Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorTorres Agredo, Janneth
dc.contributor.authorBenítez Vivas, José Fernando
dc.date.accessioned2023-02-02T16:37:23Z
dc.date.available2023-02-02T16:37:23Z
dc.date.issued2022-12-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83247
dc.descriptionIlustraciones, tablas
dc.description.abstractEl ladrillo de mampostería es uno de los materiales de construcción más utilizados en todo el mundo, lo que conlleva a una sobreexplotación de sus materias primas. Su producción consume gran cantidad de energía y tiene una alta huella ambiental. La industria de ladrillos de arcilla tiene la capacidad de adicionar residuos a su materia prima. Se ha reportado el uso de residuos del procesamiento del té, residuos de ladrillo, residuo de la industria del papel, residuos del beneficio de café, cenizas de carbón, entre otros. Una empresa de Colombia, productora de derivados de arcilla genera dentro de su proceso de producción 20 Ton/mes de ceniza de fondo de carbón (CFC), residuo que actualmente se envía a disposición final conllevando a sobrecostos. El objetivo de este estudio fue encontrar un posible aprovechamiento de este residuo dentro del mismo proceso productivo de la empresa en un contexto de economía circular como reemplazante de materia prima en la elaboración de ladrillos cerámicos. Para el desarrollo de este objetivo inicialmente se caracterizó la ceniza de fondo de carbón por Fluorescencia de Rayos X, difracción de rayos X, análisis de termogravimetría, granulometría laser, microestructura y tamaño de partícula; además, se determinó su densidad, pérdida al fuego y análisis ambiental de lixiviación de metales pesados. Por otro lado, se evaluó la incorporación de cenizas en la elaboración de ladrillos de arcilla, con porcentajes de reemplazo de arena con diferentes muestreos de ceniza en 0, 3, 5 y 7%; además 0, 2, 4,6 y 8%. Por último, se evaluaron las propiedades físicas, mecánicas y ambientales de los ladrillos. Como resultados de los ladrillos con adición de ceniza de fondo de carbón se obtuvo que la absorción de agua, la porosidad aparente, pérdida de peso por calcinación y gravedad específica aparente se incrementaron, mientras que la resistencia a la compresión, contracción total por secado lineal y la densidad aparente disminuyeron con la incorporación de cenizas en las muestras de ladrillos. Los ladrillos con mejor desempeño fueron los adicionados con el 4% de ceniza, ya que estos tuvieron un mejor desempeño en las propiedades evaluadas acorde a la normatividad de Colombia, por lo que este residuo presenta un gran potencial de ser valorizado en este material de construcción. (Texto tomado de la fuente)
dc.description.abstractMasonry brick is one of the most widely used building materials in the world, which leads to an overexploitation of its raw materials. Its production consumes high quantity of energy and has a high environmental footprint. The clay brick industry has the ability to add waste to its raw material. The use of tea processing waste, brick waste, waste from the paper industry, waste from coffee mill, coal ash has been reported. A Colombian company, producer of clay derivatives, generates 20 tons/month of coal bottom ash (CBA) within its production process, a residue that is currently sent to final disposal with high cost overruns. The objective of this study was to find a possible use of this waste within the same production process of the company in a context of circular economy as a substitute for raw material in the production of ceramic bricks. For the development of this objective, coal bottom ash was initially characterized by X-ray Fluorescence, X-ray diffraction, thermogravimetric analysis, laser granulometry, microstructure and particle size; In addition, its density, loss on ignition and environmental analysis of heavy metal leaching were determined. On the other hand, the incorporation of ash in the production of clay bricks was evaluated, with percentages of sand replacement with different ash samples at 0, 3, 5 and 7% and 0, 2, 4.6 and 8%. Finally, the physical, mechanical and environmental properties of the bricks were evaluated. As results of the bricks with the addition of coal bottom ash, it was obtained that the water absorption, the apparent porosity, loss of ignition and apparent specific gravity increased, while the compressive strength, total contraction due to linear drying and the apparent density decreased with the incorporation of ashes in the brick samples. The bricks with the best performance were those added with 4% ash, since these had a better performance in the properties evaluated according to Colombian regulations. Therefore, this waste has great potential to be recovered in this construction material.
dc.format.extentxx, 85 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.titleAprovechamiento de cenizas de fondo de carbón como reemplazante de materia prima en la producción de ladrillos cerámicos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental
dc.contributor.researchgroupGrupo de Investigación: Materiales y Medio Ambiente (Gimma)
dc.description.degreelevelMaestría
dc.description.degreenameMaestría en Ingeniería-Ingeniería Ambiental
dc.description.methodsSe propone una metodología que consiste en 6 etapas fundamentales. La primera etapa consiste en la búsqueda bibliográfica relevante del tema a investigar, después se procede a caracterización físico química, mineralógica y ambiental del residuo (2 y 3 etapa), en la etapa 4 se procede a fabricar los ladrillos con adición de las CFC teniendo en cuenta las condiciones de operación en la empresa con respecto a cantidad de materias primas disponibles. Para la etapa 5, se determinarán parámetros de calidad y ambientales de los ladrillos para definir parámetros óptimos. Por último, en la etapa 6 se procede analizar resultados y escritura de informe final además de socialización a la comunidad académica
dc.description.researchareaAprovechamiento de residuos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbbas, S., Saleem, M. A., Kazmi, S. M. S., & Munir, M. J. (2017). Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering, 14(September), 7–14. https://doi.org/10.1016/j.jobe.2017.09.008
dc.relation.referencesAgencia Nacional de Minas. (2022). El futuro del carbón en Colombia no termina, se fortalece con las ruedas de negocios.
dc.relation.referencesAlvarez, M., & González, T. (1994). Restauración de edificios monumentales: estudio de materiales y técnicas instrumentales. Centro de Estudios y Experimentación de Obras Pública.
dc.relation.referencesAsokbunyarat, V., Van Hullebusch, E. D., Lens, P. N. L., & Annachhatre, A. P. (2015). Coal bottom ash as sorbing material for Fe(II), Cu(II), Mn(II), and Zn(II) removal from aqueous solutions. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2415-5
dc.relation.referencesASTM. (1997). ASTM C326: 1997. Test Method for Drying and Firing Shrinkage of Ceramic Whiteware Clays. American Society for Testing and Material.
dc.relation.referencesASTM. (2009). ASTM C326Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays.
dc.relation.referencesASTM. (2019). ASTM C618. Standard Specification for Standard Specification for Fly Ash and Raw Material or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete.
dc.relation.referencesASTM. (2021a). Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues ( D7348 − 13) (pp. 1–7). ASTM international.
dc.relation.referencesASTM. (2021b). Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile (C67/C67M − 20) (pp. 1–17). ASTM international.
dc.relation.referencesASTM C-20. (2005). Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water.
dc.relation.referencesBaba, A., & Kaya, A. (2004). Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. Journal of Environmental Management, 73(3), 199–207. https://doi.org/10.1016/j.jenvman.2004.06.005
dc.relation.referencesBaino, F., & Ferraris, S. (2018). Production and characterization of ceramic foams derived from vitrified bottom ashes. Material Letters, 236, 281–284.
dc.relation.referencesBakalar, T., Pavolová, H., & Hajduová, Z. (2021). Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy. Journal of Cleaner Production, 302. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126977
dc.relation.referencesBandow, N., Gartiser, S., Ilvonen, O., & Schoknecht, U. (2018). Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances. Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0144-2
dc.relation.referencesBharathi, S., Devasena, T., Islam, V. I. H., & Prakhya, B. M. (2015). Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. 585–593.
dc.relation.referencesBlissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23. https://doi.org/10.1016/j.fuel.2012.03.024
dc.relation.referencesBragança, S. R., Zimmer, A., & Bergmann, C. P. (2008). Use of mineral coal ashes in insulating refractory brick. Refractories and Industrial Ceramics, 49(4), 320–323. https://doi.org/10.1007/s11148-008-9088-1
dc.relation.referencesCastells, E. (2012). Tecnologías aplicables al tratamiento de residuos. In Ediciones Díaz de Santos (Ed.), Reciclaje de Residuos Industriales.
dc.relation.referencesCultrone, G., & Sebastián, E. (2009). Fly ash addition in clayey materials to improve the quality of solid bricks. Construction and Building Materials, 23(2), 1178–1184. https://doi.org/10.1016/j.conbuildmat.2008.07.001
dc.relation.referencesDalkılıç, N. (2017). Traditional manufacturing of clay brick used in the historical buildings of Diyarbakir (Turkey). Frontiers of Architectural Research, 346–359.
dc.relation.referencesDNP. (2017). Política Nacional de Edificaciones Sostenibles (pp. 1–68).
dc.relation.referencesDNP, D. N. de planeación. (2019). Ley 1955 del 25 de mayo 2019.
dc.relation.referencesDwivedi, A., & Jain, M. K. (2014). Fly ash – waste management and overview : A Review. Recent Research in Science and Technology, 30–35.
dc.relation.referencesEarthjustice. (2019). La Agencia de Protección Ambiental Elimina Protecciones Adicionales De La Tóxica Ceniza de Carbón | Earthjustice. https://earthjustice.org/news/press/2019/la-agencia-de-protecci-n-ambiental-elimina-protecciones-adicionales-de-la-t-xica-ceniza-de-carb-n
dc.relation.referencesElias, X. (n.d.). LA CERÁMICA COMO TECNOLOGÍAS PARA LA VALORIZACIÓN DE RESIDUOS.
dc.relation.referencesElias, X. (2009a). Reciclaje de residuos industriales, residuos sólidos urbanos y fangos de depuradora (Segunda). Diaz de Santos, S.A.
dc.relation.referencesElias, X. (2009b). Tecnologias aplicables al tratamiento de residuos . Valorización y fabricación de materiales a partir de residuos. In Reciclaje de Residuos Industriales (Díaz de Sa, pp. 91–172).
dc.relation.referencesEliche-Quesada, D., Felipe-Sesé, M. A., Martínez-Martínez, S., & Pérez-Villarejo, L. (2017). Comparative Study of the Use of Different Biomass Bottom Ash in the Manufacture of Ceramic Bricks. Journal of Materials in Civil Engineering, 29(12), 04017238. https://doi.org/10.1061/(asce)mt.1943-5533.0002078
dc.relation.referencesEliche-Quesada, D., & Leite-Costa, J. (2016). Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Management, 48, 323–333. https://doi.org/10.1016/j.wasman.2015.11.042
dc.relation.referencesEPA. (1992). United States Environmental Protection Agency (US EPA), Test Method 1311: The Toxicity Characteristic Leaching Procedure (pp. 1–35). United States Environmental Protection Agency.
dc.relation.referencesFederal Highway Administration. (2016). User Guidelines for Waste and Byproduct Materials in Pavement Construction. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cbabs1.cfm
dc.relation.referencesFernandes, F. M. (2019). Clay bricks. In Long-term Performance and Durability of Masonry Structures (pp. 3–19). Elsevier. https://doi.org/10.1016/b978-0-08-102110-1.00001-7
dc.relation.referencesGarcía-Ubaque, C. A., González-Hässig, A., & Vaca-Bohórquez, M. L. (2013). Ceramic bricks made from municipal solid waste incineration-derived clay and ashes: A quality study. Ingenieria e Investigacion, 33(2), 36–41.
dc.relation.referencesGe, X., Zhou, M., Wang, H., Liu, Z., Wu, H., & Chen, X. (2018). Preparation and characterization of ceramic foams from chromium slag and coal bottom ash. Ceramics International, 44(10), 11888–11891. https://doi.org/10.1016/j.ceramint.2018.03.122
dc.relation.referencesGlymond, D., Roberts, A., Russell, M., & Cheeseman, C. (2018). Production of ceramics from coal furnace bottom ash. Ceramics International, 44(3), 3009–3014. https://doi.org/10.1016/j.ceramint.2017.11.057
dc.relation.referencesHashemi, S. S. G., Mahmud, H. Bin, Ghuan, T. C., Chin, A. B., Kuenzel, C., & Ranjbar, N. (2019). Safe disposal of coal bottom ash by solidification and stabilization techniques. Construction and Building Materials, 197, 705–715. https://doi.org/10.1016/j.conbuildmat.2018.11.123
dc.relation.referencesHossain, S. S., Mathur, · L, Majhi, · M R, & Roy, · P K. (2019). Manufacturing of green building brick: recycling of waste for construction purpose. Journal of Material Cycles and Waste Management, 21, 281–292. https://doi.org/10.1007/s10163-018-0788-4
dc.relation.referencesHuang, T. Y., Chiueh, P. T., & Lo, S. L. (2017). Life-cycle environmental and cost impacts of reusing fly ash. Resources, Conservation and Recycling, 123, 255–260. https://doi.org/10.1016/j.resconrec.2016.07.001
dc.relation.referencesICONTEC. (2005a). Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla (NTC-4017).
dc.relation.referencesICONTEC. (2005b). Norma Tecnica Colombiana-NTC 4205 (pp. 1–30).
dc.relation.referencesIDEAM. (2007). Resolución 0062 “Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país” (pp. 1–55). http://www.ideam.gov.co/documents/51310/56882/Parte_1_Resolucion_0062_de_2007.pdf/6cd3555a-2bfc-403a-83ae-5f4fde24e5dc
dc.relation.referencesResolución No. 0062, Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país, 1 (2005).
dc.relation.referencesIwaszko, J., Zajemska, M., Zawada, A., & Szwaja, S. (2020). Vitrification of environmentally harmful by-products from biomass torrefaction process. Ournal of Cleaner Production, 249(4).
dc.relation.referencesJ. Kusuma, G., Shimada, H., Sasaoka, T., Matsui, K., Nugraha, C., S. Gautama, R., & Sulistianto, B. (2012). An Evaluation on the Physical and Chemical Composition of Coal Combustion Ash and Its Co-Placement with Coal-Mine Waste Rock. Journal of Environmental Protection, 03(07), 589–596. https://doi.org/10.4236/jep.2012.37071
dc.relation.referencesKurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22(9), 1922–1928. https://doi.org/10.1016/j.conbuildmat.2007.07.008
dc.relation.referencesLegarda, M. (2020). Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación (pp. 1–79).
dc.relation.referencesLeiva, C., Arenas, C., Alonso-fariñas, B., Vilches, L., Peceño, B., Rodriguez-galán, M., & Baena, F. (2016). Characteristics of fired bricks with co-combustion fly ashes. Journal of Building Engineering, 5, 114–118. https://doi.org/10.1016/j.jobe.2015.12.001
dc.relation.referencesLeiva, C., Rodriguez-Galán, M., Arenas, C., Alonso-Fariñas, B., & Peceño, B. (2018). A mechanical, leaching and radiological assessment of fired bricks with a high content of fly ash. Ceramics International, 44, 13313–13319. https://doi.org/10.1016/j.ceramint.2018.04.162
dc.relation.referencesLieder, M., & Rashid, A. (2016a). Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.12.042
dc.relation.referencesLieder, M., & Rashid, A. (2016b). Towards circular economy implementation: A comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36–51. https://doi.org/10.1016/j.jclepro.2015.12.042
dc.relation.referencesLin, K. L. (2006). Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials, 137(3), 1810–1816. https://doi.org/10.1016/j.jhazmat.2006.05.027
dc.relation.referencesMinambiente. (2005). Decreto 4741 del 30 de Diciembre 2005 (pp. 1–30). MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL.
dc.relation.referencesMinisterio de vivienda. (2021, December 6). Con 209638 viviendas nuevas vendidas en los últimos 11 meses, el 2021 ya es el mejor año en ventas de Colombia.
dc.relation.referencesMuñoz, P., Morales, M. P., Mendívil, M. A., Juárez, M. C., & Muñoz, L. (2014). Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction. Construction and Building Materials, 71, 181–187. https://doi.org/10.1016/j.conbuildmat.2014.08.027
dc.relation.referencesMuthusamy, K., Rasid, M. H., Jokhio, G. A., Mokhtar Albshir Budiea, A., Hussin, M. W., & Mirza, J. (2020). Coal bottom ash as sand replacement in concrete: A review. Construction and Building Materials, 236. https://doi.org/10.1016/j.conbuildmat.2019.117507
dc.relation.referencesNaciones Unidas. (n.d.). Objetivo 12: Garantizar modalidades de consumo y producción sostenibles.
dc.relation.referencesNaganathan, S., Mohamed, A. Y. O., & Mustapha, K. N. (2015). Performance of bricks made using fly ash and bottom ash. Construction and Building Materials, 96, 576–580. https://doi.org/10.1016/j.conbuildmat.2015.08.068
dc.relation.referencesOrganización de Cooperación y Desarrollo Económicos. (2014). Evalcuaciones de desempeño ambiental: Colombia Highlights.
dc.relation.referencesP, B. (2017). 6 - The utilization of flue-gas desulfurization materials. In Coal Combustion Products (CCP’s) (pp. 155–184).
dc.relation.referencesPires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60(1), 57–72. https://doi.org/10.1016/j.coal.2004.04.003
dc.relation.referencesPliatsikas, I., Robou, E., Samouhos, M., Katsiotis, N. S., & Tsakiridis, P. E. (2019). Valorization of demolition ceramic wastes and lignite bottom ash for the production of ternary blended cements. Construction and Building Materials, 229, 116879. https://doi.org/10.1016/j.conbuildmat.2019.116879
dc.relation.referencesPredeanu, G., Popescu, L. G., Abagiu, T. A., Panaitescu, C., Valentim, B., & Guedes, A. (2016). Characterization of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic, SEM/EDS and Raman microspectroscopical methods. International Journal of Coal Geology, 168, 131–145. https://doi.org/10.1016/j.coal.2016.08.004
dc.relation.referencesProColombia. (2016). Inversión en el sector Materiales de Construcción en Colombia. https://www.inviertaencolombia.com.co/sectores/manufacturas/materiales-de-construccion.html
dc.relation.referencesRafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E. (2016). Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 15–24. https://doi.org/10.1016/j.conbuildmat.2016.04.080
dc.relation.referencesRESOLUCION No. 0062, (2007).
dc.relation.referencesRodrigues, P., Silvestre, J. D., Flores-Colen, I., Viegas, C. A., De Brito, J., Kurad, R., Demertzi, M., Feo, L., & Zhao, Q. (2017). Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. https://doi.org/10.3390/ma10060649
dc.relation.referencesRussell, N. V., Méndez, L. B., Wigley, F., & Williamson, J. (2002). Ash deposition of a Spanish anthracite: Effects of included and excluded mineral matter. Fuel, 81(5), 657–663. https://doi.org/10.1016/S0016-2361(01)00155-7
dc.relation.referencesSaikia, B. K., Saikia, J., Rabha, S., Silva, L. F. O., & Finkelman, R. (2018). Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers, 9(3), 863–875. https://doi.org/10.1016/j.gsf.2017.11.013
dc.relation.referencesSalleh, S. Z., Awang Kechik, A., Yusoff, A. H., Taib, M. A. A., Mohamad Nor, M., Mohamad, M., Tan, T. G., Ali, A., Masri, M. N., Mohamed, J. J., Zakaria, S. K., Boon, J. G., Budiman, F., & Teo, P. Ter. (2021). Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: A review. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127264
dc.relation.referencesSena da Fonseca, B., Galhano, C., & Seixas, D. (2015). Technical feasibility of reusing coal combustion by-products from a thermoelectric power plant in the manufacture of fired clay bricks. Applied Clay Science, 104, 189–195. https://doi.org/10.1016/j.clay.2014.11.030
dc.relation.referencesSilva, L., & Kátia, B. (2011). Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environmental Monitoring and Assessment, 174, 187–197.
dc.relation.referencesSingh, M. (2018). Coal bottom ash. In Waste and Supplementary Cementitious Materials in Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102156-9.00001-8
dc.relation.referencesSingh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 20–32. https://doi.org/10.1016/j.resconrec.2012.12.006
dc.relation.referencesSingh, N., Mithulraj, M., & Arya, S. (2018). Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: A review. Resources, Conservation and Recycling, 138, 257–271. https://doi.org/10.1016/j.resconrec.2018.07.025
dc.relation.referencesSingh, N., Shehnazdeep, & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. https://doi.org/10.1016/j.conbuildmat.2019.117276
dc.relation.referencesSutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E., & Ozbakkaloglu, T. (2019). Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production, 233, 753–764. https://doi.org/10.1016/j.jclepro.2019.06.017
dc.relation.referencesTjaronge, M. W., & Caronge, M. A. (2021). Physico-mechanical and thermal performances of eco-friendly fired clay bricks incorporating palm oil fuel ash. Materialia, 17(March), 101130. https://doi.org/10.1016/j.mtla.2021.101130
dc.relation.referencesTorres-Agredo, J., Mosquera-Idrobo, L. F., Paz-Villegas, P., & Díaz-Huertas, M. F. (2021). Evaluación de cenizas de fondo de carbón para la fabricación de ladrillos de arcilla: estudio preliminar. Revista UIS Ingenierías, 20(4), 161–170. https://doi.org/10.18273/revuin.v20n4-2021013
dc.relation.referencesUN. (2019). Informe de los Objetivos de Desarrollo Sostenible (pp. 1–64).
dc.relation.referencesUnidad de Planeación Minero Energética. (2012). El Carbón Colombiano: Fuente de energía para el mundo.
dc.relation.referencesVu, D. H., Wang, K. S., Chen, J. H., Nam, B. X., & Bac, B. H. (2012). Glass-ceramic from mixtures of bottom ash and fly ash. Waste Management, 32(12), 2306–2314. https://doi.org/10.1016/j.wasman.2012.05.040
dc.relation.referencesWang, N., Sun, X., Zhao, Q., Yang, Y., & Wang, P. (2020). Leachability and adverse effects of coal fly ash: A review. Journal of Hazardous Materials, 396(April). https://doi.org/10.1016/j.jhazmat.2020.122725
dc.relation.referencesWCA. (2014). REPORT 2. ANALYSIS OF COAL COMPOSITION, ECOTOXICITY AND HUMAN HEALTH HAZARDS.
dc.relation.referencesWeaver, M. (1997). Conserving Buildings: A manual of techniques and Materials, Revised Edition.
dc.relation.referencesXu, G., & Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136, 95–109. https://doi.org/10.1016/j.resconrec.2018.04.010
dc.relation.referencesYao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121. https://doi.org/10.1016/j.earscirev.2014.11.016
dc.relation.referencesYüksel, I., Bilir, T., & Özkan, Ö. (2007). Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Building and Environment, 42(7), 2651–2659. https://doi.org/10.1016/j.buildenv.2006.07.003
dc.relation.referencesZhang, Z., Choy Wong, Y., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.subject.agrovocCeniza
dc.subject.agrovocAshes
dc.subject.agrovocCeniza de madera
dc.subject.agrovocWood ash
dc.subject.agrovocPolvo de cenizas
dc.subject.agrovocFly ash
dc.subject.proposalResiduos Industriales
dc.subject.proposalArcilla
dc.subject.proposalEconomía Circular
dc.subject.proposalSostenibilidad
dc.subject.proposalbricks
dc.subject.proposalcoal bottom ash
dc.subject.proposalclay
dc.subject.proposalindustrial waste
dc.subject.proposalcircular economy
dc.subject.proposalsustainability
dc.subject.proposalLadrillos
dc.subject.proposalCenizas de fondo de carbón
dc.subject.unescoMateriales de construcción
dc.subject.unescoBuilding materials
dc.subject.unescoAdobe
dc.subject.unescoAdobe bricks
dc.title.translatedUse of coal bottom ash as a raw material replacement for the production of clay bricks
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaIngeniería.Sede Palmira


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito