Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorDobrosz-Gómez, Izabela
dc.contributor.advisorGómez García, Miguel Ángel
dc.contributor.authorGómez Rodríguez, Carlos Andrés
dc.date.accessioned2023-02-06T19:07:53Z
dc.date.available2023-02-06T19:07:53Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83327
dc.descriptiongraficas, tablas
dc.description.abstractLa industria de las curtiembres es una de las actividades antropogénicas que más agua consume y, por ende, una de las principales generadoras de aguas residuales. Entre los procesos involucrados en la obtención del cuero, la etapa de teñido contribuye con el ca. 6% de las aguas residuales producidas, aporta color, nitrógeno amoniacal, y en general aumenta la carga contaminante del efluente. El municipio de Belén (Nariño) posee una participación considerable del número de curtiembres del país (ca. 9% con 46 curtiembres activas). Esto define una serie de importantes desafíos ambientales (relacionados con la necesidad de tratar grandes volúmenes de aguas residuales contaminadas) y económicos (pues de esta industria depende el 95% de la población de Belén). En esta tesis de maestría en ingeniería – ingeniería química se evaluó la capacidad del proceso oxidativo Fenton en la degradación del colorante y materia orgánica contenidos en el agua residual generada en la etapa de teñido del cuero de una curtiembre representativa del municipio de Belén. Se realizó una caracterización de los parámetros fisicoquímicos del efluente en función de la normativa ambiental nacional vigente. En esta tesis, las condiciones óptimas de operación del proceso Fenton Batch, se definieron mediante: (i) un estudio preliminar que permitió acotar los intervalos de operación de los factores más significativos en el proceso (pH, [H2O2] y [Fe2+]); (ii) un diseño experimental del tipo Box-Behnken y análisis de estadístico de los resultados obtenidos; (iii) metodología de superficie de respuesta y herramientas numéricas para la optimización multiobjetivo. Las siguientes condiciones de operación: pH inicial = 3.15, [H2O2] = 5.38 mM, [Fe2+] = 0.981 mM y 10 minutos de tratamiento (definidos de un estudio cinético) permitieron maximizar la decoloración del efluente (> 97%) y minimizar los costos operacionales (0.0112 USD/m3). Así, se obtuvo un efluente que cumplió con la normatividad ambiental nacional vigente. Adicionalmente, sus características de biodegradabilidad y toxicidad mejoraron notablemente. (Texto tomado de la fuente)
dc.description.abstractTannery industry is one of the anthropogenic activities that most water consumes and, therefore, one of the main wastewater generators. Within the steps involved in leather’s processing, the dyeing stage contributes with ca. 6% of the wastewater produced, provides color, ammoniacal nitrogen and, in general, increases the contaminant load of the effluent. The municipality of Belén (Nariño) has a considerable participation in the number of tanneries in the country (approx. 9% with 46 active tanneries). This defines a series of important environmental challenges (related to the need to treat large volumes of contaminated wastewater) and economic trials (because 95% of Belén population depends on this industry). In this M. Sc. thesis in engineering - chemical engineering, the Fenton oxidative process was evaluated for the degradation of the colorant and organic matter contained in the residual water generated in the leather dyeing stage of a representative tannery from the municipality of Belén. The characterization of the physicochemical parameters of the effluent was carried out based on current national environmental regulations. The optimal operating conditions for the Fenton process were determined through: (i) a preliminary experimental study that allowed narrowing down the operating ranges of the most significant factors in the process (pH, [H2O2], and [Fe2+]); (ii) an experimental design of the Box-Behnken type and statistical analysis of the results obtained; (iii) response surface methodology and numerical tools for multi-objective optimization. The following operating conditions: initial pH = 3.15, [H2O2] = 5.38 mM, [Fe2+] = 0.981 mM and 10 minutes of treatment (defined from a kinetic study) allowed maximizing the discoloration of the effluent (> 97%) and minimizing the operational costs (0.0112 USD/m3). The treated effluent complied with current national environmental regulations. In addition, its biodegradability and toxicity characteristics were remarkably improved.
dc.format.extentxviii, 115 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industriales
dc.titleEvaluación de métodos de tratamiento para la degradación de colorante en el agua residual de la industria de las curtiembres
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaProcesos Avanzados de Oxidación
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesAbo-Farha, S. A., 2010. Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like. Journal of American Science, 6(10), 128-142. ISSN 1545-1003
dc.relation.referencesAhmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M., 2015. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Advances, 5(39), 30801-30818. DOI: 10.1039/C4RA16959J
dc.relation.referencesAguilar-Ascón, E., Marrufo-Saldaña, L., & Neyra-Ascón, W., 2019. Reduction of total chromium levels from raw tannery wastewater via electrocoagulation using response surface methodology. Journal of Ecological Engineering, 20(11). DOI: 10.12911/22998993/113191
dc.relation.references(APHA) American Public Health Association, American Water Works Association, Water Environment Federation, 2017. Standard Methods for the examination of water and wastewater.23 rd Edition. EE. UU.
dc.relation.referencesArslan-Alaton, I., & Gurses, F., 2004. Photo-Fenton-like and photo-fenton-like oxidation of Procaine Penicillin G formulation effluent. Journal of Photochemistry and Photobiology A: Chemistry, 165(1-3), 165-175. DOI: 10.1016/j.jphotochem.2004.03.016
dc.relation.referencesBalcioglu, I. A., Arslan, I., & Sacan, M. T., 2001. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes. Environmental technology, 22(7), 813-822. DOI: 10.1080/095933322086180323
dc.relation.referencesBacardit, A., Morera J., Ollé L., Bartolí E. & Borràs M., 2008. High chrome exhaustion in a nonfloat tanning process using a sulphonic aromatic acid. Chemosphere, 73, 820–824. DOI: 10.1016/j.chemosphere.2008.07.036
dc.relation.referencesBasturk, E., & Karatas, M., 2014. Advanced oxidation of reactive blue 181 solution: A comparison between fenton and sono-fenton process. Ultrasonics sonochemistry, 21(5), 1881-1885. DOI: 10.1016/j.ultsonch.2014.03.026
dc.relation.referencesBautista, P., Mohedano, A.F., Casas, J.A., Zazo, J.A., Rodriguez, J.J., 2008. An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology & Biotechnology, 83, 1323-1338. DOI: 10.1002/jctb.1988
dc.relation.referencesBezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. DOI: 10.1016/j.talanta.2008.05.019
dc.relation.referencesBharagava, R. N., Saxena, G., Mulla, S. I., & Patel, D. K., 2018. Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Archives of Environmental Contamination and Toxicology, 75(2), 259-272. DOI: 10.1007/s00244-017-0490-x
dc.relation.referencesBlanco, J., Torrades, F., De la Varga, M., & García-Montaño, J., 2012. Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394-399. DOI: 10.1016/j.desal.2011.11.055
dc.relation.referencesBlanco, J., Torrades, F., Morón, M., Brouta-Agnésa, M., & García-Montaño, J., 2014. Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes. Chemical Engineering Journal, 240, 469-475. DOI: 10.1016/j.cej.2013.10.101
dc.relation.referencesBonfante de Carvalho, C., Espina de Franco, M., Souza, F. S., & Féris, L. A., 2018. Degradation of Acid Black 210 by advanced oxidative processes: O3 and O3/UV. Ozone: Science & Engineering, 40(5), 372-376. DOI: 10.1080/01919512.2018.1435258
dc.relation.referencesBravo-Yumi, N., Villaseñor-Basulto, D. L., Pérez-Segura, T., Pacheco-Álvarez, M. A., Picos-Benitez, A., Rodriguez-Narvaez, O. M., & Peralta-Hernández, J. M., 2021. Comparison and statistical analysis for post-tanning synthetic wastewater degradation using different electrochemical processes. Chemical Engineering and Processing-Process Intensification, 159, 108244. DOI: 10.1016/j.cep.2020.108244
dc.relation.referencesBrillas, E., Sirés, I., & Oturan, M. A., 2009. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 109(12), 6570-6631. DOI: 10.1021/cr900136g
dc.relation.referencesBulgariu, L., Escudero, L. B., Bello, O. S., Iqbal, M., Nisar, J., Adegoke, K. A., & Anastopoulos, I., 2019. The utilization of leaf-based adsorbents for dyes removal: A review. Journal of Molecular Liquids, 276, 728-747. DOI: 10.1016/j.molliq.2018.12.001
dc.relation.referencesBuljan, J., & Kral, I., 2015. The framework for sustainable leather manufacture. United Nations Industrial Development Organization, 12, 145-147.
dc.relation.referencesCarpenter, J., Sharma, S., Sharma, A.K., Verma, S., 2013. Adsorption studies for the removal of acid red dye from waste streams. Journal of Industrial Pollution Control. 29, 223–226. ISSN 09702083
dc.relation.referencesCassano, A., Molinari, R., Romano, M., & Drioli, E., 2001. Treatment of aqueous effluents of the leather industry by membrane processes: a review. Journal of Membrane Science, 181(1), 111-126. DOI: 10.1016/S0376-7388(00)00399-9
dc.relation.referencesCastiblanco Ramírez, D. A., LLamosa Pérez, D., & Rincón Ortiz, R. J., 2021. Impacto Ambiental de las Curtiembres, una Problemática de Vieja Data Sobre el Río Bogotá. REVISTA NODO, 2(3). ISSN 1711-1571
dc.relation.referencesChandrakant, R. Holkar, Ananda J. Jadhav, Dipak V. Pinjari., Naresh M. Mahamuni, Aniruddha B. Pandit., 2016. A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management. 182, 351-366. DOI: 10.1016/j.jenvman.2016.07.090
dc.relation.referencesChowdhury, M., Mostafa, M.G., Biswas, T.K., Saha, A.K., 2013. Treatment of leather industrial effluents by filtration and coagulation processes. Journal of Water Resources and Industry. 3, 11–22. DOI: 10.1016/j.wri.2013.05.002
dc.relation.referencesChung, K.-T., 2016. Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261. DOI: 10.1080/10590501.2016.1236602
dc.relation.referencesCollivignarelli, M. C., Abbà, A., Miino, M. C., & Damiani, S., 2019. Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727-745. DOI: 10.1016/j.jenvman.2018.11.094
dc.relation.references(CORPONARIÑO) Corporación autónoma regional de Nariño 2011. Programa manejo integral del recurso hídrico en el departamento de Nariño. Plan de Ordenamiento Quebrada Mocondino Molinos. Disponible en https://corponarino.gov.co/expedientes/descontaminacion/porhmocondino.pdf (Consultado 3 agosto 2021)
dc.relation.referencesDandira, V., Mugwindiri, K., & Chikuku, T., 2012. A cleaner production exercise of a leather manufacturing company: a zimbabwean experience. International Journal of Scientific & Technology Research, 1(11), 1-5. ISSN 2277-8616
dc.relation.references(DANE) Departamento Administrativo Nacional de Estadística, 2021. Producto Interno Bruto Histórico. Segundo semestre 2021. PIB a precios constantes - II trimestre 2021. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnica (Consultado el 03 octubre 2021).
dc.relation.referencesde la Luz-Pedro, A., Martínez Prior, E.F., López-Araiza, M.H., Jaime-Ferrer, S., Estrada- Monje, A., Ba˜nuelos, J.A., 2019. Pollutant removal from wastewater at different stages of the tanning process by electrocoagulation. Journal of Chemistry. 1–9. DOI: 10.1155/2019/8162931
dc.relation.referencesDixit, S., Yadav, A., Dwivedi, P.D., Das, M., 2015. Toxic hazards of leather industry and technologies to combat threat: a review. Journal of Cleaner Production. 87, 39-49. DOI: 10.1016/j.jclepro.2014.10.017
dc.relation.referencesDo, S. H., Batchelor, B., Lee, H. K., & Kong, S. H., 2009. Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism. Chemosphere, 75(1), 8-12. DOI: 10.1016/j.chemosphere.2008.11.075
dc.relation.referencesDomènech, X., Jardim, W. F., & Litter, M. I., 2001. Procesos avanzados de oxidación para la eliminación de contaminantes. Eliminación de Contaminantes por Fotocatálisis Heterogénea, 2016, 3-26.
dc.relation.referencesDoumic, L. I., Soares, P. A., Ayude, M. A., Cassanello, M., Boaventura, R. A., & Vilar, V. J., 2015. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chemical Engineering Journal, 277, 86-96. DOI: 10.1016/j.cej.2015.04.074
dc.relation.referencesEl Colombiano, 2020. Misterioso tono amarillo coloreó el río Medellín. Disponible en https://www.elcolombiano.com/antioquia/rio-medellin-presento-extrano-color-amarillo-EF12351984/ (Consultado 19 diciembre 2021).
dc.relation.referencesEl Khorassani, H., Trebuchon, P., Bitar, H., & Thomas, O., 1999. A simple UV spectrophotometry procedure for the survey of industrial sewage system. Water Science and Technology, 39(10-11), 77-82. DOI: 10.1016/S0273-1223(99)00256-5
dc.relation.referencesEl Tiempo, 2014. Contaminación de todos los colores en el río Cali. Disponible en https://www.eltiempo.com/archivo/documento/CMS-14666175 (Consultado 9 octubre 2021).
dc.relation.referencesFernandes, N.C., Barroso, L., Gonçalves, G., Taveira, S., Soares, M., Rodrigues, G., Neves, R., 2018. Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests. Chemico-Biological Interactions. 291, 47–54. DOI: 10.1016/j.cbi.2018.06.003
dc.relation.referencesFerreira, S.L., Bruns R.E., Ferreira H.S., Matos, G.D., David, J.M., Brandao, G.C. da Silva, E.G., Portugal, L.A., dos Reis, P.S., Souza, A.S. dos Santos, W.N., 2007. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186. DOI: 10.1016/j.aca.2007.07.011
dc.relation.referencesGaniyu, S.O., van Hullebusch, E.D., Cretin, M., Esposito, G., Oturan, M.A., 2015. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Journal Separation and Purification Technology, 156, 891–914. DOI: 10.1016/j.seppur.2015.09.059
dc.relation.referencesGilPavas, E, 2020. Procesos Avanzados de Oxidación para la degradación de índigo y materia orgánica de aguas Residuales de una Industria textil. Departamento de Ingeniería Química, Universidad Nacional de Colombia – Sede Manizales.
dc.relation.referencesGilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á., 2011. The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters. Water Science and Technology, 63(3), 385-394. DOI: 10.2166/wst.2011.232
dc.relation.referencesGilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á., 2012. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the response surface methodology as the optimization tool. Water Science and Technology, 65(10), 1795-1800. DOI: 10.2166/wst.2012.078
dc.relation.referencesGilPavas, E. & Gómez-García, M.Á., 2009. Multifactorial optimization of the decolorisation parameters of wastewaters resulting from dyeing flowers. Water Science & Technology, 59(7), 1361-1369. DOI: 10.2166/wst.2009.114
dc.relation.referencesGogate, P. R., & Pandit, A. B., 2004. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3-4), 501-551. DOI: 10.1016/S1093-0191(03)00032-7
dc.relation.referencesGutiérrez Pulido, H., & Vara Salazar, R. D. L, 2004. Análisis y diseño de experimentos. 2da Edición. México: McGrawHill Interamericana. ISBN-10: 970-10-6526-3
dc.relation.referencesGutterres, M, Benvenuti J, Fontoura JT, Ortiz-Monsalve S, 2015. Characterization of raw wastewater from tanneries. Journal of the Society of Leather Technologists and Chemists, 99(6):280–287. ISSN 0144-0322
dc.relation.referencesHasegawa, M.C., Daniel, J.F. de S., Takashima, K., Batista, G.A., da Silva, S.M.C.P., 2014. COD removal and toxicity decrease from tannery wastewater by zinc oxide-assisted photocatalysis: a case study. Environmental Technology. 35, 1589–1595. DOI: 10.1080/09593330.2013.874499
dc.relation.referencesHansen, É., de Aquim, P. M., & Gutterres, M., 2021(a). Environmental assessment of water, chemicals and effluents in leather post-tanning process: A review. Environmental Impact Assessment Review, 89, 106597. DOI: 10.1016/j.eiar.2021.106597
dc.relation.referencesHansen, É., de Aquim, P. M., & Gutterres, M., 2021(b). Current technologies for post-tanning wastewater treatment: a review. Journal of Environmental Management, 294, 113003. DOI: 10.1016/j.jenvman.2021.113003
dc.relation.referencesHansen, E., Monteiro de Aquim, P., Hansen, A.W., Cardoso, J.K., Ziulkoski, A.L., Gutterres, M., 2020. Impact of post-tanning chemicals on the pollution load of tannery wastewater. Journal of Environmental Management, 269, 110787. DOI: 10.1016/j.jenvman.2020.110787
dc.relation.referencesHongjun, M., Shaolan, D., Lang, D., 2019. A study of photocatalytic degradation of dyeing and printing wastewater by ZnO@zeolitic imidazolate framework (ZIF)-8. Journal of the Society of Leather Technologists and Chemists. 103, 247–252. ISSN 01440322
dc.relation.referencesHongru, W., Yong, W., Yongjian, L., Xiaoxia, L., 2014. Concentration and reuse of tannery dyeing fatliquoring effluent by ultrafiltration. Journal of the Society of Leather Technologists and Chemists, 98, 108–112. ISSN 0144-0322
dc.relation.referencesHuang, G., Wang, W., Liu, G., 2015. Simultaneous chromate reduction and azo dye decolourization by Lactobacillus paracase CL1107 isolated from deep sea sediment. Journal of Environmental Management, 157, 297–302. DOI: 10.1016/j.jenvman.2015.04.031
dc.relation.referencesHuang, L. Z., Zhu, M., Liu, Z., Wang, Z., & Hansen, H. C. B. (2019). Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of Hazardous Materials, 364, 39-47. DOI: 10.1016/j.jhazmat.2018.10.026
dc.relation.referencesIbarra Taquez, H. N, 2018. Procesos electroquímicos para el tratamiento de aguas residuales provenientes de la industria de café soluble. Departamento de Ingeniería Química, Universidad Nacional de Colombia – Sede Manizales.
dc.relation.references(IDEAM) Instituto de hidrología, meteorología y estudios ambientales, 2002. Guía para el monitoreo de vertimientos, aguas superficiales y subterráneas. Disponible en http://oab.ambientebogota.gov.co/.
dc.relation.referencesITC, 2020. Centro de comercio internacional. Disponible en http://www.intracen.org/itc/sectors/ leather/ (Consultado 7 octubre 2021)
dc.relation.referencesITC, 2021. Centro de comercio internacional. Trade Map. Disponible en https://www.trademap.org/Index.aspx (Consultado 4 junio 2021).
dc.relation.referencesIUE 6, 2018. Pollution Values from Tannery Processes under Conditions of Good Practice. Disponible en https://iultcs.org/commissions/iue-environment-commission/ (Consultado 1 Octubre 2021)
dc.relation.referencesJaegler, A., 2016. A sustainable supply chain in the leather sector: dilemmas, challenges and learnings. In Supply Chain Forum: An International Journal (Vol. 17, No. 3, pp. 136-142). Taylor & Francis. DOI: 10.1080/16258312.2016.1211833
dc.relation.referencesJiang, B., Niu, Q., Li, C., Oturan, N., & Oturan, M. A. 2020. Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species. Applied Catalysis B: Environmental, 272, 119002. DOI: 10.1016/j.apcatb.2020.119002
dc.relation.referencesJogani, R., Bhervia, H., Kapoor, S., & Singh, A., 2017. Optimization of Different Variables Used in Fenton Reagent Process for Removal of Direct Red 80 Dye. International Journal of Advances in Agricultural and Environmental Engineering, 230. ISSN 2349-1523
dc.relation.referencesKanagaraj, J., Senthivelan T., Panda R.C., Kavitha S., 2014. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production, 89, 1-17. DOI: 10.1016/j.jclepro.2014.11.013
dc.relation.referencesKarthikeyan, S., Boopathy, R., Sekaran, G., 2015. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. Journal of Colloid and Interface Science., 448, 163–174. DOI: 10.1016/j.jcis.2015.01.066
dc.relation.referencesKarunanidhi, A., David, P.S., Fathima, N.N., 2020. Electrospun keratin-polysulfone blend membranes for treatment of tannery effluents. Water, Air, and Soil Pollution, 231, 300. DOI: 10.1007/s11270-020-04682-z
dc.relation.referencesKavitha, V., & Palanivelu, K., 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235-1243. DOI: 10.1016/j.chemosphere.2003.12.022
dc.relation.referencesKorpe, S., & Rao, P. V., 2021. Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater-A Review. Journal of Environmental Chemical Engineering, 105234. DOI: 10.1016/j.jece.2021.105234
dc.relation.referencesKozik, V., Barbusinski, K., Thomas, M., Sroda, A., Jampilek, J., Sochanik, A., Smolinski, A., Bak, A., 2019. Taguchi method and response surface methodology in the treatment of highly contaminated tannery wastewater using comercial potassium ferrate. Materials 12, 3784. DOI: 10.3390/ma12223784
dc.relation.referencesLofrano, G., Meric, S., Inglese, M., Nikolau, A., Belgiorno, V., 2010. Fenton oxidation treatment of tannery wastewater and tanning agents: synthetic tannin and nonylphenol ethoxylate based degreasing agent. Desalination Water Treat, 23, 173–180. DOI: 10.5004/dwt.2010.1991
dc.relation.referencesLudvik, J., & Buljan, J., 2000. Chrome balance in leather processing. Vienna: United Nations Industrial Development Organization.
dc.relation.referencesMandal, T., Dasgupta, D., Mandal, S., & Datta, S., 2010. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process. Journal of hazardous materials, 180(1-3), 204-211. DOI: 10.1016/j.jhazmat.2010.04.014
dc.relation.referencesManjushree C., Mostafa M.G., Biswas T.K. & Saha A. K. 2013. Treatment of leather industrial effluents by filtration and coagulation processes, Water Resources and Industry, 3, 11-22. DOI: 10.1016/j.wri.2013.05.002
dc.relation.references(MADS) Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0631 (17 de marzo de 2015) Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. El Ministerio. Bogotá D.C. Colombia.
dc.relation.referencesMedrano-Rodríguez, F., Picos-Benítez, A., Brillas, E., Bandala, E. R., Pérez, T., & Peralta-Hernández, J. M., 2020. Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. Journal of Electroanalytical Chemistry, 873, 114360. DOI: 10.1016/j.jelechem.2020.114360
dc.relation.referencesMella, B., Benvenuti, J., Oliveira, R.F., Gutterres, M., 2019. Preparation and characterization of activated carbon produced from tannery solid waste applied for tannery wastewater treatment. Environmental Science and Pollution Research, 26, 6811–6817. DOI: 10.1007/s11356-019-04161-x
dc.relation.referencesMiller, J., & Miller, J. C. (2018). Statistics and chemometrics for analytical chemistry. 6th Edition. Madrid: Pearson education. ISBN 9780131291928
dc.relation.referencesMontgomery, D. C., 2017. Design and analysis of experiments. 8th Edition. EE. UU: John wiley & sons. ISBN 978119113478
dc.relation.referencesMontgomery, D.C. & Runger, G., 2014. Probabilidad y estadística aplicadas a la ingeniería. ISBN 9681859154
dc.relation.referencesMoreira, M., Hansen, E., Giacomolli, G., Morisso, F., & Aquim, P., 2019. Evaluation of chemical products in leather post-tanning process and their influence in presence of neutral salts in raw tannery effluent. Journal of the American Leather Chemists Association, 114(4). ISSN 00029726
dc.relation.referencesNashy, E., & Haroun, A., 2021. Integration of Fenton Oxidation with Nano-Graphene Oxide to Eliminate the Hazardous Effect of Chromated/Dyed Tannery Effluents. Egyptian Journal of Chemistry, 64(2), 649-660. DOI: 10.21608/EJCHEM.2020.46016.2942
dc.relation.referencesNidheesh, P. V., Gandhimathi, R., 2012. Trends in Electro-Fenton Process for Water and Wastewater Treatment: An Overview. Desalination, 299, 1–15. DOI: 10.1016/j.desal.2012.05.011
dc.relation.referencesNiu, Y., Ding, Z.W., Cheng, B.Z., Chen, Y.F., 2012. The application of epichlorohydrindimethylamine polymer flocculant for tannery wastewater treatment. Advanced Materials Research, 610–613, 480–484. DOI: 10.4028/www.scientific.net/AMR.610-613.480
dc.relation.referencesNodal, E., 2001. Procesos Biológicos Aplicados Al Tratamiento De Agua Residual. Ingeniería Hidráulica y Ambiental, 22, 52–56.
dc.relation.referencesNorma Técnica Colombiana NTC–ISO 14001, 2015. SISTEMAS DE GESTIÓN AMBIENTAL. REQUISITOS CON ORIENTACIÓN PARA SU USO. Disponible en https://informacion.unad.edu.co/images/control_interno/NTC_ISO_14001_2015.pdf (Consultado 3 marzo de 2022).
dc.relation.referencesOmoloso, O., Mortimer, K., Wise, W. R., & Jraisat, L., 2020. Sustainability Research in the Leather Industry: a critical review of progress and opportunities for future research. Journal of Cleaner Production, 125441. DOI: 10.1016/j.jclepro.2020.125441
dc.relation.references(OMS), 2011. Guía para la calidad del agua de consumo humano. Cuarta edición que incorpora la primera Adenda. Organización Mundial de la Salud (OMS), Ginebra. Disponible en https://apps.who.int/iris/bitstream/handle/10665/272403/9789243549958-spa.pdf?ua=1. Consultado el 21 de marzo de 2022.
dc.relation.references(OMS) ONU-Hábitat y OMS, 2021. Progresos en el tratamiento de las aguas residuales. Estado mundial y necesidades de aceleración del indicador 6.3.1. de los ODS. Programa de las Naciones Unidas para los Asentamientos Humanos (ONU-Hábitat) y Organización Mundial de la Salud (OMS), Ginebra. Disponible en http://apps.who.int/iris. Consultado el 20 de junio de 2021.
dc.relation.references(FAO) Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2015. AQUASTAT - Sistema mundial de información de la FAO sobre el agua en la agricultura. Disponible en http://www.fao.org/aquastat/es/overview/ methodology/water-use. Consultado el 27 de julio de 2021.
dc.relation.referencesOrtiz-Monsalve, S., Dornelles, J., Poll, E., Ramirez-Castrill´on, M., Valente, P., Gutterres, M., 2017. Biodecolourisation and biodegradation of leather dyes by a native isolate of Trametes villosa. Process Safety and Environmental Protection, 109, 437–451. DOI: 10.1016/j.psep.2017.04.028
dc.relation.referencesOrtiz-Monsalve, S., Valente, P., Poll, E., Jaramillo-García, V., Henriques, J. A. P., & Gutterres, M., 2019. Biodecolourization and biodetoxification of dye-containing wastewaters from leather dyeing by the native fungal strain Trametes villosa SCS-10. Biochemical Engineering Journal, 141, 19-28. DOI: 10.1016/j.bej.2018.10.002
dc.relation.referencesOturan. M.A., Aaron. J.J., 2014. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Journal of Environmental Science and Technology, 44, 2577–2641. DOI: 10.1080/10643389.2013.829765
dc.relation.referencesOturan, M. A., Pimentel, M., Oturan, N., & Sirés, I., 2008. Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochimica Acta, 54(2), 173-182. DOI: 10.1016/j.electacta.2008.08.012
dc.relation.referencesOturan. N., Trajkovska. S., Oturan. M.A., Couderchet. M., Aaron. J.J., 2008. Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process "electro-Fenton". Chemosphere, 73, 1550–1556. DOI: 10.1016/j.chemosphere.2008.07.082
dc.relation.referencesOukili, K., Loukili, M., 2019. Electrochemical oxidation treatment of leather dyeing wastewater using response surface methodology. Desalination Water Treat, 167, 302–312. DOI: 10.5004/dwt.2019.24561
dc.relation.referencesPal, M., Malhotra, M., Mandal, M.K., Paine, T.K., Pal, P., 2020. Recycling of wastewater from tannery industry through membrane-integrated hybrid treatment using a novel graphene oxide nanocomposite. Journal of Water Process Engineering, 36, 101324. DOI: 10.1016/j.jwpe.2020.101324
dc.relation.referencesPaschoal, F.M.M., Anderson, M.A., Zanoni, M.V.B., 2009. Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. Journal of Hazardous Materials. 166, 531–537. DOI: 10.1016/j. jhazmat.2008.11.058
dc.relation.referencesPatel, S. G., Yadav, N. R., & Patel, S. K., 2013. Evaluation of degradation characteristics of reactive dyes by UV/Fenton, UV/Fenton/activated charcoal, and UV/Fenton/TiO2 processes: A comparative study. Separation Science and Technology, 48(12), 1788-1800. DOI: 10.1080/01496395.2012.756035
dc.relation.references(PDEA) Plan de ordenamiento de extensión agropecuaria del departamento de Nariño, 2019. Docuemento técnico de formulación. Disponible en https://www.minagricultura.gov.co/ministerio/direcciones/Documents/PDEA%27s%20Aprobados/PDEA%20Nari%C3%B1o.pdf (Consultado 14 agosto 2021).
dc.relation.referencesPiccin, J. S., Gomes, C. S., Mella, B., & Gutterres, M., 2016. Color removal from real leather dyeing effluent using tannery waste as an adsorbent. Journal of Environmental Chemical Engineering, 4(1), 1061-1067. DOI: 10.1016/j.jece.2016.01.010
dc.relation.referencesPignatello, J.J., Oliveros, E., MacKay, A., 2006. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36, 1-84. DOI: 10.1080/10643380500326564
dc.relation.referencesPinheiro, H. M., Touraud, E., & Thomas, O., 2004. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and pigments, 61(2), 121-139. DOI: 10.1016/j.dyepig.2003.10.009
dc.relation.referencesPreethi, V., Parama Kalyani, K.S., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N., Vedaraman, N., 2009. Ozonation of tannery effluent for removal of cod and color. Journal of Hazardous Materials, 166, 150–154. DOI: 10.1016/j.jhazmat.2008.11.035
dc.relation.referencesQadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., & Olaniyan, O., 2020, February. Global and regional potential of wastewater as a water, nutrient and energy source. In Natural Resources Forum (Vol. 44, No. 1, pp. 40-51). Oxford, UK: Blackwell Publishing Ltd. DOI: 10.1111/1477-8947.12187
dc.relation.referencesRitterbusch, D. F., Hansen, E., Morisso, F. D. P., & Aquim, P. M., 2019. Tanning Process Study Using Chestnut and Acacia Tannin Associated with Acrylic Resin. Journal of the American Leather Chemists Association, 114(9). ISSN 00029726
dc.relation.referencesdeveloping countries: a case study in a Chilean tannery. Waste Management & Research, 22(3), 131-141. DOI: 10.1177/0734242X04044322
dc.relation.referencesRivera, C.A., Dobrosz-Gómez, I., Gómez-García, M. Á., 2014. Adsorptive Removal of Cr(VI) from Aqueous Solution on Hydrous Cerium–Zirconium Oxide. Part I: Process Optimization by Response Surface Methodology. Adsorption Science & Technology. 32 (2-3). 209-226. DOI: 10.1260/0263-6174.32.2-3.209.
dc.relation.referencesRosales, E., Iglesias, O., Pazos, M., Sanromán, M.A., 2012. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. Journal of Hazardous Materials, 213–214, 369–377. DOI: 10.1016/j.jhazmat.2012.02.005
dc.relation.referencesSabumon, P., 2016. Perspectives on biological treatment of tannery effluent. Advances in Recycling and Waste Management, 01. DOI: 10.4172/2475-7675.1000104
dc.relation.referencesSathish, M., Madhan, B., Sreeram, K. J., Rao, J. R., & Nair, B. U., 2016. Alternative carrier medium for sustainable leather manufacturing–a review and perspective. Journal of Cleaner Production, 112, 49-58. DOI: 10.1016/j.jclepro.2015.06.118
dc.relation.referencesSchrank, S. G., José, H. J., Moreira, R. F. P. M., & Schröder, H. F., 2005. Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere, 60(5), 644-655. DOI: 10.1016/j.chemosphere.2005.01.033
dc.relation.references(Semana) Revista semana, 2015. Industria del cuero. Disponible en https://www.semana.com/especiales/articulo/industria-del-cuero/6760-3/ (Consultado 24 Julio 2021)
dc.relation.referencesShestakova, M., Vinatoru, M., Mason, T. J., Iakovleva, E., & Sillanpää, M., 2016. Sonoelectrochemical degradation of formic acid using Ti/Ta2O5-SnO2 electrodes. Journal of Molecular Liquids, 223, 388-394. DOI: 10.1016/j.molliq.2016.08.054
dc.relation.referencesSICEX, 2021. Promoting Global Trade. Disponible en https://sicex.com/blog/industria-del-cuero-gran-potencial-y-escalabilidad-en-el mercado/ (Consultado 23 agosto 2021)
dc.relation.referencesSingha, N.R., Chattopadhyay, P.K., Dutta, A., Mahapatra, M., Deb, M., 2019. Review on additives-based structure-property alterations in dyeing of collagenic matrices. Journal of Molecular Liquids, 293, 111470. DOI: 10.1016/j.molliq.2019.111470
dc.relation.referencesSivagami, K., Sakthivel, K. P., & Nambi, I. M., 2018. Advanced oxidation processes for the treatment of tannery wastewater. Journal of environmental chemical engineering, 6(3), 3656-3663. DOI: 10.1016/j.jece.2017.06.004
dc.relation.referencesSohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S., 2017. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523-S3531. DOI: 10.1016/j.arabjc.2014.02.019
dc.relation.referencesSreeram, K. J., & Ramasami, T., 2003. Sustaining tanning process through conservation, recovery and better utilization of chromium. Resources, Conservation and Recycling, 38(3), 185-212. DOI: 10.1016/S0921-3449(02)00151-9
dc.relation.referencesSuman, H., Sangal, V. K., & Vashishtha, M., 2021. Treatment of tannery industry effluent by electrochemical methods: A review. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2021.03.300
dc.relation.referencesSwaminathan, M.; Muruganandham, M.; Sillanpaa, M., 2014. Advanced Oxidation Processes for Wastewater Treatment. International Journal of Photoenergy., 2014. DOI: 10.1155/2013/683682
dc.relation.referencesTamersit, S., Bouhidel, K.-E., Zidani, Z., 2018. Investigation of electrodialysis anti-fouling configuration for desalting and treating tannery unhairing wastewater: feasibility of by-products recovery and water recycling. Journal of Environmental Management, 207, 334–340. DOI: 10.1016/j.jenvman.2017.11.058
dc.relation.referencesTasca, A.L., Puccini, M., 2019. Leather tanning: life cycle assessment of retanning, fatliquoring and dyeing. Journal of Cleaner Production, 226, 720–729. DOI: 10.1016/j.jclepro.2019.03.335
dc.relation.referencesTeng, B., Wu, J., Wang, Y., & Chen, W., 2017. Structural characteristics and collagen reaction ability of polyphenols in larch tanning wastewater–an important hint for vegetable tanning wastewater recycling. Polish Journal of Environmental Studies, 26(5), 2249-2257. DOI: 10.15244/pjoes/69940
dc.relation.referencesTheraulaz, F., Djellal, L., & Thomas, O., 1996. Simple LAS determination in sewage using advanced UV spectrophotometry. Tenside Surfactants Detergents, 33(6), 447-451. DOI: 10.1515/tsd-1996-330607
dc.relation.referencesTorres, R. A., Sarria, V., Torres, W., Peringer, P., & Pulgarin, C., 2003. Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemical–biological coupling. Water Research, 37(13), 3118-3124. DOI: 10.1016/S0043-1354(03)00179-9
dc.relation.references(UN) Naciones Unidas, 2021. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2021: El valor del agua. UNESCO, París. Disponible en https://unesdoc.unesco.org/ark:/48223/pf0000378890. Consultado el 24 de septiembre de 2021.
dc.relation.references(UNE) Una Norma Española, 2012. Calidad del agua. Examen y determinación del color (ISO 7887:2011). Disponible en https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0049776. Consultado el 6 de febrero de 2021.
dc.relation.referencesVilardi, G., Di Palma, L., & Verdone, N., 2018. On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. Journal of Water Process Engineering, 22, 109-122. DOI: 10.1016/j.jwpe.2018.01.011
dc.relation.referencesVogel, F., Harf, J., Hug, A., & Von Rohr, P. R., 2000. The mean oxidation number of carbon (MOC) a useful concept for describing oxidation processes. Water Research, 34(10), 2689-2702. DOI: 10.1016/S0043-1354(00)00029-4
dc.relation.referencesWu, J., Gao, Y., Zhang, J., Wang, Y., & Chen, W., 2018. Chrome complexes in rewetting and neutralizing effluents and hints for recycling post-tanning wet-process effluent. Polish Journal of Environmental Studies, 27(3), 1315-1321. DOI: 10.15244/pjoes/77032
dc.relation.referencesWWAP (Programa Mundial de Evaluación de los Recursos Hídricos de las Naciones Unidas) 2017. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado. París, UNESCO. Disponible en http://www.unesco.org/new/es/natural-sciences/environment/water/wwap/wwdr/2017-wastewater-the-untapped-resource/. Consultado el 16 de octubre de 2021.
dc.relation.referencesXu, P., Huang, S., Liu, M., Lv, Y., Wang, Z., Long, J., Zhang, W., Fan, H., 2019. Z-schemed WO3/rGO/SnIn4S8 sandwich nanohybrids for efficient visible light photocatalytic water purification. Catalysts, 9, 187. DOI: 10.3390/catal9020187
dc.relation.referencesYukseler, H., Uzal, N., Sahinkaya, E., Kitis, M., Dilek, F.B., Yetis, U., 2017. Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill. Journal of Environmental Management. 203, 1118-1125. DOI: 10.1016/j.jenvman.2017.03.041
dc.relation.referencesZaharia, C., Dartu, L.E., 2010. Preliminary study of decolorization of some textile effluent by homogenous oxidative processes. Bulletin of the Polytechnic Institute of Iasi, Chemistry and Chemical Engineering. 4, 63–71.
dc.relation.referencesZazo, J. A., Pliego, G., Blasco, S., Casas, J. A., & Rodriguez, J. J., 2011. Intensification of the Fenton process by increasing the temperature. Industrial & Engineering Chemistry Research, 50(2), 866-870. DOI: 10.1021/ie101963k
dc.relation.referencesZhao, C., Chen, W., 2019. A review for tannery wastewater treatment: some thoughts under stricter discharge requirements. Environmental Science and Pollution Research, 26, 26102–26111. DOI: 10.1007/s11356-019-05699-6
dc.relation.referencesZhou, H., Tan, Z., & Li, X., 2012. Assessment of wastewater pollution in pig leather industry in China. Water and Environment Journal, 26(4), 521-529. DOI: 10.1111/j.1747-6593.2012.00312.x
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalFenton
dc.subject.proposalDegradación de colorante
dc.subject.proposalProceso avanzado de oxidación
dc.subject.proposalAgua residual curtiembres
dc.subject.proposalEtapa de teñido
dc.subject.proposalDye degradation
dc.subject.proposalAdvanced oxidation processes
dc.subject.proposalTannery wastewater
dc.subject.proposalDyeing stage
dc.subject.unescoContaminación industrial
dc.subject.unescoPollution industrielle
dc.title.translatedEvaluation of treatment methods for dye degradation in wastewater from tannery industry
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaQuímica Y Procesos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito