Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorParra Suescún, Jaime Eduardo
dc.contributor.advisorLópez Herrera, Albeiro
dc.contributor.authorRodríguez González, Sandra Paola
dc.date.accessioned2023-02-03T15:59:31Z
dc.date.available2023-02-03T15:59:31Z
dc.date.issued2022-09-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83280
dc.descriptionIlustraciones a color
dc.description.abstractEn los sistemas de producción avícolas, las aves son sometidas a diferentes tipos de estrés, provocando a nivel intestinal desequilibrio de la microbiota, caracterizado principalmente por el aumento en las poblaciones de bacterias patógenas que generan proceso de disbiosis; dentro de las cuales, las bacterias gram-negativas, tienen la capacidad de liberar desde su pared celular compuestos denominados lipopolisacáridos (LPS), los cuales desencadenan procesos inflamatorios a nivel intestinal que ocasionan diarrea y mortalidad de las aves. En varios países los antibióticos han sido utilizados en las producciones avícolas como promotores de crecimiento (APC), ya que reducen las concentraciones de bacterias gram-negativas a nivel intestinal, pero el uso indiscriminado de los mismos ha llevado a generar resistencia de microrganismos a los antibióticos con problemas a nivel de la salud animal y humana. Los microorganismos que se utilizan actualmente, como alternativas naturales para reemplazar de manera parcial a los APC, son variados y numerosos, dentro de ellos se encuentran las bacterias probióticas, como el Bacillus subtilis. El presente trabajo evaluó el efecto de la adición de B. subtilis en las variables productivas, alometría y morfometría intestinal, producción de mucinas, expresión de interleuquinas y microbiota en duodeno de pollos que fueron retados a un LPS de Escherichia coli. Dentro de los resultados que se encontraron, se evidencia una mejora en las variables zootécnicas (ganancia acumulada de peso), alometría y morfometría intestinal (altura y ancho de la vellosidad y profundidad de criptas), células caliciformes y producción de mucinas, expresión molecular de interleuquinas anti y proinflamatorias y modulación positiva de la microbiota del duodeno. El B. subtilis puede ser utilizado de manera parcial ya que se presentó un efecto positivo y comparable con el APC. (texto tomado de la fuente)
dc.description.abstractIn poultry production systems, birds are subjected to different types of stress, causing an imbalance of the microbiota at the intestinal level, characterized mainly by the increase in the populations of pathogenic bacteria that generate a process of dysbiosis, within which, the bacteria gram-negative, they have the ability to release compounds called lipopolysaccharides (LPS) from their cell wall, which trigger inflammatory processes at the intestinal level that cause diarrhea and mortality in birds. In several countries, antibiotics have been used in poultry production as growth promoters (APC), since they reduce the concentrations of gram-negative bacteria at the intestinal level, but their indiscriminate use has led to the generation of resistance of microorganisms to antibiotics. Antibiotics with problems at the level of animal and human health. The microorganisms that are currently used as natural alternatives to partially replace APC´s are varied and numerous, among them are probiotic bacteria, such as Bacillus subtilis. The present study evaluated the effect of the addition of B. subtilis on the productive variables, intestinal allometry and morphometry, mucin production, interleukin expression and microbiota in the duodenum of chickens that were challenged with by Escherichia coli. LPS. Among the results found, there is evidence of an improvement in the zootechnical variables (accumulated weight gain), allometry and intestinal morphometry (height and width of the villi and depth of the crypts), goblet cells and mucin production, molecular expression of anti- and pro-inflammatory interleukins and positive modulation of the duodenal microbiota. B. subtilis can be used in a partial way since it presented a positive and comparable effect with APC.
dc.description.sponsorshipCOLCIENCIAS y Colfuturo en la convocatoria 733 para el programa de Doctorado Nacional del Departamento de Boyacá
dc.format.extentxvii, 182 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc590 - Animales
dc.titleEvaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.contributor.researchgroupBiodiversidad y Génetica Molecular "Biogem"
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Agrarias
dc.description.researchareaProducción Animal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbd El-Hack, M. E., El-Saadony, M. T., Elbestawy, A. R., El-Shall, N. A., Saad, A. M., Salem, H. M., … El-Tarabily, K. A. (2022). Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poultry Science, 101(2), 101590. https://doi.org/10.1016/j.psj.2021.101590
dc.relation.referencesAbdel-Moneim, A. M. E., Selim, D. A., Basuony, H. A., Sabic, E. M., Saleh, A. A., & Ebeid, T. A. (2020). Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production, 52(2), 671–680. https://doi.org/10.1007/s11250-019-02055-1
dc.relation.referencesAdhikari, P. A., & Kim, W. K. (2017). Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity – A Review. Annals of Animal Science, 17(4), 949–966. https://doi.org/10.1515/aoas-2016-0092
dc.relation.referencesAlizadeh, M., Yitbarek, A., Sharif, S., Crow, G., & Slominski, B. A. (2017). Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge, (October), 2266–2273.
dc.relation.referencesAllaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002
dc.relation.referencesArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia : Revisión sistemática, 22(2), 110–119.
dc.relation.referencesArendt, M., Elissa, J., Schmidt, N., Michael, E., Potter, N., Cook, M., & Knoll, L. J. (2019). Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Veterinary Immunology and Immunopathology, 218(January), 109934. https://doi.org/10.1016/j.vetimm.2019.109934
dc.relation.referencesAttia, Y. A., Al-Khalaifah, H., Abd El-Hamid, H. S., Al-Harthi, M. A., & El-shafey, A. A. (2020). Effect of Different Levels of Multienzymes on Immune Response, Blood Hematology and Biochemistry, Antioxidants Status and Organs Histology of Broiler Chicks Fed Standard and Low-Density Diets. Frontiers in Veterinary Science, 6(February), 1–15. https://doi.org/10.3389/fvets.2019.00510
dc.relation.referencesAzimirad, M., Alebouyeh, M., & Naji, T. (2017). Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto). Probiotics and Antimicrobial Proteins, 9(1), 56–63. https://doi.org/10.1007/s12602-016-9234-x
dc.relation.referencesBai, K., Feng, C., Jiang, L., Zhang, L., Zhang, J., Zhang, L., & Wang, T. (2018). Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Science, 97(7), 2312–2321. https://doi.org/10.3382/ps/pey116
dc.relation.referencesBakshani, C. R., Morales-Garcia, A. L., Althaus, M., Wilcox, M. D., Pearson, J. P., Bythell, J. C., & Burgess, J. G. (2018). Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection. Npj Biofilms and Microbiomes. https://doi.org/10.1038/s41522-018-0057-2
dc.relation.referencesBaldwin, S., Hughes, R. J., Van, T. T. H., Moore, R. J., & Stanley, D. (2018a). At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE, 13(3), 1–14. https://doi.org/10.1371/journal.pone.0194825
dc.relation.referencesBallou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002
dc.relation.referencesBansil, R., & Turner, B. S. (2017). The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2017.09.023
dc.relation.referencesBarrera, M. H., Rodríguez, S. P., & Torres, G. (2014). Efectos de la adición de ácido cítrico y un probiótico comercial en el agua de bebida, sobre la morfometría del duodeno y parámetros zootécnicos en pollo de engorde. Orinoquia, 18(2). Retrieved from http://www.scielo.org.co/pdf/rori/v18n2/v18n2a05.pdf
dc.relation.referencesBeirão, B. C. B., Ingberman, M., Mesa, D., Salles, G. B. C., Muniz, E. C., & Caron, L. F. (2021). Effects of aroA deleted E. coli vaccine on intestinal microbiota and mucosal immunity. Comparative Immunology, Microbiology and Infectious Diseases, 75(January). https://doi.org/10.1016/j.cimid.2021.101612
dc.relation.referencesBentley-Hewitt, K. L., Narbad, A., Majsak-Newman, G., Philo, M. R., & Lund, E. K. (2017). Lactobacilli survival and adhesion to colonic epithelial cell lines is dependent on long chain fatty acid exposure. European Journal of Lipid Science and Technology, 119(11), 1–10. https://doi.org/10.1002/ejlt.201700062
dc.relation.referencesBerkhout, M. D., Plugge, C. M., & Belzer, C. (2021). How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding, 1–6.
dc.relation.referencesBohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., … Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3
dc.relation.referencesBonis, V., Rossell, C., & Gehart, H. (2021). The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. Frontiers in Cell and Developmental Biology, 9(May), 1–20. https://doi.org/10.3389/fcell.2021.661931
dc.relation.referencesBorda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002
dc.relation.referencesBorey, M., Estellé, J., Caidi, A., Bruneau, N., Coville, J. L., Hennequet-Antier, C., … Calenge, F. (2020). Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0232418
dc.relation.referencesBortoluzzi, C., Fernandes, J. I. M., Doranalli, K., & Applegate, T. J. (2020). Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens. Animal Feed Science and Technology, 262(December), 114383. https://doi.org/10.1016/j.anifeedsci.2019.114383
dc.relation.referencesBroom, L. J. (2018). Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science, (February), 1–7. https://doi.org/10.3382/ps/pey021
dc.relation.referencesBroom, L. J. (2019). Host–microbe interactions and gut health in poultry—Focus on innate responses. Microorganisms, 7(5), 1–12. https://doi.org/10.3390/microorganisms7050139
dc.relation.referencesBurbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312
dc.relation.referencesCalik, A., Ceylan, A., Ekim, B., Adabi, S. G., Dilber, F., Bayraktaroglu, A. G., … Sacakli, P. (2017). The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poultry Science, 96(1), 169–183. https://doi.org/10.3382/ps/pew218
dc.relation.referencesCao, Y., Liu, H., Qin, N., Ren, X., Zhu, B., & Xia, X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 99(February), 295–310. https://doi.org/10.1016/j.tifs.2020.03.006
dc.relation.referencesCeli, Verlhac, Calvo, Schmeisser, & K. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(July), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012
dc.relation.referencesCeli, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(May 2018), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012
dc.relation.referencesChase, C. C. L. (2018). Enteric Immunity: Happy Gut, Healthy Animal. Veterinary Clinics of North America - Food Animal Practice, 34(1), 1–18. https://doi.org/10.1016/j.cvfa.2017.10.006
dc.relation.referencesChávez, L., López, A.,& Parra, J. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. Retrieved from http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdf
dc.relation.referencesChávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441
dc.relation.referencesChen, C., Huang, X., Fang, S., Yang, H., He, M., Zhao, Y., & Huang, L. (2018). Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 9(October), 1–13. https://doi.org/10.3389/fmicb.2018.02626
dc.relation.referencesChen et al . (2022). Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. Journal of Hazardous Materials, 421(January 2021), 126704. https://doi.org/10.1016/j.jhazmat.2021.126704
dc.relation.referencesCIOMS. (2012). INTERNATIONAL GUIDING PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS. Retrieved from https://grants.nih.gov/grants/olaw/guiding_principles_2012.pdf
dc.relation.referencesCiro, J., López, A., & Parra, J. (2014). LIPOPOLISACÁRIDOS DE E. coli AUMENTA LA EXPRESIÓN MOLECULAR DE PΒD-2 EN YEYUNO DE LECHONES POSDESTETE., 61(2), 142–152.
dc.relation.referencesCiro, J., López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Retrieved from http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a07.pdf
dc.relation.referencesClavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production : A review, 1006–1021. https://doi.org/10.3382/ps/pex359
dc.relation.referencesCobb-Vantress Inc. (2009). Guía de Manejo del Pollo de Engorde. Aviagen, 65.
dc.relation.referencesColeman, O. I., Haller, D., & Haller, D. (2018). Bacterial Signaling at the intestinal epithelial interface in inflammation and Cancer, 8(January), 1–11. https://doi.org/10.3389/fimmu.2017.01927
dc.relation.referencesConstant, D. A., Nice, T. J., & Rauch, I. (2021). Innate immune sensing by epithelial barriers. Current Opinion in Immunology, 73, 1–8. https://doi.org/10.1016/j.coi.2021.07.014
dc.relation.referencesCosta, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–13. https://doi.org/10.1371/journal.pone.0171642
dc.relation.referencesDal Pont, G. C., Belote, B. L., Lee, A., Bortoluzzi, C., Eyng, C., Sevastiyanova, M., … Kogut, M. H. (2021). Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Frontiers in Immunology, 12(May), 1–15. https://doi.org/10.3389/fimmu.2021.676628
dc.relation.referencesDarwish, N., Shao, J., Schreier, L. L., & Proszkowiec-Weglarz, M. (2021). Choice of 16S ribosomal RNA primers affects the microbiome analysis in chicken ceca. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-91387-w
dc.relation.referencesDev, K., Mir, N. A., Biswas, A., Kannoujia, J., Begum, J., Kant, R., & Mandal, A. (2020). Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Animal Nutrition, 6(3), 325–332. https://doi.org/10.1016/j.aninu.2020.03.002
dc.relation.referencesDing, S., Wang, Y., Yan, W., Li, A., Jiang, H., & Fang, J. (2019). Correction: Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge(PLoS ONE (2019)146 ( e0212079) DOI: 10.1371/journal.pone.0212079). PLoS ONE, 14(9), 1–14. https://doi.org/10.1371/journal.pone.0222877
dc.relation.referencesDolasia, K., Bisht, M. K., Pradhan, G., Udgata, A., & Mukhopadhyay, S. (2018). TLRs/NLRs: Shaping the landscape of host immunity. International Reviews of Immunology, 37(1), 3–19. https://doi.org/10.1080/08830185.2017.1397656
dc.relation.referencesDuangnumsawang, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and Functional Properties of Intestinal Mucus Layer in Poultry. Frontiers in Immunology, 12(October), 1–18. https://doi.org/10.3389/fimmu.2021.745849
dc.relation.referencesElleder, D. (2018). Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds, 9(April), 1–14. https://doi.org/10.3389/fimmu.2018.00605
dc.relation.referencesElnagar, R., Elkenany, R., & Younis, G. (2021). Interleukin gene expression in broiler chickens infected by different Escherichia coli serotypes. Veterinary World, 14(10), 2727–2734. https://doi.org/10.14202/vetworld.2021.2727-2734
dc.relation.referencesElnesr, S. S., Alagawany, M., Elwan, H. A. M., Fathi, M. A., & Farag, M. R. (2020). Effect of Sodium Butyrate on Intestinal Health of Poultry-A Review. Annals of Animal Science, 20(1), 29–41. https://doi.org/10.2478/aoas-2019-0077
dc.relation.referencesEmili Vinolya, R., Balakrishnan, U., Yasir, B., & Chandrasekar, S. (2021). Effect of dietary supplementation of acidifiers and essential oils on growth performance and intestinal health of broiler. Journal of Applied Poultry Research, 30(3), 67–80. https://doi.org/10.1016/j.japr.2021.100179
dc.relation.referencesFan, X., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018). Lipopolysaccharide impairs mucin secretion and stimulated mucosal immune stress response in respiratory tract of neonatal chicks. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 204(December 2017), 71–78. https://doi.org/10.1016/j.cbpc.2017.11.011
dc.relation.referencesFAO. (2013). Revisión del Desarrollo Avícola. Revisión del desarrollo avícola. Retrieved from http://www.fao.org/docrep/019/i3531s/i3531s.pdf
dc.relation.referencesFAO. (2015). Informe de situación sobre la resistencia a los antimicrobianos. (Organización de las Naciones Unidas para la Alimentación y la Agricultura, Ed.). Roma. Retrieved from http://www.fao.org/3/a-mm736s.pdf
dc.relation.referencesFAO, O.-. (2021). OCDE-FAO Perspectivas Agrícolas 2021-2030. Retrieved from https://doi.org/10.1787/47a9fa44-es.%0AISBN
dc.relation.referencesFenavi. (2020). No Title. Retrieved from https://fenavi.org/wp-content/uploads/2020/03/Fenaviquin_ed3042020_2.pdf
dc.relation.referencesFENAVI. (2020). Información estadística - FENAVI - Federación Nacional de Avicultores de Colombia. Retrieved February 4, 2020, from https://fenavi.org/informacion-estadistica/
dc.relation.referencesFerreira, R. G., Rodrigues, L. C., Nascimento, D. C., Kanashiro, A., Melo, P. H., Borges, V. F., … Alves-Filho, J. C. (2018). Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection, 77(5), 391–397. https://doi.org/10.1016/j.jinf.2018.06.010
dc.relation.referencesFesseha, H., & Aliye, S. (2020). Organic Foods and Public Health Importance: A Review. Veterinary Medicine – Open Journal, 5(1), 1–8. https://doi.org/10.17140/vmoj-5-140
dc.relation.referencesFunction, G. C., Fab, E., & Negative, R. (2017). Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut. Applied and Environmental Microbiology, 83(3), 1–18.
dc.relation.referencesGadde, U. D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science, 114, 236–243. https://doi.org/10.1016/j.rvsc.2017.05.004
dc.relation.referencesGao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., … Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1
dc.relation.referencesGao, T., Zhao, M. M., Li, Y. J., Zhang, L., Li, J. L., Yu, L. L., … Zhou, G. H. (2018). Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. Journal of Animal Physiology and Animal Nutrition, 102(1), e166–e175. https://doi.org/10.1111/jpn.12724
dc.relation.referencesGivisiez, P. E. N., Moreira Filho, A. L. B., Santos, M. R. B., Oliveira, H. B., Ferket, P. R., Oliveira, C. J. B., & Malheiros, R. D. (2020). Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poultry Science, 99(12), 6774–6782. https://doi.org/10.1016/j.psj.2020.09.074
dc.relation.referencesGomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., … Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146
dc.relation.referencesGrant, A., Gay, C. G., & Lillehoj, H. S. (2018). Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathology, 47(4), 339–351. https://doi.org/10.1080/03079457.2018.1464117
dc.relation.referencesGrasa, L., Gonzalo, S., A, D. E. M., & Murillo, M. D. (2017). THE LIPOPOLYSACCHARIDE FROM ESCHERICHIA COLI O127 : B8 INDUCES INFLAMMATION AND MOTILITY DISTURBANCES IN RABBIT ILEUM, 4(March 2016), 185–191. https://doi.org/10.4995/wrs.2017.5160
dc.relation.referencesGrond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609
dc.relation.referencesGul, M., Yilmaz, E., Yildirim, B. A., Sezmis, G., Kaya, A., Timurkaan, S., … Tekce, E. (2019). Effects of oregano essential oil (Origanum syriacum l.) on performance, egg quality, intestinal morphology and oxidative stress in laying hens. European Poultry Science, 83(January), 1–15. https://doi.org/10.1399/eps.2019.290
dc.relation.referencesGungor, E., & Erener, G. (2020). Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poultry Science. https://doi.org/10.3382/ps/pez538
dc.relation.referencesGuo, M., Li, M., Zhang, C., Zhang, X., & Wu, Y. (2020). Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Frontiers in Microbiology, 11(July), 1–11. https://doi.org/10.3389/fmicb.2020.01768
dc.relation.referencesGut, P., Gut, H., Composition, M., Colombino, E., Biasato, I., Ferrocino, I., … Capucchio, M. T. (2021a). Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation.
dc.relation.referencesHelenice, E., Ronie, E., Christina, A., Lima, W. C., Lorena, I., Patrycky, Y., & Souza, A. (2017). Influência dos óleos essenciais de capim-limão e chá-de-pedestre na saúde intestinal de frangos de corte Influence of the essential oils of lemon grass and pedestrian tea on the intestinal health of broilers O equilíbrio dinâmico existente entre a mucosa , 43–54.
dc.relation.referencesHoang, C. T., Hong, Y., Truong, A. D., Lee, J., Lee, K., & Hong, Y. H. (2017). Molecular cloning of chicken interleukin-17B, which induces proinflammatory cytokines through activation of the NF-κB signaling pathway. Developmental and Comparative Immunology, 74, 40–48. https://doi.org/10.1016/j.dci.2017.04.010
dc.relation.referencesHu, Y., Wang, L., Shao, D., Wang, Q., Wu, Y., & Han, Y. (2020). Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth, 10(January), 1–20. https://doi.org/10.3389/fmicb.2019.02948
dc.relation.referencesHumam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2019). animals E ff ects of Feeding Di ff erent Postbiotics Produced by.
dc.relation.referencesIjaz, A., Veldhuizen, E. J. A., Broere, F., & Rutten, V. P. M. G. (2021). The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens, 1–20.
dc.relation.referencesJ. H. Park, H. M. Y. & I. H. K. (2018). The effect of dietary Bacillus subtilis supplementation on the growth performance, blood profile, nu _ Enhanced Reader.pdf.
dc.relation.referencesJacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/10.3382/ps/pey602
dc.relation.referencesJayaraman, S., Das, P. P., Saini, P. C., Roy, B., & Chatterjee, P. N. (2017). Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poultry Science, 96(8), 2614–2622. https://doi.org/10.3382/ps/pex079
dc.relation.referencesJha, R., Das, R., Oak, S., & Mishra, P. (2020). Probiotics (Direct‐fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. https://doi.org/10.3390/ani10101863
dc.relation.referencesJha, R., & Mishra, P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12(1), 1–16. https://doi.org/10.1186/s40104-021-00576-0
dc.relation.referencesKäsdorf, B. T., Weber, F., Petrou, G., Srivastava, V., Crouzier, T., & Lieleg, O. (2017). Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules, 18(8), 2454–2462. https://doi.org/10.1021/acs.biomac.7b00605
dc.relation.referencesKatsanos, K. H., & Papadakis, K. A. (2017). Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver, 11(4), 455–463. https://doi.org/10.5009/gnl16308
dc.relation.referencesKausar, R., Raza, S., Hussain, M., & Bahadur, S. U. K. (2020). Histometerical and morphological studies of digestive tract and associated glands in domestic pigeon (columba livia) with regard to age. Pakistan Veterinary Journal, 39(4), 573–577. https://doi.org/10.29261/pakvetj/2019.088
dc.relation.referencesKers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235
dc.relation.referencesKhan, I., Nawaz, M., Anjum, A. A., Ahmad, M., Mehmood, A., Rabbani, M., … Ali, M. A. (2020). Effect of Indigenous Probiotics on Gut Morphology and Intestinal Absorption Capacity in Broiler Chicken Challenged with Salmonella enteritidis, 1–7.
dc.relation.referencesKhan, S., & Chousalkar, K. K. (2021). Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-021-00112-5
dc.relation.referencesKhan, S., Moore, R. J., Stanley, D., & Chousalkar, K. K. (2020). The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Applied and Environmental Microbiology, 86(13). https://doi.org/10.1128/AEM.00600-20
dc.relation.referencesKhokhlova, E. V., Smeianov, V. V., Efimov, B. A., Kafarskaia, L. I., Pavlova, S. I., & Shkoporov, A. N. (2012). Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiology and Immunology, 56(1), 27–39. https://doi.org/10.1111/j.1348-0421.2011.00398.x
dc.relation.referencesKlose, C. S. N., & Artis, D. (2020). Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Research. https://doi.org/10.1038/s41422-020-0323-8
dc.relation.referencesKogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250(February 2018), 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008
dc.relation.referencesKogut, M. H., Lee, A., & Santin, E. (2020). Microbiome and pathogen interaction with the immune system. Poultry Science, 99(4), 1906–1913. https://doi.org/10.1016/j.psj.2019.12.011
dc.relation.referencesKollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2018). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota Sequence Processing and Classification of the V3 / V4 Region of 16S rRNA Genes. Poultry Science, 98(6), 2347–2353. https://doi.org/10.3382/ps/pey594
dc.relation.referencesKrauze, M., Cendrowska-Pinkosz, M., Matuseviĉius, P., Stępniowska, A., Jurczak, P., & Ognik, K. (2021). The effect of administration of a phytobiotic containing cinnamon oil and citric acid on the metabolism, immunity, and growth performance of broiler chickens. Animals. https://doi.org/10.3390/ani11020399
dc.relation.referencesKrndija, D., Marjou, F. El, Guirao, B., Richon, S., Leroy, O., Bellaiche, Y., … Vignjevic, D. M. (2019). Active cell migration is critical for steady-state epithelial turnover in the gut. Science, 365(6454), 705–710. https://doi.org/10.1126/science.aau3429
dc.relation.referencesKucharzik, T., Walsh, S. V., Chen, J., Parkos, C. A., & Nusrat, A. (2001). Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. American Journal of Pathology, 159(6), 2001–2009. https://doi.org/10.1016/S0002-9440(10)63051-9
dc.relation.referencesKuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rrna gene sequences from microbial communities. Current Protocols in Bioinformatics, (SUPPL.36), 1–20. https://doi.org/10.1002/0471250953.bi1007s36
dc.relation.referencesKurokawa, K., Hayakawa, Y., & Koike, K. (2021). Plasticity of intestinal epithelium: Stem cell niches and regulatory signals. International Journal of Molecular Sciences, 22(1), 1–13. https://doi.org/10.3390/ijms22010357
dc.relation.referencesLarsen, H. L., & Jensen, K. B. (2021). Reprogramming cellular identity during intestinal regeneration, 40–47.
dc.relation.referencesLatek, U., Chłopecka, M., Karlik, W., & Mendel, M. (2021). Phytogenic Compounds for Enhancing Intestinal Barrier Function in Poultry-A Review. Planta Medica. https://doi.org/10.1055/a-1524-0358
dc.relation.referencesLevkut, M., Karaffová, V., Levkutová, M., Seman, V., Revajová, V., Ševčíková, Z., & Herich, R. (2020). Influence of Lacto-Immuno-Vital on growth performance and gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum of broiler chickens. Poultry Science, 99(12), 6569–6575. https://doi.org/10.1016/j.psj.2020.09.054
dc.relation.referencesLi, C., Cai, H., Li, S., Liu, G., & Deng, X. (2022). Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poultry Science, 102126. https://doi.org/10.1016/j.psj.2022.102126
dc.relation.referencesLi, C. L., Wang, J., Zhang, H. J., Wu, S. G., Hui, Q. R., Yang, C. B., … Qi, G. H. (2019). Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Frontiers in Physiology, 10(JAN), 1–18. https://doi.org/10.3389/fphys.2018.01968
dc.relation.referencesLi, R. X., Li, J., Zhang, S. Y., Mi, Y. L., & Zhang, C. Q. (2018). Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poultry Science, (March). https://doi.org/10.3382/ps/pey084
dc.relation.referencesLi, Xuesong, Hu, D., Tian, Y., Song, Y., Hou, Y., Sun, L., … Jiang, Y. (2020). Protective effects of a novel Lactobacillus rhamnosus strain with probiotic characteristics against lipopolysaccharide-induced intestinal inflammation in vitro and in vivo. Food and Function, 11(7), 5799–5814. https://doi.org/10.1039/d0fo00308e
dc.relation.referencesLi, Xueyuan, Wu, S., Li, X., Yan, T., Duan, Y., Yang, X., … Yang, X. (2018). Simultaneous supplementation of bacillus subtilisand antibiotic growth promoters by stages improved intestinal function of pullets by altering gut microbiota. Frontiers in Microbiology, 9(OCT), 1–15. https://doi.org/10.3389/fmicb.2018.02328
dc.relation.referencesLi, Z., Wang, W., Lv, Z., Liu, D., & Guo, Y. (2017). Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens, 1668(August). https://doi.org/10.1080/00071668.2017.1370697
dc.relation.referencesLieboldt, M. A., Frahm, J., Halle, I., Schrader, L., Weigend, S., & Preisinger, R. (2017). Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine, (October).
dc.relation.referencesLima, D. K. S., Pessoa, M. S., Arhnold, E., Leite, P. R. D. S. D. C., Leonídio, A. R. A., De Lima Santos, R., … Abrão, F. O. (2020). Intestinal and immunological histological parameters of broilers supplemented with commercial probiotic or fungi of the autochthonous microbiota. Revista Brasileira de Medicina Veterinaria. https://doi.org/10.29374/2527-2179.bjvm101220
dc.relation.referencesLin, T. L., Shu, C. C., Chen, Y. M., Lu, J. J., Wu, T. S., Lai, W. F., … Lu, C. C. (2020). Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Frontiers in Pharmacology, 11(April), 1–9. https://doi.org/10.3389/fphar.2020.00554
dc.relation.referencesLindholm, C. (2019). Intermittent fasting in chickens : Physiological mechanisms and welfare implications for broiler breeders. Retrieved from http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1359720&dswid=6490%0Ahttp://dx.doi.org/10.3384/diss.diva-160814
dc.relation.referencesLu, Z., Thanabalan, A., Leung, H., Akbari Moghaddam Kakhki, R., Patterson, R., & Kiarie, E. G. (2019). The effects of feeding yeast bioactives to broiler breeders and/or their offspring on growth performance, gut development, and immune function in broiler chickens challenged with Eimeria. Poultry Science, 98(12), 6411–6421. https://doi.org/10.3382/ps/pez479
dc.relation.referencesLuise, D., Bertocchi, M., Motta, V., Salvarani, C., Bosi, P., Luppi, A., … Trevisi, P. (2019). Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics. Journal of Animal Science and Biotechnology, 10(1), 1–16. https://doi.org/10.1186/s40104-019-0380-3
dc.relation.referencesMa, Y., Wang, W., Zh, H., Wang, J., Zhang, W., & Gao, J. (2018). Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports, (October), 1–13. https://doi.org/10.1038/s41598-018-33762-8
dc.relation.referencesMancabelli., et al. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens, 15(32), 4–6.
dc.relation.referencesMarmion, M., Ferone, M. T., Whyte, P., & Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 99(April), 103823. https://doi.org/10.1016/j.fm.2021.103823
dc.relation.referencesMartinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011
dc.relation.referencesMartínez, Y., Almendares, C. I., Hernández, C. J., Avellaneda, M. C., Urquía, A. M., & Valdivié, M. (2021). Effect of acetic acid and sodium bicarbonate supplemented to drinking water on water quality, growth performance, organ weights, cecal traits and hematological parameters of young broilers. Animals, 11(7). https://doi.org/10.3390/ani11071865
dc.relation.referencesMassacci, F. R., Lovito, C., Tofani, S., Tentellini, M., Genovese, D. A., De Leo, A. A. P., … Forte, C. (2019). Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 positively affects performance and intestinal ecosystem in broilers during a campylobacter jejuni infection. Microorganisms. https://doi.org/10.3390/microorganisms7120596
dc.relation.referencesMastrogiovanni, F., Mukhopadhya, A., Lacetera, N., Ryan, M. T., Romani, A., Bernini, R., & Sweeney, T. (2019). Anti-inflammatory effects of pomegranate peel extracts on in vitro human intestinal caco-2 cells and ex vivo porcine colonic tissue explants. Nutrients, 11(3), 1–15. https://doi.org/10.3390/nu11030548
dc.relation.referencesMaya-Ortega, C.-A., Madrid-Garcés, T.-A., & Parra-Suescún, J.-E. (2021). Efecto de Bacillus subtilis sobre metabolitos sanguíneos y parámetros productivos en pollo de engorde. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(1), 105–116. https://doi.org/10.18684/bsaa(19)105-116
dc.relation.referencesMazgaeen, L & Prajwal, G. (2020). Recent Advances in LipopolysaccharideRecognition Systems.pdf.
dc.relation.referencesMcCarville, J. L., Chen, G. Y., Cuevas, V. D., Troha, K., & Ayres, J. S. (2020). Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 38, 147–170. https://doi.org/10.1146/annurev-immunol-071219-125715
dc.relation.referencesMéndez-Durán, A., Méndez-Bueno, J. F., Tapia-Yáñez, T., Muñoz Montes, A., & Aguilar-Sánchez, L. (2017). Diálisis y Trasplante. Dial Traspl, 31(1), 7–11.
dc.relation.referencesMuneta, Y., Minagawa, Y., Nakane, T., Shibahara, T., Yoshikawa, T., & Omata, Y. (2011). Interleukin-18 expression in pig salivary glands and salivary content changes during acute immobilization stress. Stress, 14(5), 549–556. https://doi.org/10.3109/10253890.2011.565392
dc.relation.referencesNegroni, A., Cucchiara, S., & Stronati, L. (2015). Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators of Inflammation, 2015. https://doi.org/10.1155/2015/250762
dc.relation.referencesNijland, R., Hofland, T., & Van Strijp, J. A. G. (2014). Recognition of LPS by TLR4: Potential for anti-inflammatory therapies. Marine Drugs, 12(7), 4260–4273. https://doi.org/10.3390/md12074260
dc.relation.referencesOerlemans, M. M. P., Akkerman, R., Ferrari, M., Walvoort, M. T. C., & de Vos, P. (2021). Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. Journal of Functional Foods, 76(June 2020), 104289. https://doi.org/10.1016/j.jff.2020.104289
dc.relation.referencesOh, H., Liu, S., Yun, W., Lee, J., An, J., Cho, S., & Cho, J. (2019). Effects of mixture of essential oils and organic acid supplementation on growth performance, blood profiles, leg bone length and intestinal morphology in broilers. Journal of Animal Science, 97(Supplement_3), 347–348. https://doi.org/10.1093/jas/skz258.692
dc.relation.referencesOladokun, S., Koehler, A., MacIsaac, J., Ibeagha-Awemu, E. M., & Adewole, D. I. (2021). Bacillus subtilis delivery route: effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poultry Science. https://doi.org/10.1016/j.psj.2020.10.063
dc.relation.referencesOliveira, N. A., Gonçalves, B. L., Lee, S. H., CAF, O., & Corassin, C. H. (2020). Use of Antibiotics in Animal Production and its Impact on Human Health. Journal of Food Chemistry & Nanotechnology, 06(01), 40–47. https://doi.org/10.17756/jfcn.2020-082
dc.relation.referencesOMS. (2014). ANTIMICROBIAL RESISTANCE Global Report on Surveillance. Fancia. Retrieved from http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf
dc.relation.referencesPark, B. S., & Lee, J. O. (2013). Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental and Molecular Medicine, 45(12). https://doi.org/10.1038/emm.2013.97
dc.relation.referencesPark, I., Lee, Y., Goo, D., Zimmerman, N. P., Smith, A. H., Rehberger, T., & Lillehoj, H. S. (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), 725–733. https://doi.org/10.1016/j.psj.2019.12.002
dc.relation.referencesPark, I., Zimmerman, N. P., Smith, A. H., Rehberger, T. G., Lillehoj, E. P., & Lillehoj, H. S. (2020). Dietary Supplementation With Bacillus subtilis Direct-Fed Microbials Alters Chicken Intestinal Metabolite Levels. Frontiers in Veterinary Science, 7(March), 1–9. https://doi.org/10.3389/fvets.2020.00123
dc.relation.referencesParker, B. J., Wearsch, P. A., Veloo, A. C. M., Rodriguez-palacios, A., & Rodriguez-palacios, A. (2020). The Genus Alistipes : Gut Bacteria With Emerging Implications to Inflammation , Cancer , and Mental Health, 11(June), 1–15. https://doi.org/10.3389/fimmu.2020.00906
dc.relation.referencesPérez, M., Milian, G., Bocourt, R., & Torres, V. (2015). Efecto de endosporas de Bacillus subtilis E-44 con actividad probiótica sobre indicadores fermentativos en órganos digestivos e inmunológicos de pollos de engorde. Revista de La Sociedad Venezolana de Microbiología, 35(2), 89–94. Retrieved from http://www.redalyc.org/pdf/1994/199444210006.pdf
dc.relation.referencesPickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota : Role in pathogen colonization , immune responses , and inflammatory disease, 70–89. https://doi.org/10.1111/imr.12567
dc.relation.referencesPineda, M., Kogut, M., Genovese, K., Farnell, Y. Z., Zhao, D., Wang, X., … Farnell, M. (2021). Competitive exclusion of intra-genus salmonella in neonatal broilers. Microorganisms, 9(2), 1–17. https://doi.org/10.3390/microorganisms9020446
dc.relation.referencesPluske, J. R., Turpin, D. L., & Kim, J.-C. (2018a). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4. https://doi.org/10.1016/j.aninu.2017.12.004
dc.relation.referencesPluske, J. R., Turpin, D. L., & Kim, J. C. (2018b). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004
dc.relation.referencesProszkowiec-Weglarz, M., Schreier, L. L., Kahl, S., Miska, K. B., Russell, B., & Elsasser, T. H. (2020). Effect of delayed feeding post-hatch on expression of tight junction– and gut barrier–related genes in the small intestine of broiler chickens during neonatal development. Poultry Science, 99(10), 4714–4729. https://doi.org/10.1016/j.psj.2020.06.023
dc.relation.referencesPu, J., Chen, D., Tian, G., He, J., Zheng, P., Mao, X., … Yu, B. (2020). Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. Animal Nutrition. https://doi.org/10.1016/j.aninu.2020.02.004
dc.relation.referencesRajput, I. R., Li, W. F., Li, Y. L., Jian, L., & Wang, M. Q. (2013). Application of probiotic (bacillus subtilis) to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of shaoxing duck. Pakistan Veterinary Journal, 33(1), 69–72.
dc.relation.referencesRamlucken, U., Ramchuran, S. O., Moonsamy, G., Lalloo, R., Thantsha, M. S., & Rensburg, C. J. Van. (2019). A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poultry_Science, 99(1), 331–341. https://doi.org/10.3382/ps/pez496
dc.relation.referencesRathinam, y A.K. Zhao Y & Shao F, 2019. (2016). Innate immunity to intracellular LPS. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1038/s41590-019-0368-3.Innate
dc.relation.referencesRegea, G. (2018). Pharmacology & Clinical Research Review on Antibiotics Resistance and its Economic Impacts. Researchgate.Net, (December). https://doi.org/10.19080/JPCR.2018.05.55567
dc.relation.referencesReisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins. https://doi.org/10.3390/toxins12100622
dc.relation.referencesReynolds, K. L., Cloft, S. E., & Wong, E. A. (2020). Changes with age in density of goblet cells in the small intestine of broiler chicks. Poultry Science, 99(5), 2342–2348. https://doi.org/10.1016/j.psj.2019.12.052
dc.relation.referencesRhayat, L., Maresca, M., Nicoletti, C., Perrier, J., Brinch, K. S., Christian, S., … Eckhardt, E. (2019). Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00564
dc.relation.referencesRibeiro, M. R. S., Oliveira, D. R., Caliari, M. V., Cara Machado, D. C., Andrade, M. E. R., Cardoso, V. N., … Gomes, M. A. (2021). Saccharomyces boulardii as therapeutic alternative in experimental giardiasis. Journal of Applied Microbiology, 131(1), 460–469. https://doi.org/10.1111/jam.14941
dc.relation.referencesRichards, P., Fothergill, J., Bernardeau, M., & Wigley, P. (2019). Development of the caecal microbiota in three broiler breeds. Frontiers in Veterinary Science, 6(JUN), 1–19. https://doi.org/10.3389/fvets.2019.00201
dc.relation.referencesRios-arce, N. D., Collins, F. L., Schepper, J. D., Steury, M. D., Raehtz, S., Mallin, H., … Mccabe, L. R. (2017a). Epithelial Barrier Function in Gut-Bone Signaling (Vol. 1033). https://doi.org/10.1007/978-3-319-66653-2
dc.relation.referencesRios-arce, N. D., Collins, F. L., Schepper, J. D., Steury, M. D., Raehtz, S., Mallin, H., … Mccabe, L. R. (2017b). Epithelial Barrier Function in Gut-Bone Signaling (Vol. 1033). https://doi.org/10.1007/978-3-319-66653-2
dc.relation.referencesRivera-chávez, F., Lopez, C. A., & Bäumler, A. J. (2016). Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2016.09.022
dc.relation.referencesRivera-Pérez, W., Barquero-Calvo, E., & Chaves, A. J. (2021a). Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poultry Science. https://doi.org/10.1016/j.psj.2021.101372
dc.relation.referencesRocha-Ramírez, L. M., Hernández-Ochoa, B., Gómez-Manzo, S., Marcial-Quino, J., Cárdenas-Rodríguez, N., Centeno-Leija, S., & García-Garibay, M. (2020). Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010079
dc.relation.referencesRocha, P. M. C., Barros, M. E. G., & Evêncio-Neto, J. (2016). Análise morfométrica da parede intestinal e dinâmica de mucinas secretadas no jejuno de frangos suplementados com probiótico bacillus subtilis cepa C3102. Pesquisa Veterinaria Brasileira, 36(4), 312–316. https://doi.org/10.1590/S0100-736X2016000400010
dc.relation.referencesRomero, S., Carlos, H., & Iregui, A. (2010). El Lipopolisacárido 1. Revista de Medicina Veterinaria, 19, 37–45. https://doi.org/10.19052/mv.783
dc.relation.referencesRostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., … Brito, C. de O. (2017). Tablas Brasileñas para Aves y Cerdos (2017). Universidad Federal de Viçosa (Vol. 4). https://doi.org/doc101021405
dc.relation.referencesRoth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98(4), 1791–1804. https://doi.org/10.3382/ps/pey539
dc.relation.referencesRouissi, A., Alfonso-Avila, A. R., Guay, F., Boulianne, M., & Létourneau-Montminy, M. P. (2021a). Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Science, 100(12), 101506. https://doi.org/10.1016/j.psj.2021.101506
dc.relation.referencesRubio, L. A. (2019a). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science, 98(2), 695–706. https://doi.org/10.3382/ps/pey416
dc.relation.referencesRychlik, I. (2020). Composition and function of chicken gut microbiota. Animals, 10(1). https://doi.org/10.3390/ani10010103
dc.relation.referencesSaki, A. A., Ali, S., Siyar, H., & Ashoori, A. (2017). Modulation of Lipopolysaccharide Induced Interleukin-17F and Cyclooxygenase-2 Gene Expression by Echinacea purpurea in Broiler Chickens, 11(11), 778–781.
dc.relation.referencesSato, D. T., Campos, F. G., Kotze, P. G., Santos, R. L., Kanno, D. T., Pereira, J. A., … Martinez, R. (2021). Sucralfate enemas reduce the oxidative tissue damage and preserves the contents of E-cadherin and β -catenin in colonic mucosa without fecal stream, 36(55 11).
dc.relation.referencesŠefcová, M. A., Larrea-álvarez, M., Larrea-álvarez, C. M., Karaffová, V., Ortega-Paredes, D., Vinueza-Burgos, C., … Revajová, V. (2021). The probiotic lactobacillus fermentum biocenol CCM 7514 moderates campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals, 11(1), 1–16. https://doi.org/10.3390/ani11010235
dc.relation.referencesSeifi, K., Karimi-Torshizi, M. A., & Deldar, H. (2017). Probiotics intake from proximal or distal gastrointestinal tract: The investigation on intestinal morphology and performance of Japanese quail. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.12781
dc.relation.referencesSettanni, G., Zhou, J., Suo, T., Schöttler, S., Landfester, K., Schmid, F., & Mailänder, V. (2016). Protein corona composition of PEGylated nanoparticles correlates strongly with amino acid composition of protein surface. https://doi.org/10.1039/x0xx00000x
dc.relation.referencesShang, Q. H., Ma, X. K., Li, M., Zhang, L. H., Hu, J. X., & Piao, X. S. (2018). Effects of α-galactosidase supplementation on nutrient digestibility, growth performance, intestinal morphology and digestive enzyme activities in weaned piglets. Animal Feed Science and Technology, 236(September 2017), 48–56. https://doi.org/10.1016/j.anifeedsci.2017.11.008
dc.relation.referencesShanmugasundaram, R., Applegate, T. J., & Selvaraj, R. K. (2020). Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. Journal of Applied Poultry Research, 29(4), 808–816. https://doi.org/10.1016/j.japr.2020.07.003
dc.relation.referencesShi, S., Liu, J., Dong, J., Hu, J., Liu, Y., Feng, J., & Zhou, D. (2021). Research progress on the regulation mechanism ofprobiotics on the microecological flora of infectedintestines in livestock and poultry.pdf.
dc.relation.referencesShin, N., Whon, T. W., & Bae, J. (2015). Proteobacteria : microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 1–8. https://doi.org/10.1016/j.tibtech.2015.06.011
dc.relation.referencesSiddiqui, S. H., Kang, D., Park, J., Khan, M., & Shim, K. (2020). Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-75885-x
dc.relation.referencesŚliżewska, K., Markowiak-Kopeć, P., Żbikowski, A., & Szeleszczuk, P. (2020). The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Scientific Reports. https://doi.org/10.1038/s41598-020-61256-z
dc.relation.referencesSong, B., Tang, D., Yan, S., Fan, H., Li, G., Shahid, M. S., … Guo, Y. (2021). Effects of age on immune function in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 1–12. https://doi.org/10.1186/s40104-021-00559-1
dc.relation.referencesStolzer, I., Ruder, B., Neurath, M. F., & Günther, C. (2021). Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. International Journal of Medical Microbiology, 311(3), 151491. https://doi.org/10.1016/j.ijmm.2021.151491
dc.relation.referencesSuresh, G., Das, R. K., Kaur Brar, S., Rouissi, T., Avalos Ramirez, A., Chorfi, Y., & Godbout, S. (2018). Alternatives to antibiotics in poultry feed: molecular perspectives. Critical Reviews in Microbiology, 44(3), 318–335. https://doi.org/10.1080/1040841X.2017.1373062
dc.relation.referencesSwaggerty, C. L., Callaway, T. R., Kogut, M. H., Piva, A., & Grilli, E. (2019). Modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms, 7(3), 1–10. https://doi.org/10.3390/microorganisms7030065
dc.relation.referencesTadesse, S., Corner, G., Dhima, E., Houston, M., Guha, C., Augenlicht, L., & Velcich, A. (2017). MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa. Oncotarget, 8(42), 71456–71470. https://doi.org/10.18632/oncotarget.16886
dc.relation.referencesTang, L. P., Li, W. H., Liu, Y. L., Lun, J. C., & He, Y. M. (2021). Heat stress aggravates intestinal inflammation through TLR4-NF-κB signaling pathway in Ma chickens infected with Escherichia coli O157:H7. Poultry Science. https://doi.org/10.1016/j.psj.2021.101030
dc.relation.referencesTarradas, J., Tous, N., Esteve-garcia, E., & Brufau, J. (2020). The control of intestinal inflammation: A major objective in the research of probiotic strains as alternatives to antibiotic growth promoters in poultry. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020148
dc.relation.referencesTeng, P. Y., & Kim, W. K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5(OCT), 1–18. https://doi.org/10.3389/fvets.2018.00245
dc.relation.referencesTerada, T., Nii, T., Isobe, N., & Yoshimura, Y. (2020). Effects of Probiotics Lactobacillus reuteri and clostridium butyricum on the expression of toll-like receptors, pro- and anti-inflammatory cytokines, and antimicrobial peptides in broiler chick intestine. Journal of Poultry Science, 57(4), 310–318. https://doi.org/10.2141/jpsa.0190098
dc.relation.referencesTing, H.-A., & von Moltke, J. (2019). The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. The Journal of Immunology, 202(5), 1321–1329. https://doi.org/10.4049/jimmunol.1801069
dc.relation.referencesToro-alzate, L. F., & Toro-alzate, L. F. (2020). Antimicrobial Resistance in Colombia under the scope of One Health approach .
dc.relation.referencesTras, C., Firma, L. A., Andrea, P., Valencia, R., Prieto, A. V., & Magdalena, U. (2019). Desafíos Del Sector Agropecuario Colombiano Tras La Firma Del Acuerdo De Promoción Comercial Entre Estados Unidos Y Colombia. Investigación y Desarrollo, 27(1), 6–49.
dc.relation.referencesTrevisi, P., Latorre, R., Priori, D., Luise, D., Archetti, I., Mazzoni, M., … Bosi, P. (2017). Effect of feed supplementation with live yeast on the intestinal transcriptome profile of weaning pigs orally challenged with Escherichia coli F4. Animal, 11(1), 33–44. https://doi.org/10.1017/S1751731116001178
dc.relation.referencesUmar, Z., Qureshi, A. S., Shahid, R. U., & Deeba, F. (2021). Macroscopic, microscopic and histomorphometric analysis of intestine, liver and pancreas of ostrich (Struthio camelus) with advancement of age and sex. Pakistan Veterinary Journal, 41(3), 313–320. https://doi.org/10.29261/pakvetj/2021.029
dc.relation.referencesUsuda, H., Okamoto, T., & Wada, K. (2021). Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. International Journal of Molecular Sciences, 22(14). https://doi.org/10.3390/ijms22147613
dc.relation.referencesVaca, D. J., Thibau, A., Schütz, M., Kraiczy, P., Happonen, L., Malmström, J., & Kempf, V. A. J. (2020). Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Medical Microbiology and Immunology. https://doi.org/10.1007/s00430-019-00644-3
dc.relation.referencesWang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., … Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1
dc.relation.referencesWang, J. S., Hu, H. J., Xu, Y. B., Wang, D. C., Jiang, L., Li, K. X., … Zhan, X. A. (2020). Effects of posthatch feed deprivation on residual yolk absorption, macronutrients synthesis, and organ development in broiler chicks. Poultry Science, 99(11), 5587–5597. https://doi.org/10.1016/j.psj.2020.08.032
dc.relation.referencesWang, Jianping, Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., & Al, W. E. T. (2019). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024
dc.relation.referencesWang, Jianping, Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., … Li, M. (2021). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024
dc.relation.referencesWang, Jing, Ji, H., Wang, S., Liu, H., Zhang, W., Zhang, D., & Wang, Y. (2018). Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Frontiers in Microbiology, 9(AUG), 1–14. https://doi.org/10.3389/fmicb.2018.01953
dc.relation.referencesWang, L., Fang, M., Hu, Y., Yang, Y., Yang, M., & Chen, Y. (2014). Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering, (May), 612–619. https://doi.org/10.1093/abbs/gmu037.Advance
dc.relation.referencesWang, W. C., Yan, F. F., Hu, J. Y., Amen, O. A., & Cheng, H. W. (2018). Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. Journal of Animal Science, 96(5), 1654–1666. https://doi.org/10.1093/jas/sky092
dc.relation.referencesWen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 1–23. https://doi.org/10.1186/s40168-021-01040-x
dc.relation.referencesWen, C., Yan, W., Sun, C., Ji, C., Zhou, Q., Zhang, D., … Yang, N. (2019). The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 13(6), 1422–1436. https://doi.org/10.1038/s41396-019-0367-2
dc.relation.referencesWickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines, 10(2). https://doi.org/10.3390/vaccines10020172
dc.relation.referencesWu, Z., Yang, K., Zhang, A., Chang, W., Zheng, A., Chen, Z., … Liu, G. (2021). Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poultry Science, 100(9), 101323. https://doi.org/10.1016/j.psj.2021.101323
dc.relation.referencesXiao, S. S., Mi, J. D., Mei, L., Liang, J., Feng, K. X., Wu, Y. B., … Wang, Y. (2021). Article microbial diversity and community variation in the intestines of layer chickens. Animals, 11(3), 1–17. https://doi.org/10.3390/ani11030840
dc.relation.referencesXiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96(5), 1387–1393. https://doi.org/10.3382/ps/pew372
dc.relation.referencesXie, S., Zhang, H., Matjeke, R. S., Zhao, J., & Yu, Q. (2021). Bacillus coagulans protect against Salmonella enteritidis -induced intestinal mucosal damage in young chickens by inducing the differentiation of goblet cells Assay of the Antimicrobial Activity, 1–8.
dc.relation.referencesXu, L., Sun, X., Wan, X., Li, K., Jian, F., Li, W., … Wang, Y. (2021). Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. Animal Nutrition, 7(4), 1105–1114. https://doi.org/10.1016/j.aninu.2021.01.009
dc.relation.referencesXu, Y., Yu, Y., Shen, Y., Li, Q., Lan, J., Wu, Y., … Yang, C. (2021). Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poultry Science. https://doi.org/10.1016/j.psj.2021.101358
dc.relation.referencesYadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(1), 1–11. https://doi.org/10.1186/s40104-018-0310-9
dc.relation.referencesYan, W., Sun, C., Zheng, J., Wen, C., & Ji, C. (2019). Efficacy of Fecal Sampling as a Gut Proxy in the Study of Chicken Gut Microbiota, 10(September), 1–11. https://doi.org/10.3389/fmicb.2019.02126
dc.relation.referencesYaqoob, M. U., El-hack, M. E. A., Hassan, F., El-saadony, M. T., Khafaga, A. F., Batiha, G. E., … Wang, M. (2021). The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance , gut microbiome , and intestinal morphology. Poultry Science, 100(7), 101143. https://doi.org/10.1016/j.psj.2021.101143
dc.relation.referencesYe, S., Chen, Z. T., Zheng, R., Diao, S., Teng, J., Yuan, X., … Zhang, Z. (2020). New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Frontiers in Genetics, 11(April), 1–12. https://doi.org/10.3389/fgene.2020.00243
dc.relation.referencesYu, M., Li, Z., Chen, W., Wang, G., & Cui, Y. (2019). Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers, 10(November), 1–14. https://doi.org/10.3389/fmicb.2019.02662
dc.relation.referencesZaghari, M., Sarani, P., & Hajati, H. (2020). Comparison of two probiotic preparations on growth performance, intestinal microbiota, nutrient digestibility and cytokine gene expression in broiler chickens. Journal of Applied Animal Research, 48(1), 166–175. https://doi.org/10.1080/09712119.2020.1754218
dc.relation.referencesZbo, A. D., Ognik, K., Zaworska, A., Ferenc, K., & Jankowski, J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science. https://doi.org/10.3382/ps/pey250
dc.relation.referencesZhang, B., Zhang, H., Yu, Y., Zhang, R., Wu, Y., Yue, M., & Yang, C. (2021a). Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science, 100(6), 101168. https://doi.org/10.1016/j.psj.2021.101168
dc.relation.referencesZhang, B., Zhang, H., Yu, Y., Zhang, R., Wu, Y., Yue, M., & Yang, C. (2021b). Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science. https://doi.org/10.1016/j.psj.2021.101168
dc.relation.referencesZhang, L., Said, L. Ben, Hervé, N., Zirah, S., Diarra, M. S., & Fliss, I. (2022). Effects of drinking water supplementation with Lactobacillus reuteri , and a mixture of reuterin and microcin J25 on the growth performance , caecal microbiota and selected metabolites of broiler chickens, 6, 1–13.
dc.relation.referencesZhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., … Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032
dc.relation.referencesZhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z., & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119
dc.relation.referencesZou, Y., Wang, J., Wang, Y., Peng, B., Liu, J., Zhang, B., … Wang, S. (2020). O157 Colonization through Enhancing Gut Barrier.
dc.relation.referencesAbdel-Moneim, A. M. E., Selim, D. A., Basuony, H. A., Sabic, E. M., Saleh, A. A., & Ebeid, T. A. (2020). Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production, 52(2), 671–680. https://doi.org/10.1007/s11250-019-02055-1
dc.relation.referencesBallou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002
dc.relation.referencesBohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., … Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3
dc.relation.referencesBorey, M., Estellé, J., Caidi, A., Bruneau, N., Coville, J. L., Hennequet-Antier, C., … Calenge, F. (2020). Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0232418
dc.relation.referencesBurbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312
dc.relation.referencesCao, S., Zhang, Q., Wang, C., & Wu, H. (2018). LPS challenge increased intestinal permeability , disrupted mitochondrial function and triggered mitophagy of piglets, (866). https://doi.org/10.1177/1753425918769372
dc.relation.referencesChen, C., Huang, X., Fang, S., Yang, H., He, M., Zhao, Y., & Huang, L. (2018). Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 9(October), 1–13. https://doi.org/10.3389/fmicb.2018.02626
dc.relation.referencesChen, J. Y., & Yu, Y. H. (2021). Bacillus subtilis–fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poultry Science, 100(2), 875–886. https://doi.org/10.1016/j.psj.2020.10.070
dc.relation.referencesChen, X., Chen, W., Ci, W., Zheng, Y., Han, X., Huang, J., & Zhu, J. (2022). Effects of Dietary Supplementation with Lactobacillus acidophilus and Bacillus subtilis on Mucosal Immunity and Intestinal Barrier Are Associated with Its Modulation of Gut Metabolites and Microbiota in Late ‑ Phase Laying Hens. Probiotics and Antimicrobial Proteins, (0123456789). https://doi.org/10.1007/s12602-022-09923-7
dc.relation.referencesClavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production  A review, 1006–1021. https://doi.org/10.3382/ps/pex359
dc.relation.referencesCosta, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–13. https://doi.org/10.1371/journal.pone.0171642
dc.relation.referencesDong, R., Li, F., Qin, S., & Wang, Y. (2016). Data in Brief Dataset on in fl ammatory proteins expressions and sialic acid levels in apolipoprotein E-de fi cient mice with administration of N-acetylneuraminic acid and / or quercetin. Data in Brief, 8, 613–617. https://doi.org/10.1016/j.dib.2016.06.020
dc.relation.referencesGao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., … Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1
dc.relation.referencesGomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., … Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146
dc.relation.referencesGrond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609
dc.relation.referencesGuo, M., Li, M., Zhang, C., Zhang, X., & Wu, Y. (2020). Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Frontiers in Microbiology, 11(July), 1–11. https://doi.org/10.3389/fmicb.2020.01768
dc.relation.referencesGut, P., Gut, H., Composition, M., Colombino, E., Biasato, I., Ferrocino, I., … Capucchio, M. T. (2021). Local Immune Response Evaluation.
dc.relation.referencesHu, R., Lin, H., Wang, M., Zhao, Y., Liu, H., Min, Y., … Gao, Y. (2021). Lactobacillus reuteri -derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide- induced inflammatory responses in broilers, 4, 1–18.
dc.relation.referencesHu, Y., Wang, L., Shao, D., Wang, Q., Wu, Y., & Han, Y. (2020). Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth, 10(January), 1–20. https://doi.org/10.3389/fmicb.2019.02948
dc.relation.referencesHui, Y., Tamez-hidalgo, P., Cieplak, T., Satessa, G. D., Kot, W., Kjærulff, S., … Krych, L. (2021). Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets, 2, 1–14.
dc.relation.referencesJacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/10.3382/ps/pey602
dc.relation.referencesKhan, S., & Chousalkar, K. K. (2021). Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-021-00112-5
dc.relation.referencesKollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2018). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota Sequence Processing and Classification of the V3 / V4 Region of 16S rRNA Genes. Poultry Science, 98(6), 2347–2353. https://doi.org/10.3382/ps/pey594
dc.relation.referencesKuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rrna gene sequences from microbial communities. Current Protocols in Bioinformatics, (SUPPL.36), 1–20. https://doi.org/10.1002/0471250953.bi1007s36
dc.relation.referencesMancabelli., et al. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens, 15(32), 4–6.
dc.relation.referencesMarmion, M., Ferone, M. T., Whyte, P., & Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 99(April), 103823. https://doi.org/10.1016/j.fm.2021.103823
dc.relation.referencesMartinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011
dc.relation.referencesMilici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., … Wagner-Döbler, I. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports, 6(January), 19054. https://doi.org/10.1038/srep19054
dc.relation.referencesMiller, B. M., Liou, M. J., Zhang, L. F., Tiffany, C. R., Butler, B. P., Andreas, J. B., … Schorr, E. (2020). Short Article Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic ll Short Article Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface, 789–797. https://doi.org/10.1016/j.chom.2020.10.009
dc.relation.referencesMoita, V. H. C., Duarte, M. E., & Kim, S. W. (2021). Supplemental Effects of Phytase on Modulation of Mucosa- Associated Microbiota in the Jejunum and the Impacts on Nutrient Digestibility , Intestinal Morphology , and Bone Parameters in Broiler Chickens.
dc.relation.referencesMu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in Human Health and Diseases, 9(April), 1–17. https://doi.org/10.3389/fmicb.2018.00757
dc.relation.referencesOcejo, M., Oporto, B., & Hurtado, A. (2019). 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow- growing chickens throughout their productive lifespan, (October 2018), 1–14. https://doi.org/10.1038/s41598-019-39323-
dc.relation.referencesParker, B. J., Wearsch, P. A., Veloo, A. C. M., Rodriguez-palacios, A., & Rodriguez-palacios, A. (2020). The Genus Alistipes : Gut Bacteria With Emerging Implications to Inflammation , Cancer , and Mental Health, 11(June), 1–15. https://doi.org/10.3389/fimmu.2020.00906
dc.relation.referencesPickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota : Role in pathogen colonization , immune responses , and inflammatory disease, 70–89. https://doi.org/10.1111/imr.12567
dc.relation.referencesRashid, Z., Zubair, M., Syed, Y., Hussain, M., Sitwat, G., & Ashaq, Z. (2021). Comparative analysis of chicken cecal microbial diversity and taxonomic composition in response to dietary variation using 16S rRNA amplicon sequencing. Molecular Biology Reports, 48(11), 7203–7214. https://doi.org/10.1007/s11033-021-06712-3
dc.relation.referencesReisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins. https://doi.org/10.3390/toxins12100622
dc.relation.referencesRivera-chávez, F., Lopez, C. A., & Bäumler, A. J. (2016). Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2016.09.022
dc.relation.referencesRouissi, A., Alfonso-Avila, A. R., Guay, F., Boulianne, M., & Létourneau-Montminy, M. P. (2021). Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Science, 100(12), 101506. https://doi.org/10.1016/j.psj.2021.101506
dc.relation.referencesRubio, L. A. (2019). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science. https://doi.org/10.3382/ps/pey416
dc.relation.referencesShi, S., Liu, J., Dong, J., Hu, J., Liu, Y., Feng, J., & Zhou, D. (2021). Research progress on the regulation mechanism ofprobiotics on the microecological flora of infectedintestines in livestock and poultry.pdf.
dc.relation.referencesShin, N., Whon, T. W., & Bae, J. (2015). Proteobacteria  microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 1–8. https://doi.org/10.1016/j.tibtech.2015.06.011
dc.relation.referencesWang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., … Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1
dc.relation.referencesWang, J., Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., & Al, W. E. T. (2019). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024
dc.relation.referencesWang, S., Ahmadi, S., Nagpal, R., Jain, S., & Mishra, S. P. (2020). Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut , inflammation and improves physical and cognitive functions : from C . elegans to mice, 333–352.
dc.relation.referencesWen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 1–23. https://doi.org/10.1186/s40168-021-01040-x
dc.relation.referencesWen, C., Yan, W., Sun, C., Ji, C., Zhou, Q., Zhang, D., … Yang, N. (2019). The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 13(6), 1422–1436. https://doi.org/10.1038/s41396-019-0367-2
dc.relation.referencesXiao, S. S., Mi, J. D., Mei, L., Liang, J., Feng, K. X., Wu, Y. B., … Wang, Y. (2021). Microbial diversity and community variation in the intestines of layer chickens. Animals, 11(3), 1–17. https://doi.org/10.3390/ani11030840
dc.relation.referencesYe, S., Chen, Z. T., Zheng, R., Diao, S., Teng, J., Yuan, X., … Zhang, Z. (2020). New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Frontiers in Genetics, 11(April), 1–12. https://doi.org/10.3389/fgene.2020.00243
dc.relation.referencesYu, M., Li, Z., Chen, W., Wang, G., & Cui, Y. (2019). Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers, 10(November), 1–14. https://doi.org/10.3389/fmicb.2019.02662
dc.relation.referencesZhang, L., Said, L. Ben, Hervé, N., Zirah, S., Diarra, M. S., & Fliss, I. (2022). Effects of drinking water supplementation with Lactobacillus reuteri , and a mixture of reuterin and microcin J25 on the growth performance , caecal microbiota and selected metabolites of broiler chickens, 6, 1–13.
dc.relation.referencesZhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., … Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032
dc.relation.referencesZou, X. Y., Zhang, M., Tu, W. J., Zhang, Q., Jin, M. L., Fang, R. D., & Jiang, S. (2022). Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens, 16. https://doi.org/10.1016/j.animal.2022.100474
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAvicultura
dc.subject.lembMucinas
dc.subject.lembPollos de engorde
dc.subject.proposalAntibióticos
dc.subject.proposalDisbiosis
dc.subject.proposalInterleuquinas
dc.subject.proposalMucina
dc.subject.proposalMicrobiota intestinal
dc.title.translatedEvaluation of the addition of Bacillus subtillis in a model of acute intestinal inflammation in broilers
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameCOLFUTURO
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Producción Agraria Sostenible
dc.contributor.orcid0000-0002-1037-7843
dc.contributor.cvlacRODRÍGUEZ GONZÁLEZ, SANDRA PAOLA


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito