Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRestrepo Betancur, Giovanni
dc.contributor.authorZapata Carmona, Kelly Vanessa
dc.date.accessioned2023-02-06T15:23:28Z
dc.date.available2023-02-06T15:23:28Z
dc.date.issued2022-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83312
dc.descriptionilustraciones, diagramas
dc.description.abstractDurante la refrigeración, el espermatozoide porcino puede experimentar estrés oxidativo, osmótico, químico y térmico, que afectan su capacidad fecundante. La adición de antioxidantes al diluyente espermático constituye una alternativa para mitigar dichas alteraciones. El objetivo de esta investigación fue evaluar la capacidad antioxidante de la Silimarina y sus componentes (Silidianina, Silicristina y Silibinina) y su efecto sobre la conservación de semen porcino (Sus scrofa) sometido a refrigeración. Para ello, quince eyaculados de cinco cerdos fueron diluidos en MRA, suplementados con Silimarina, Silibinina, Silicristina y Silidianina y refrigerados cinco días a 16°C. Cada 24 h se evaluó la movilidad y cinética espermática con un CASA IVOS. A las 0 y 96 h se determinaron la funcionalidad de membrana por test hipoosmótico; la producción de EROs y la capacidad antioxidante total (ABTS-FRAP), por espectrofluorimetría; el potencial de membrana mitocondrial, la integridad estructural y la peroxidación lipídica mediante citometría de flujo, con JC-1, SYBR14/IP y Bodipy respectivamente. Se realizaron comparaciones de medias por Duncan, se calculó un índice para calidad espermática y se hicieron análisis de regresión para movilidad y cinética espermática, y para cinética de EROs. La suplementación con Silidianina (10-20 µM) incrementó MT, MP, Δ¥M y VE, y redujo la producción de EROs. Silicristina, a partir de 20 µM, disminuyó la MT, MP, Δ¥M y VE. Mientras que Silimarina redujo la producción de EROs/minuto. En definitiva, la Silimarina y sus componentes pueden incrementar la calidad espermática, reducir la generación de EROs, potenciar la CAT y modificar el Δ¥M en el semen porcino refrigerado. (Texto tomado de la fuente)
dc.description.abstractIn refrigerated conditions, boar spermatozoa are susceptible to oxidative, osmotic, chemical and thermal stress, affecting their fertilizing capacity. The addition of antioxidants to the sperm extender is an alternative to mitigate these alterations. The objective of this research was to evaluate the antioxidant capacity of Silymarin and its components (Silidianin, Silicristin and Silibinin) and their effect on the preservation of refrigerated boar semen (Sus scrofa). For this purpose, fifteen ejaculates from five swine were diluted in MRA, supplemented with Silymarin, Silybinin, Silychristin and Silydianin and refrigerated for five days at 16°C. Sperm motility and sperm kinetics were evaluated every 24 h with a CASA IVOS. At 0 and 96 h, membrane functionality was determined by hypoosmotic test; EROs production and total antioxidant capacity (ABTS-FRAP), by spectrofluorimetry; mitochondrial membrane potential, structural integrity and lipid peroxidation by flow cytometry with JC-1, SYBR14/PI and Bodipy probes, respectively. Duncan mean comparisons were performed, an index for sperm quality was calculated and regression analyses were performed for sperm motility and sperm kinetics, and for EROs kinetics. Silydianin supplementation (10-20 µM) increased MT, MP, Δ¥M and VE, and reduced EROs production. Silychristin, from 20 µM, decreased MT, MP, Δ¥M and VE. While Silymarin reduced EROs/minute production. In conclusion, Silymarin and its components can improve sperm quality, reduce EROs generation, enhance CAT and modify Δ¥M in refrigerated boar semen.
dc.format.extentxvi, 107 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc590 - Animales::599 - Mamíferos
dc.titleActividad antioxidante de la Silimarina y sus componentes (Silidianina, Silicristina y Silibinina) y su efecto sobre la conservación de semen porcino (Sus scrofa) refrigerado
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.contributor.researchgroupGrupo de Investigación en Biotecnología Animal (Giba)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.description.researchareaReproducción Animal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.indexedAgrovoc
dc.relation.referencesAbouzid, S., & Ahmed, O. M. (2013). Silymarin flavonolignans: Structure-activity relationship and biosynthesis. Studies in Natural Products Chemistry (Vol. 40, pp. 469–484). https://doi.org/10.1016/B978-0-444-59603-1.00014-X
dc.relation.referencesAghashahi, M., Momeni, H. R., & Darbandi, N. (2020). Impact of aluminium toxicity on vital human sperm parameters—Protective effects of silymarin. Andrologia, 1–10. https://doi.org/10.1111/and.13742
dc.relation.referencesAhmed, H., Amin, H., Clement, A. (2022). Silymarin abrogates acrylamide-induced oxidative stressmediated testicular toxicity via modulation of antioxidant mechanism, DNA damage, endocrine deficit and sperm quality in rats. Andrologia, 54(9). https://doi.org/10.1111/and.14491
dc.relation.referencesAitken, R. J., Gibb, Z., Baker, M. A., Drevet, J., & Gharagozloo, P. (2016). Causes and consequences of oxidative stress in Spermatozoa. Reproduction, Fertility and Development, 28(1–2), 1–10. https://doi.org/10.1071/RD15325
dc.relation.referencesArts, M., Dallinga, J., Voss, H., Haenen, G., & Bast, A. (2004). A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chemistry, 88(4), 567–570. https://doi.org/10.1016/J.FOODCHEM.2004.02.008
dc.relation.referencesAwda, B. J., Mackenzie-Bell, M., & Buhr, M. M. (2009). Reactive oxygen species and boar sperm function. Biology of Reproduction, 81(3), 553–561. https://doi.org/10.1095/biolreprod.109.076471
dc.relation.referencesBaeeri, M., Mohammadi-Nejad, S., Rahimifard, M., Navaei-Nigjeh, M., Moeini-Nodeh, S., Khorasani, R., & Abdollahi, M. (2018). Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging. Molecular and Cellular Biochemistry, 441(1–2), 21–33. https://doi.org/10.1007/s11010-017-3172-0
dc.relation.referencesBenzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/ABIO.1996.0292
dc.relation.referencesBiedermann, D., Buchta, M., Holečková, V., Sedlák, D., Valentová, K., Cvačka, J., Bednárová, L., Křenková, A., Kuzma, M., Škuta, C., Peikerová, Ž., Bartůněk, P., & Křen, V. (2016). Silychristin: Skeletal Alterations and Biological Activities. Journal of Natural Products, 79(12), 3086–3092. https://doi.org/10.1021/acs.jnatprod.6b00750
dc.relation.referencesBiedermann, D., Moravcová, V., Valentová, K., Kuzma, M., Petrásková, L., Císařová, I., & Křen, V. (2019). Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochemistry Letters, 14–20. https://doi.org/10.1016/j.phytol.2019.01.006
dc.relation.referencesBollwein, H., & Bittner, L. (2018). Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Animal Reproduction, 15, 703–710. https://doi.org/10.21451/1984- 3143-AR2018-0041
dc.relation.referencesCordova, A., Ruiz, C., Córdova, C., Córdova, M., Eulogio, J., Guerra, J., Rodríguez, B., & Salinas, K. (2009). Estrés oxidativo y antioxidantes en la conservación espermática. Revista Computense de Ciencias Veterinarias, 3(1), 1–38.
dc.relation.referencesEl-Sheshtawy, R., & El-Nattat, W. (2017). Impact of silymarin enriched semen extender on bull sperm preservability. Asian Pacific Journal of Reproduction, 6(2), 81–84. https://doi.org/10.12980/apjr.6.20170206
dc.relation.referencesEskandari, F., & Momeni, H. R. (2016). Protective effect of silymarin on viability, motility and mitochondrial membrane potential of ram sperm treated with sodium arsenite. International Journal of Reproductive BioMedicine, 14(6), 397–402. https://doi.org/10.29252/ijrm.14.6.397
dc.relation.referencesEtemadi, T., Reza, H., & Asghar, A. (2020). Impact of silymarin on cadmium-induced apoptosis in human spermatozoa. Andrologia, 52(11), 1-9. https://doi.org/10.1111/and.13795.
dc.relation.referencesEtemadi, T., Reza, H., Darbandi, N., & Hussein, M. (2022). Silymarin modulates cadmium-induced oxidative stress in human spermatozoa. Andrologia, 52(11), 1-9. https://doi.org/ 10.1111/and.14475
dc.relation.referencesFair, S., & Romero-Aguirregomezcorta, J. (2019). Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology, 137, 15–22. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.032
dc.relation.referencesFaudale, M., Viladomat, F., Bastida, J., Poli, F., & Codina, C. (2008). Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different Mediterranean countries. Journal of Agricultural and Food Chemistry, 56(6), 1912–1920. https://doi.org/10.1021/jf073083c
dc.relation.referencesFeng, T. Y., Lv, D. L., Zhang, X., Du, Y. Q., Yuan, Y. T., Chen, M. J., Xi, H. M., Li, Y., Han, N., & Hu, J. H. (2020). Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17°C via AMPK activation. Reproduction in Domestic Animals, 55(12), 1714–1724. https://doi.org/10.1111/rda.13828
dc.relation.referencesFunahashi, H., & Sano, T. (2005). Select antioxidants improve the function of extended boar semen stored at 10°C. Theriogenology, 63(6), 1605–1616. https://doi.org/10.1016/j.theriogenology.2004.06.016
dc.relation.referencesGillan, L., Evans, G., & Maxwell, W. M. C. (2005). Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology, 63(2), 445–457. https://doi.org/10.1016/j.theriogenology.2004.09.024
dc.relation.referencesGülçin, İ. (2010). Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11, 210–218. https://doi.org/10.1016/j.ifset.2009.07.002
dc.relation.referencesGulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94, 651–715. https://doi.org/10.1007/s00204-020-02689-3
dc.relation.referencesGuo, H., Gong, Y., He, B., & Zhao, R. (2017). Relationships between mitochondrial DNA content, mitochondrial activity, and boar sperm motility. Theriogenology, 87, 276–283. https://doi.org/10.1016/j.theriogenology.2016.09.005
dc.relation.referencesGuthrie, H. D., & Welch, G. R. (2006). Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescenceactivated flow cytometry. Journal of Animal Science, 84(8), 2089–2100. https://doi.org/10.2527/JAS.2005-766
dc.relation.referencesHaddad, P. S., Haddad, Y., Vallerand, D., & Brault, A. (2011). Antioxidant and Hepatoprotective Effects of Silibinin in a Rat Model of Nonalcoholic Steatohepatitis. Evidence-Based Complementary and Alternative Medicine : ECAM, 2011, 1–10. https://doi.org/10.1093/ECAM/NEP164
dc.relation.referencesHidalgo, D. M., Barón, F. J., Bragado, M. J., Carmona, P., Robina, A., García-Marín, L. J., & Gil, M. C. (2011). The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology, 75(8), 1550–1560. https://doi.org/10.1016/j.theriogenology.2010.12.021
dc.relation.referencesHidalgo, D. M. (2013). Fisiología celular y calidad seminal durante la conservación del semen porcino refrigerado. In Fisiología celular y calidad seminal durante la conservación del semen porcino refrigerado. [Universidad de Extremadura]. https://dehesa.unex.es:8443/handle/10662/799?mode=full
dc.relation.referencesJang, H.-Y., Kong, H. S., Choi, B.-Y., Shin, J.-S., Cheong, H.-T., Kim, J.-T., Park, I.-C., Park, C.-K., & Yang, B.- K. (2011). Protective Effects of Silymarin against the Toxicity of Bisphenol A (BPA) on Boar Sperm Quality. Journal of Embryo Transfer, 26(4), 257–263.
dc.relation.referencesJuarez, J. D. (2009). Efecto de la velocidad de enfriamiento en la congelabilidad de espermatozoides porcinos. [Universidad de Murcia]. https://riunet.upv.es:443/handle/10251/14316
dc.relation.referencesKhoi, H. X., Shimizu, K., Yoneda, Y., Minagawa, I., Abe, Y., Kuwabara, Y., Sasanami, T., & Kohsaka, T. (2021). Monitoring the reactive oxygen species in spermatozoa during liquid storage of boar semen and its correlation with sperm motility, free thiol content and seasonality. Andrologia, 53(11), e14237. https://doi.org/10.1111/AND.14237
dc.relation.referencesKumaresan, A., Kadirvel, G., Bujarbaruah, K. M., Bardoloi, R. K., Das, A., Kumar, S., & Naskar, S. (2009). Preservation of boar semen at 18°C induces lipid peroxidation and apoptosis like changes in spermatozoa. Animal Reproduction Science, 110, 162–171. https://doi.org/10.1016/j.anireprosci.2008.01.006
dc.relation.referencesLuberda, Z. (2005). The role of glutathione in mammalian gametes. Reproductive Biology, 5(1), 5–17.
dc.relation.referencesMartín-Hidalgo, D., Hurtado de Llera, A., Henning, H., Wallner, U., Waberski, D., Bragado, M. J., Gil, M. C., & García-Marín, L. J. (2013). The Effect of Resveratrol on the Quality of Extended Boar Semen During Storage at 17oC. Journal of Agricultural Science, 5(8), 231–242. https://doi.org/10.5539/jas.v5n8p231
dc.relation.referencesMartínez, F., Mata, M., Álvarez, M., Álvarez, M., Anel, L., & de Paz, P. (2010). Probes and techniques for sperm evaluation by flow cytometry. Reproduction in Domestic Animals, 45(SUPPL. 2), 67–78. https://doi.org/10.1111/j.1439-0531.2010.01622.x
dc.relation.referencesMerino, O., Figueroa, E., Cheuquemán, C., Valdebenito, I., Isachenko, V., Isachenko, E., Sánchez, R., Farías, J., & Risopatrón, J. (2017). Short-term storage of salmonids semen in a sodium alginatebased extender. Andrologia, 49(5), 1–5. https://doi.org/10.1111/and.12661
dc.relation.referencesMunteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/IJMS22073380
dc.relation.referencesOufi, H. G., & Al-Shawi, N. N. (2014). The effects of different doses of silibinin in combination with methotrexate on testicular tissue of mice. European Journal of Pharmacology, 730(1), 36–40. https://doi.org/10.1016/J.EJPHAR.2014.02.010
dc.relation.referencesPascual, C., Gonz, R., Armesto, J., & Muriel, P. (1993). Effect of silymarin and silybinin on oxygen radicals. Drug Development Research, 29(1), 73–77. https://doi.org/10.1002/ddr.430290109
dc.relation.referencesPereira, B. A., Rocha, L. G. P., Teles, M. C., Silva, W. E., Barbosa, J. A., Rabelo, S. S., Uchoa, A. S., RodriguezGil, J. E., Pereira, L. J., & Zangeronimo, M. G. (2019). Addition of chlorogenic acid and caffeine during the processing of cooled boar semen. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 71(2), 489–499. https://doi.org/10.1590/1678-4162-10415
dc.relation.referencesPezo, F., Romero, F., Zambrano, F., & Sánchez, R. S. (2019). Preservation of boar semen: An update. Reproduction in Domestic Animals, 54(3), 423–434. https://doi.org/10.1111/rda.13389
dc.relation.referencesPotra, G., Babes, P., Calniceanu, H., Popa, A., Ciavoi, G., Iova, G., Ganea, M., & Scrobotă, I. (2021). AntiInflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules, 26(22), 6899. https://doi.org/10.3390/molecules26226899
dc.relation.referencesPourheydar, B., Azarm, F., Farjah, G., Karimipour, M., & Pourheydar, M. (2021). Effect of silymarin and metformin on the sperm parameters and histopathological changes of testes in diabetic rats: An experimental study. International Journal of Reproductive BioMedicine, 19(12), 1091–1104. https://doi.org/10.18502/ijrm.v19i12.10060
dc.relation.referencesPyszková, M., Biler, M., Biedermann, D., Valentová, K., Kuzma, M., Vrba, J., Ulrichová, J., Sokolová, R., Mojović, M., Popović-Bijelić, A., Kubala, M., Trouillas, P., Křen, V., & Vacek, J. (2016). Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radical Biology and Medicine, 90, 114–125. https://doi.org/10.1016/j.freeradbiomed.2015.11.014
dc.relation.referencesRajnochová, A., Gabrielová, · Eva, Ulrichová, J., Zálešák, B., Biedermann, · David, & Vostálová, J. (2019). A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Archives of Dermatological Research, 311, 477–490. https://doi.org/10.1007/s00403-019-01928-7
dc.relation.referencesReina, M., & Martínez, A. (2016). Is Silybin the Best Free Radical Scavenger Compound in Silymarin? Journal of Physical Chemistry B, 120(20), 4568–4578. https://doi.org/10.1021/acs.jpcb.6b02807
dc.relation.referencesRoostaei-Ali Mehr, M., & Parisoush, P. (2016). Effect of different levels of silymarin and caproic acid on storage of ram semen in liquid form. Reproduction in Domestic Animals, 51(4), 569–574. https://doi.org/10.1111/rda.12721
dc.relation.referencesSurai, P. F. (2015). Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants, 4(1), 204–247. https://doi.org/10.3390/antiox4010204
dc.relation.referencesTaleb, A., Ahmad, K. A., Ihsan, A. U., Qu, J., Lin, N., Hezam, K., Koju, N., Hui, L., & Qilong, D. (2018). Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine and Pharmacotherapy, 102(January), 689–698. https://doi.org/10.1016/j.biopha.2018.03.140
dc.relation.referencesTemamogullari, F., Atessahin, A., Cebi Sen, C., Yumusak, N., & Dogru, M. (2021). Protective role of silibinin over nickel sulfate-induced reproductive toxicity in male rats. Polish Journal of Veterinary Sciences, 24(1), 29–34. https://doi.org/10.24425/pjvs.2020.135817
dc.relation.referencesTeixeira, S. M. P., Chaveiro, A., & Moreira da Silva, F. (2015). Effect of Conjugated Linoleic Acid on Boar Semen Quality After Long-term Refrigeration at 17°C. Reproduction in Domestic Animals, 50(4), 604–610. https://doi.org/10.1111/rda.12535
dc.relation.referencesTian, X., Li, D., He, Y., Zhang, W., He, H., Du, R., Pang, W., Yang, G., & Yu, T. (2019). Supplementation of salvianic acid A to boar semen extender to improve seminal quality and antioxidant capacity. Animal Science Journal, 90(9), 1142–1148. https://doi.org/10.1111/ASJ.13263
dc.relation.referencesTorres, P., Fischman, M. L., Acerbo, M., García, C., Míguez, M., Domínguez, J., & Cisale, H. (2014). Análisis de diluyentes comerciales de semen porcino refrigerado durante 4 días: resultados preliminares. Archivos de Zootecnia, 63(243), 547–550. https://doi.org/10.4321/s0004-05922014000300015
dc.relation.referencesWellington, K., & Jarvis, B. (2001). Silymarin: A review of its clinical properties in the management of hepatic disorders
dc.relation.referencesZielińska-Przyjemska, M., & Wiktorowicz, K. (2006). An In vitro Study of the Protective Effect of the Flavonoid Silydianin against Reactive Oxygen Species. Phytother. Res, 20, 115–119. https://doi.org/10.1002/ptr.1812
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembConservación del semen
dc.subject.lembSemen conservation
dc.subject.proposalCalidad seminal
dc.subject.proposalEstado redox
dc.subject.proposalFlavonolignanos
dc.subject.proposalRefrigeración
dc.subject.proposalSilimarina
dc.subject.proposalSemen porcino
dc.subject.proposalFlavonolignans
dc.subject.proposalPorcine semen
dc.subject.proposalRedox status
dc.subject.proposalRefrigeration
dc.subject.proposalSeminal quality
dc.subject.proposalSilymarin
dc.title.translatedAntioxidant activity of silymarin and its components (silydianin, silychristin and silybinin) and their effect on the preservation of refrigerated boar semen (Sus scrofa)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular Biotecnología
dc.contributor.orcidZapata Carmona, Kelly Vanessa [0000-0002-3559-5783]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito