Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.authorAcevedo Cadena, Helber Gonzalo
dc.date.accessioned2023-02-01T20:41:28Z
dc.date.available2023-02-01T20:41:28Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83228
dc.description.abstractEn el mundo y Colombia en los últimos años ha tomado mayor importancia la necesidad de incluir las fuentes no convencionales de energías renovables a los sistemas de potencia, tarea que se ha convertido en un gran desafío debido a la poca experiencia y conocimiento respecto al diseño, construcción, operación y mantenimiento de estas tecnologías. Uno de los aspectos importantes que deben ser tenidos en cuenta para la inclusión de los sistemas de generación no convencional, es la evaluación y análisis del impacto que puede llegar a generar la conexión de una nueva planta sobre la seguridad y operación confiable de un sistema de potencia. Por esta razón, se considera importante identificar cuáles son los países líderes en el mundo en el desarrollo de este tipo de tecnologías, con el fin de realizar la revisión bibliográfica, primero de las exigencias de requisitos técnicos dispuestas en sus códigos de redes y segundo de los estudios técnicos de propuestas de conexión de nuevas plantas a los sistemas de potencia realizados por expertos en el tema. Todo lo anterior con el fin de extraer información de aspectos y condiciones relevantes que deben ser tenidos en cuenta para la implementación de este tipo de proyectos, la cual podrá servir de soporte técnico a interesados en desarrollar condiciones técnicas relacionadas con la operación y diseño, construcción de la regulación y en general para las empresas interesadas en presentar proyectos de energía renovable para conectar a un sistema eléctrico de potencia. (Texto tomado de la fuente)
dc.description.abstractComparison of technical requirements necessary for the connection of new wind and photovoltaic energy projects to power systems. In the world and Colombia in recent years, the need to include non-conventional sources of renewable energy in power systems has grown, a task that has become a great challenge due to the lack of experience and knowledge regarding design, construction, operation and maintenance of these technologies. One of the important aspects that must be taken into account for the inclusion of nonconventional generation systems is the evaluation and analysis of the impact that the connection of a new plant can generate on the safety and reliable operation of an electrical system. For this reason, it is considered important to identify which are the leading countries in the world in the development of this type of technology, in order to carry out the bibliographic review, first of the requirements of technical requirements disposed in their grid codes and second of technical studies of proposals for connecting new plants to power systems carried out by experts in the field. All of the above in order to extract information on relevant aspects and conditions that must be taken into account for the implementation of this type of project, which may serve as technical support to those interested in developing technical conditions related to operation and design, construction of regulation and in general for companies interested in presenting renewable energy projects to connect to power systems.
dc.format.extentxvii, 100 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc080 - Colecciones generales::081 - Colecciones generales en lengua inglesa norteamericana
dc.subject.ddc080 - Colecciones generales::082 - Colecciones generales en inglés
dc.titleComparación de requisitos técnicos necesarios para la conexión de nuevos proyectos de energía eólica y fotovoltaica a sistemas eléctricos de potencia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica
dc.contributor.researchgroupGrupo de Investigación Emc-Un
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctrica
dc.description.researchareaSistemas de potencia
dc.description.researchareaEnergías alternativas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá - Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesA. Carretero and J. M. García, “Gestión de la eficiencia energética: cálculo del consumo, indicadores y mejora”, AENOR, Madrid, España, 2012.
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales, “Inventario Nacional de Gases de Efecto Invernadero (GEI)", IDEAM, Bogotá, Colombia, 2012.
dc.relation.referencesUnidad de Planeación Minero Energética, “Plan de expansión de referencia generación-transmisión 2020-2034 volumen 2. Generación.”
dc.relation.referencesInternational Renewable Energy Agency, "Renewable capacity statistics 2022", IRENA, Viena, Austria, 2022.
dc.relation.referencesH. A. N. Jun-iing, “Status and Improvement of China ’ s Renewable Energy Legislation”.
dc.relation.referencesDeutsche Energie-agentur, “dena Grid Study II . Integration of Renewable Energy Sources in the German Power Supply System from 2015 – 2020 with an Outlook to 2025 .,” p. 615, 2010.
dc.relation.referencesFederal Ministry for Economic Affairs and Energy, “Making more out of energy,” Natl. Action Plan Energy Effic., 2014.
dc.relation.referencesV. Y. Singarao, S. M. Ieee, and R. P. Singh, “Review of State and National Renewable Energy Policies,” pp. 81–86, 2014, doi: 10.1109/GREENTECH.2014.13.
dc.relation.referencesC. García, X. Barrera, R. Gómez, and R. Suárez, "El ABC de los compromisos de Colombia para la COP21 . 2 ed. WWF-Colombia . 31 pp, 2015.
dc.relation.referencesUnidad de Planeación Minero Energética, “Registro de Proyectos de Generación”, UPME, Bogotá, Colombia, no. 0520, p. 14, 2015.
dc.relation.referencesT. Ackermann, N. Martensen, T. Brown, P.-P. Schierhorn, F. G. Boshell, and M. Ayuso, “Scaling Up Variable Renewable Power :,” p. 106, 2016.
dc.relation.references“Energy-Charts.” https://energy-charts.info/?l=en&c=DE (accessed Aug. 05, 2022).
dc.relation.referencesK. Ii and C. Contract, “TransmissionCode 2007 Network and System Rules of the,” no. August, 2007.
dc.relation.referencesDanish Energy Agency, “Energy in Denmark 2018”, Copenhagen, Denmark, 2018.
dc.relation.referencesP. Pinson, L. Mitridati, C. Ordoudis, and J. Ostergaard, “Towards fully renewable energy systems: Experience and trends in Denmark,” CSEE J. Power Energy Syst., vol. 3, no. 1, pp. 26–35, 2017, doi: 10.17775/CSEEJPES.2017.0005.
dc.relation.referencesP. Uk, “Technical regulation 3.2.2 for PV plants above 11 kW,” pp. 1–108, 2016.
dc.relation.referencesEnerginet.dk, “for wind power plants above 11 kW,” pp. 1–108, 2016.
dc.relation.references“National Power Portal.” https://npp.gov.in/publishedReports# (accessed May 22, 2022).
dc.relation.referencesCentral Electricity Authority, "Manual on Transmission Planning Criteria", New Delhi, India, vol. 84, no. January, pp. 487–492, 2013.
dc.relation.referencesCentral Electricity Regulatory Commission, “Indian Electricity Grid Code,” no. December 2005, pp. 1–74, 2006.
dc.relation.referencesEirGrid, “All-Island Generation Capacity Statement 2017-2026,” pp. 10–14, 2017, [Online]. Available: http://www.eirgridgroup.com/sitefiles/ library/EirGrid/4289_EirGrid_GenCapStatement_v9_web.pdf
dc.relation.referencesE. Website, F. D. Paper, and I. Date, “EirGrid Grid Code,” no. April 2014, 2018.
dc.relation.referencesNational Energy Board, “CANADA ’ S RENEWABLE Energy Market Analysis 2016,” p. 37, 2016, [Online]. Available: https://www.cerrec. gc.ca/nrg/sttstc/lctrct/rprt/2016cndrnwblpwr/2016cndrnwblpwr-eng.pdf
dc.relation.referencesAlberta Electricity System Operator, “Technical Requirements for Connecting to the Alberta Interconnected Electric System ( IES ) Transmission System Part 1 : Technical Requirements for Connecting Generators,” pp. 1–21.
dc.relation.referencesAlberta Electricity System Operator, “ISO Rules Part 500 - Facilities Division 502 – Technical Requirements Section 502 . 1 – Wind Aggregated Generating Facilities Technical Requirements,” no. 2, pp. 1–14, 2011.
dc.relation.referencesAsociación Colombiana de generadores de energía eléctrica - Acolgen. https://acolgen.org.co/ (accessed Aug. 13, 2022).
dc.relation.referencesGerencia Centro Nacional de Despacho, “Justificación propuesta transitoria integración de generación solar y eólica al STN y STR”, XM, Medellín, Colombia, 2018.
dc.relation.referencesE. Sierra, P. Castro and P. Miquel, “Estudios de Conexión Proyecto Fotovoltaico Lalackama y Proyecto Eólico Taltal”, Systep Ingeniería y Diseños S.A, Santiago, Chile, 2014.
dc.relation.referencesS. Zoroofi and M. Mazadi, “Engineering Connection Assessment Riverview Wind Power Plant Connection”, Riverview Limited Partnership, Ontario, Canadá, 2018.
dc.relation.referencesSamsung Renewable Energy Inc “System Impact Assessment Report Grand Renewable Energy park Project”, , IESO_REP_0717, Toronto, Canadá, 2012.
dc.relation.referencesJ. Waenink, J. Ding, M. Mazadi and M. Kamh, “Connection Engineering Study Report for Filing E. ON Grizzly Bear Creek Wind Power Plant Facility Connection”, E. ON Climate and Renewables Canada Ltd, Toronto, Canadá, 2016.
dc.relation.referencesRenewable Energy Services Ltd, “Engineering Connection Assessment McLaughlin Wind Power Plant Connection”, AESO Project 1500, Nova Scotia, Canadá, 2019.
dc.relation.referencesY. Li, Y. Chi, X. Wang, X. Tian, and J. Jianqing, “Practices and Challenge on Planning with Large-scale Renewable Energy Grid Integration,” 2019 IEEE 3rd Conf. Energy Internet Energy Syst. Integr., pp. 118–121, 2020, doi: 10.1109/ei247390.2019.9062091.
dc.relation.referencesP. E. Sutherland, “Ensuring Stable Operation with Grid Codes: A Look at Canadian Wind Farm Interconnections,” IEEE Ind. Appl. Mag., vol. 22, no. 1, pp. 60–67, 2016, doi: 10.1109/MIAS.2015.2459105.
dc.relation.referencesO. L. Bekri, M. K. Fellah, and M. F. Benkhoris, “Impact of the wind generator on the power flow in the electric grid,” 3rd Int. Symp. Environ. Friendly Energies Appl. EFEA 2014, no. February 2015, 2014, doi: 10.1109/EFEA.2014.7059945.
dc.relation.referencesE. Muljadi and V. Gevorgian, “Short-circuit modeling of a wind power plant,” IEEE Power Energy Soc. Gen. Meet., no. March, 2011, doi: 10.1109/PES.2011.6039068.
dc.relation.referencesH. Tang, Y. Chang, Y. Chi, B. Wang, Y. Li, and J. Hu, “Analysis and control of doubly fed induction generator for zero voltage ride through,” 19th Int. Conf. Electr. Mach. Syst. ICEMS 2016, pp. 1–5, 2017.
dc.relation.referencesJ. Sreedevi, K. S. Meera, P. Noor Cheshma, S. Ravichandran, R. Santhanakumar, and T. Sumathi, “Grid stability with large wind power integration-a case study,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, pp. 571–575, 2017, doi: 10.1109/TENCON.2016.7848065.
dc.relation.referencesC. Yongning, L. Yanhua, W. Weisheng, and D. Huizhu, “Voltage stability analysis of wind farm integration into transmission network,” 2006 Int. Conf. Power Syst. Technol. POWERCON2006, vol. 00, pp. 1–7, 2007, doi: 10.1109/ICPST.2006.321661.
dc.relation.referencesM. R. Aghaebrahimi, M. Amiri, and M. Kamali Moghaddam, “A short circuit study of an induction generator wind farm considering wind speed changes,” 40th North Am. Power Symp. NAPS2008, pp. 1–6, 2008, doi: 10.1109/NAPS.2008.5307404.
dc.relation.referencesR. Li, H. Geng, and G. Yang, “Fault ride-through of renewable energy conversion systems during voltage recovery,” J. Mod. Power Syst. Clean Energy, vol. 4, no. 1, pp. 28–39, 2016, doi: 10.1007/s40565-015-0177-0.
dc.relation.referencesJ. Mudi and D. Sinha, “Comparative study among different wind turbines used for wind energy system,” Proc. 2014 1st Int. Conf. Non Conv. Energy Search Clean Safe Energy, ICONCE 2014, no. Iconce, pp. 175–179, 2014, doi: 10.1109/ICONCE.2014.6808715.
dc.relation.referencesM. Mansour, M. N. Mansouri, and M. F. Mimouni, “Comparative study of fixed speed and variable speed wind generator with pitch angle control,” 2011 Int. Conf. Commun. Comput. Control Appl. CCCA 2011, no. 2, pp. 1–7, 2011, doi: 10.1109/CCCA.2011.6031525.
dc.relation.referencesO. D. Basak and B. S. Sazak, “Effect of developments on a PV system efficiency,” 2013 4th Int. Symp. Electr. Electron. Eng. ISEEE 2013 - Proc., 2013, doi: 10.1109/ISEEE.2013.6674325.
dc.relation.referencesM. Goranova and B. Dimitrov, “Experimental study of flexible photovoltaic cells and a comparative analysis of the performance of different technologies,” 2014 18th Int. Symp. Electr. Appar. Technol. SIELA 2014 - Proc., pp. 1–4, 2014, doi: 10.1109/SIELA.2014.6871858.
dc.relation.referencesC. Wessels and F. W. Fuchs, “High voltage ride through with FACTS for DFIG based wind turbines,” 2009 13th Eur. Conf. Power Electron. Appl. EPE ’09, pp. 1– 10, 2009.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcElectric power systems
dc.subject.lembCentral eléctrica
dc.subject.lembElectric power-plants
dc.subject.lembSistemas de energía eléctrica
dc.subject.proposalSistemas de potencia
dc.subject.proposalEnergía renovable
dc.subject.proposalEnergía eólica
dc.subject.proposalEnergía fotovoltaica
dc.subject.proposalFuente no convencional de energía
dc.subject.proposalFuente convencional de energía
dc.subject.proposalPower systems
dc.subject.proposalRenewable energy
dc.subject.proposalWind energy
dc.subject.proposalPhotovoltaic energy
dc.subject.proposalNon-conventional source of energy
dc.subject.proposalConventional source of energy
dc.title.translatedComparison of technical requirements necessary for the connection of new wind and photovoltaic energy projects to power systems
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito