (2020). AJP-Regulatory, integrative and comparative physiology: Looking toward the future. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 319(1). https://doi.org/10.1152/ajpregu.00104.2020
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRITMOS CIRCADIANOS
dc.subject.lembCircadian rhythms
dc.subject.proposalEstímulo circadiano
dc.subject.proposalEfectos no visuales de la luz
dc.subject.proposalGuía de diseño UL24480
dc.subject.proposalVisión melanópica
dc.subject.proposalRitmos circadianos
dc.subject.proposalMelanopsina
dc.subject.proposalMelatonina
dc.subject.proposalLuz circadiana
dc.subject.proposalCircadin estimulus
dc.subject.proposalNon-visual effects of light
dc.subject.proposalDesign guide UL24480
dc.subject.proposalMelanopic visión
dc.subject.proposalCircadian Rhtyms
dc.subject.proposalMelanopsin
dc.subject.proposalMelatonin
dc.subject.proposalCircadian light
dc.title.translatedDesign of a lighting calculation tool based on the stimulation of circadian rhythms
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito