Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHortúa Orjuela, Hector Javier
dc.contributor.advisorCastañeda Colorado, Leonardo
dc.contributor.authorBravo Cárdenas, Juan Felipe
dc.date.accessioned2023-02-06T15:31:25Z
dc.date.available2023-02-06T15:31:25Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83313
dc.descriptionilustraciones
dc.description.abstractEn este trabajo se pretende dar una introducción a las perturbaciones cosmológicas y aplicaciones desde el punto de vista de la Relatividad numérica, en particular se muestra como se pueden aplicar estas perturbaciones al formalismo 3+1. Las perturbaciones cosmológicas se dan a primer orden sobre la solución espacialmente plana de Friedman-Lemaitre-Robertson-Walker (FLRW), esto con miras a obtener la ecuación de dínamo cosmológico, bajo la aproximación de dínamo cinemático, para poder estudiar la evolución de los campos magnéticos primordiales y su amplificación. También se mostrará el estudio computacional de perturbaciones cosmológicas a partir de la Relatividad Numérica haciendo uso del software Einstein Toolkit, se hace énfasis en FLRWSolver para la solución numérica de las ecuaciones de campo de Einstein desde el punto de vista cosmológico. (Texto tomado de la fuente)
dc.description.abstractThis thesis aims to give an introduction to cosmological perturbations and their applications from the point of view of numerical relativity, in particular it shows how these perturbations can be applied to the 3+1 formalism. The cosmological perturbations are given up to first order on the spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution, this looking to obtaining the cosmological dynamo equation, under the kinematic-dynamo approximation, in order to study the evolution of primordial magnetic fields and their amplification. The computational study of cosmological perturbations from Numerical Relativity will also be shown using the Einstein Toolkit software, emphasizing FLRWSolver for the numerical solution of the Einstein field equations from the cosmological point of view.
dc.format.extentix, 93 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleCosmic dynamo equation under cosmological perturbation theory at first order
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.contributor.researchgroupGrupo de Astronomía Galáctica, gravitación y cosmología
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Astronomía
dc.description.researchareaGravitación, Relatividad General, Cosmologia, Relatividad Numérica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesHayley J. Macpherson, Daniel J. Price, and Paul D. Lasky. Einstein’s universe: Cosmological structure formation in numerical relativity. Phys. Rev. D, 99:063522, Mar 2019.
dc.relation.referencesHayley Jessica Macpherson. Inhomogeneous cosmology in an anisotropic Universe. 9 2019
dc.relation.referencesM. Marklund and C. A. Clarkson. The general relativistic magnetohydrodynamic dynamo equation. Monthly Notices of the Royal Astronomical Society, 358(3):892–900, 04 2005.
dc.relation.referencesHayley J. Macpherson, Paul D. Lasky, and Daniel J. Price. Inhomogeneous cosmology with numerical relativity. Phys. Rev. D, 95:064028, Mar 2017.
dc.relation.referencesH´ector J. Hortua, Leonardo Casta˜neda, and J. M. Tejeiro. Evolution of magnetic fields through cosmological perturbation theory. Phys. Rev. D, 87:103531, May 2013.
dc.relation.referencesHéctor Javier Hortua. Generación de campos magnéticos primordiales / generation of primordial magnetic fields. Maestría en Ciencias Astronomía, Abril 2011.
dc.relation.referencesHéctor Javier Hortúa and Leonardo Castañeeda. Contrasting formulations of cosmological perturbations in a magnetic FLRW cosmology. Classical and Quantum Gravity, 32(23):235026, nov 2015
dc.relation.referencesHéctor J. Hortúa and Leonardo Castañeeda. Effects of primordial magnetic fields on cmb. Proceedings of the International Astronomical Union, 10(S306):159–161, 2014.
dc.relation.referencesHéctor Javier Hortúa and Leonardo Castañeeda. Primordial magnetic fields and the cmb. In Brian Albert Robson, editor, Redefining Standard Model Cosmology, chapter 4. IntechOpen, Rijeka, 2018.
dc.relation.referencesG. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger, H. C. Hege, A. Merzky, J. Masso, and J. Shalf. Solving einstein’s equations on supercomputers. Computer, 32(12):52–58, 1999.
dc.relation.referencesMaria Babiuc-Hamilton, Steven R. Brandt, Peter Diener, Matthew Elley, Zachariah Etienne, Giuseppe Ficarra, Roland Haas, Helvi Witek, Miguel Alcubierre, Daniela Alic, Gabrielle Allen, Marcus Ansorg, Luca Baiotti, Werner Benger, Eloisa Bentivegna, Se- bastiano Bernuzzi, Tanja Bode, Bernd Bruegmann, Giovanni Corvino, Roberto De Pietri, Harry Dimmelmeier, Rion Dooley, Nils Dorband, Yaakoub El Khamra, Joshua Faber, Toni Font, Joachim Frieben, Bruno Giacomazzo, Tom Goodale, Carsten Gund- lach, Ian Hawke, Scott Hawley, Ian Hinder, Sascha Husa, Sai Iyer, Thorsten Keller- mann, Andrew Knapp, Michael Koppitz, Gerd Lanferman, Frank L¨offler, Joan Mas- so, Lars Menger, Andre Merzky, Mark Miller, Philipp Moesta, Pedro Montero, Bruno Mundim, Andrea Nerozzi, Christian Ott, Ravi Paruchuri, Denis Pollney, David Radice, Thomas Radke, Christian Reisswig, Luciano Rezzolla, David Rideout, Matei Ripeanu, Erik Schnetter, Bernard Schutz, Ed Seidel, Eric Seidel, John Shalf, Ulrich Sperhake, Nikolaos Stergioulas, Wai-Mo Suen, Bela Szilagyi, Ryoji Takahashi, Michael Thomas, Jonathan Thornburg, Malcolm Tobias, Aaryn Tonita, Paul Walker, Mew-Bing Wan, Barry Wardell, Miguel Zilh ao, Burkhard Zink, and Yosef Zlochower. The Einstein Toolkit, October 2019. To find out more, visit http://www.einsteintoolkit.org.
dc.relation.referencesJohn D. Barrow, Roy Maartens, and Christos G. Tsagas. Cosmology with inhomogeneous magnetic fields. Physics Reports, 449(6):131–171, 2007.
dc.relation.referencesEloisa Bentivegna and Marco Bruni. Effects of nonlinear inhomogeneity on the cosmic expansion with numerical relativity. Phys. Rev. Lett., 116:251302, Jun 2016.
dc.relation.referencesGabriele Bozzola. kuibit: Analyzing einstein toolkit simulations with python. Journal of Open Source Software, 6(60):3099, 2021.
dc.relation.referencesN. Bucciantini and L. Del Zanna. A fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD. Monthly Notices of the Royal Astronomical Society, 428(1):71–85, 10 2012.
dc.relation.referencesVitor Cardoso, Leonardo Gualtieri, Carlos Herdeiro, and Ulrich Sperhake. Exploring new physics frontiers through numerical relativity. Living Reviews in Relativity, (1), 2015.
dc.relation.referencesL Del Zanna and N Bucciantini. Covariant and 3 + 1 equations for dynamo-chiral general relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 479(1):657–666, 06 2018.
dc.relation.referencesE. Dormy and A.M. (Eds.) Soward. Mathematical Aspects of Natural Dynamos. Chapman and Hall/CRC, 2007.
dc.relation.referencesRuth Durrer. Cosmic magnetic fields and the cmb. New Astronomy Reviews, 51(3):275–280, 2007. Francesco Melchiorri: Scientist, Pioneer, Mentor.
dc.relation.referencesRuth Durrer and Andrii Neronov. Cosmological magnetic fields: Their generation, evolution and observation. The Astronomy and Astrophysics Review, 21, 03 2013.
dc.relation.referencesRuth Durrer and Norbert Straumann. Some applications of the 3+1 formalism of general relativity. Helv. Phys. Acta, 61:1027, 01 1988.
dc.relation.referencesDavid Garfinkle and Lawrence Mead. Cosmological initial data for numerical relativity. Phys. Rev. D, 102:044022, Aug 2020.
dc.relation.referencesTom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Masso, Thomas Radke, Harry Seidel, and John Shalf. The cactus framework and toolkit: Design and applications. volume 2565, 06 2002.
dc.relation.references´E. Gourgoulhon. 3+1 Formalism in General Relativity: Bases of Numerical Relativity. Lecture Notes in Physics. Springer Berlin Heidelberg, 2012.
dc.relation.referencesFrank Loffler et al. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Class. Quant. Grav., 29:115001, 2012.
dc.relation.referencesChung-Pei Ma and Edmund Bertschinger. Cosmological perturbation theory in the synchronous and conformal newtonian gauges. The Astrophysical Journal, 455:7, Dec 1995.
dc.relation.referencesBishop Mongwane. Problems in Cosmology and Numerical Relativity. PhD thesis, Parma U., 2017
dc.relation.referencesG. Montani, M.V. Battisti, and R. Benini. Primordial Cosmology. World Scientific, 2011
dc.relation.referencesPhilipp M¨osta, Bruno C Mundim, Joshua A Faber, Roland Haas, Scott C Noble, Tanja Bode, Frank L¨offler, Christian D Ott, Christian Reisswig, and Erik Schnetter. GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the einstein toolkit. Classical and Quantum Gravity, 31(1):015005, nov 2013.
dc.relation.referencesKouji Nakamura. General formulation of general-relativistic higher-order gauge- invariant perturbation theory. Classical and Quantum Gravity, 28(12):122001, may 2011
dc.relation.referencesCyril Pitrou, Xavier Roy, and Obinna Umeh. xpand: An algorithm for perturbing homogeneous cosmologies. Classical and Quantum Gravity, 30(16):165002, Jul 2013
dc.relation.referencesFran¸cois Rincon. Dynamo theories. Journal of Plasma Physics, 85(4):205850401, 2019.
dc.relation.referencesKandaswamy Subramanian. The origin, evolution and signatures of primordial mag- netic fields. Reports on Progress in Physics, 79(7):076901, may 2016.
dc.relation.referencesChristos G. Tsagas and Roy Maartens. Magnetized cosmological perturbations. Phys. Rev. D, 61:083519, Mar 2000.
dc.relation.referencesTanmay Vachaspati. Progress on cosmological magnetic fields. Reports on Progress in Physics, 84(7):074901, jun 2021.
dc.relation.referencesMiguel Zilh˜ao and Frank L¨offler. An introduction to the einstein toolkit. International Journal of Modern Physics A, 28(22n23):1340014, 2013.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcSpace sciences
dc.subject.lembCiencias del espacio
dc.subject.lembCampos magnéticos
dc.subject.lembMagnetic fields
dc.subject.proposalCosmología
dc.subject.proposalRelatividad Numérica
dc.subject.proposalCampos magnéticos cosmológicos
dc.subject.proposalEinstein Toolkit
dc.subject.proposalFLRWSolver
dc.subject.proposalCosmology
dc.subject.proposalNumerical Relativity
dc.subject.proposalCosmological magnetic fields
dc.title.translatedEcuación de dínamo cosmológica bajo teoría de perturbaciones cosmológicas a primer orden
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia y Tecnología


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito