Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLamprea Rodríguez, Marisol
dc.contributor.authorAbril Ronderos, Juan Pablo
dc.date.accessioned2023-02-06T20:56:32Z
dc.date.available2023-02-06T20:56:32Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83337
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractLa investigación actual se realizó en un momento histórico de pandemia a causa del SARS-CoV-2, durante este contexto se generaron problemas de salud pública a nivel mundial siendo los desórdenes mentales asociados a las alteraciones del estado de ánimo uno de los más comunes y con mayor necesidad de afrontar. Estudios recientes (Veloso y Ty, 2021; Xiu et al., 2018) han mostrado que el entrenamiento de la memoria de trabajo con contenido emocional mejora la regulación emocional y la ansiedad, haciendo de esta relación interesante de estudiar, principalmente los efectos sobre la emoción y la memoria de trabajo. El presente estudio tuvo como objetivo evaluar los efectos en el desempeño y en la actividad eléctrica cerebral del contenido emocional de imágenes usadas en una tarea de memoria de trabajo. 32 estudiantes universitarios completaron un 2-back task dividido en bloques de valencia positiva, neutra y negativa diseñado para hacer análisis de potenciales evocados, específicamente el P3. Los resultados mostraron que el desempeño entre las diferentes valencias no fue diferente, sin embargo, se encontraron diferencias en el P3, cuando los estímulos eran congruentes, la amplitud del P3 en la región parietal generado por las imágenes de valencia negativa fue más alta. Estos hallazgos sugieren un efecto en el cual, para mantener un nivel de desempeño óptimo hay un mayor uso de recursos neuronales cuando las imágenes tienen valencia negativa en comparación a las demás. (Texto tomado de la fuente).
dc.description.abstractThe current research was conducted in a historical moment of pandemic because of SARS-CoV-2, during this context public health problems were generated worldwide being mental disorders associated with mood disturbances one of the most common and with greater need to face. Recent studies (Veloso and Ty, 2021; Xiu et al., 2018) have shown that working memory training with emotional content improves emotional regulation and anxiety, making this relationship interesting to study, the effects on emotion and working memory. The present study aimed to evaluate the effects on performance and brain electrical activity of the emotional content of images used in a working memory task. Thirtytwo undergraduate students completed a 2-back task divided into positive, neutral, and negative valence blocks designed to perform evoked potential analysis, specifically the P3. The results showed that the performance between the different valences was not different, however, differences were found in the P3, when the stimuli were congruent, the amplitude of the P3 in the parietal region generated by the negative valence images was higher. These findings suggest an effect in which, to maintain an optimal performance level, there is a greater use of resources when the images have negative valence compared to the others
dc.format.extentvii, 66 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc150 - Psicología::152 - Percepción sensorial, movimiento, emociones, impulsos fisiológicos
dc.titleMemoria de trabajo emocional: evaluación de la actividad cerebral y el desempeño de una tarea estándar de n-back task en estudiantes universitarios
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Humanas - Maestría en Psicología
dc.description.notesIncluye anexos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Psicología
dc.description.researchareaEfectos del estrés sobre el aprendizaje con modelos experimentales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Humanas
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesAdolphs, R. (2018). Emotions are functional states that cause feelings and behavior. En A. S. Fox, R. C. Lapate, A. J. Shackman & R. J. Davidson (Eds.), The nature of emotion: fundamental questions. Oxford University Press.
dc.relation.referencesArias, S., & Martínez-Salazar, I. (2022). The COVID-19 HEalth caRe wOrkErs Study (HEROES) INFORME REGIONAL DE LAS AMÉRICAS.
dc.relation.referencesAtkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. En Psychology of learning and motivation (pp. 89-195).
dc.relation.referencesBaddeley, A. (2010). Working memory. Current biology, 20(4), 136-140., doi: 10.1146/annurev.psych.58.110405.085709
dc.relation.referencesBaddeley, A. (2013). Working memory and emotion: Ruminations on a theory of depression. Review of General Psychology, 17(1), 20-27., https/doi:10.1146/annurev.psych.58.110405.085709
dc.relation.referencesBaddeley, A., & Hitch, G. (1974). Working memory. En Psychology of learning and motivation 47-89.
dc.relation.referencesBanks, W. P. (1970). Signal detection theory and human memory. Psychological bulletin, 74(2), 81.
dc.relation.referencesBarrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual review of psychology, 58, 373. https://doi: 10.1146/annurev.psych.58.110405.085709
dc.relation.referencesBaumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of general psychology, 5(4), 323-370. https://doi.org/10.1037/1089-2680.5.4.323
dc.relation.referencesBeck, A. T., Steer, R. A., & Brown, G. (1996). Beck depression inventory–II. Psychological assessment.
dc.relation.referencesBeck, A. T., Steer, R. A., Brown, G. K., et al. (1987). Beck depression inventory. Harcourt Brace Jovanovich New York.
dc.relation.referencesBorod, J. C., Andelman, F., Obler, L. K., Tweedy, J. R., & Wilkowitz, J. (1992). Right hemisphere specialization for the identification of emotional words and sentences: Evidence from stroke patients. Neuropsychologia, 30(9), 827-844. https://doi.org/10.1016/0028-3932(92)90086-2.
dc.relation.referencesBorod, J. C., Cicero, B. A., Obler, L. K., Welkowitz, J., Erhan, H. M., Santschi, C., Grunwald, I. S., Agosti, R. M., & Whalen, J. R. (1998). Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology, 12(3), 446. https://doi.org/10.1037/0894-4105.12.3.446.
dc.relation.referencesBradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1), 49-59. https://doi.org/10.1016/0005-7916(94)90063-9.
dc.relation.referencesBradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings (Vol. 30, No. 1, pp 25-36). Technical report C-1, the center for research in psychophysiology, University of Florida
dc.relation.referencesClavijo, M., & Cantor, L. (2020). Adaptación y validación de la Escala de Afectividad Positiva y Negativa (PANAS) al contexto colombiano, en una muestra de madres solteras en la ciudad de (Tesis de maestría). Fundación Universitaria Los Libertadores.
dc.relation.referencesCohen, M. X. (2014). Analyzing neural time series data: theory and practice. MIT press, 2014.
dc.relation.referencesCowan, N. (1999). An embedded-processes model of working memory.
dc.relation.referencesCowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in brain research, 169, 323-338. https://doi.org/10.1016/S0079-6123(07)00020-9
dc.relation.referencesDavidson, R. J. (1996). Cerebral Asymmetry, Emotion, and Affective Style. Brain asymmetry, 361.
dc.relation.referencesDelorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
dc.relation.referencesDíaz-García, A., Gonzalez-Robles, A., Mor, S., Mira, A., Quero, S., GarcíaPalacios, A., Baños, R. M., & Botella, C. (2020). Positive and Negative Affect Schedule (PANAS): psychometric properties of the online Spanish version in a clinical sample with emotional disorders. BMC psychiatry, 20(1), 56.https://doi.org/10.1186/s12888-020-2472-1
dc.relation.referencesDolcos, F., & Cabeza, R. (2002). Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 252-263. https://doi.org/10.3758/CABN.2.3.252.
dc.relation.referencesDonchin, E. (1981). Surprise! … surprise?. Psychophysiology, 18(5), 493-513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
dc.relation.referencesDufey, M., & Fernandez, A. M. (2012). Validez y confiabilidad del Positive Affect and Negative Affect Schedule (PANAS) en estudiantes universitarios chilenos. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 2(34), 157-173.
dc.relation.referencesEysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & emotion, 6(6), 409-434. https://doi.org/10.1080/02699939208409696
dc.relation.referencesEysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7 (2), 336. https://doi.org/10.1037/1528-3542.7.2.336
dc.relation.referencesFairfield, B., Mammarella, N., Di Domenico, A., & Palumbo, R. (2015). Running with emotion: When affective content hampers working memory performance. International Journal of Psychology, 50(2), 161-164. https://doi.org/10.1002/ijop.12101
dc.relation.referencesFehr, B., & Russell, J. A. (1984). Concept of emotion viewed from a prototype perspective. Journal of experimental psychology: General, 113(3), 464. https://doi.org/10.1037/0096-3445.113.3.464
dc.relation.referencesFeng, C., Wang, L., Liu, C., Zhu, X., Dai, R., Mai, X., & Luo, Y.-J. (2012). The time course of the influence of valence and arousal on the implicit processing of affective pictures. PloS one, 7(1), e29668. https://doi.org/10.1371/journal.pone.0029668
dc.relation.referencesFeng, J., Pratt, J., & Spence, I. (2012). Attention and visuospatial working memory share the same processing resources. Frontiers in psychology, 3, 103. https://doi.org/10.3389/fpsyg.2012.00103
dc.relation.referencesFigueira, J. S., Oliveira, L., Pereira, M. G., Pacheco, L. B., Lobo, I., Motta-Ribeiro, G. C., & David, I. A. (2017). An unpleasant emotional state reduces working memory capacity: electrophysiological evidence. Social Cognitive and Affective Neuroscience, 12(6), 984-992. https://doi.org/10.1093/scan/nsx030
dc.relation.referencesFriedman, H. R., & Goldman-Rakic, P. S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Journal of Neuroscience, 14(5), 2775-2788. https://doi.org/10.1523/JNEUROSCI.14-05-02775.1994
dc.relation.referencesGantiva, C., Barrera-Valencia, M., Cadavid-Ruiz, N., Calderón-Delgado, L., Gelves- Ospina, M., Herrera, E., Mejı́a-Orduz, M., Montoya-Arenas, D., & Suárez-Pico, P. (2019). Inducción de estados afectivos a través de imágenes. Segunda validación Colombiana del Sistema internacional de imágenes Afectivas (IAPS). Revista Latinoamericana de Psicología, 51(2), 176-195. https://doi.org/10.14349/rlp.2019.v51.n2.5
dc.relation.referencesGarrison, K. E., & Schmeichel, B. J. (2019). Effects of emotional content on working memory capacity. Cognition and Emotion, 33(2), 370-377. https://doi.org/10.1080/02699931.2018.1438989
dc.relation.referencesGoss-Sampson, M. (2019). Statistical analysis in JASP: A guide for students.
dc.relation.referencesGray, J. R. (2001). Emotional modulation of cognitive control: Approach–withdrawal states double-dissociate spatial from verbal two-back task performance. Journal of Experimental Psychology: General, 130(3), 436. https://doi.org/10.1037/0096-3445.130.3.436
dc.relation.referencesGrissmann, S., Faller, J., Scharinger, C., Spüler, M., & Gerjets, P. (2017). Electroencephalography based analysis of working memory load and affective valence in an n-back task with emotional stimuli. Frontiers in human neuroscience, 11, 616. https://doi.org/10.1016/j.bandc.2015.04.004
dc.relation.referencesGroom, M. J., & Cragg, L. (2015). Differential modulation of the N2 and P3 event related potentials by response conflict and inhibition. Brain and cognition, 97, 1-9. https://doi.org/10.1016/j.bandc.2015.04.004
dc.relation.referencesGu, S., Wang, F., Patel, N. P., Bourgeois, J. A., & Huang, J. H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in psychology, 10, 781. https://doi.org/10.3389/fpsyg.2019.00781
dc.relation.referencesHolmes, A., Vuilleumier, P., & Eimer, M. (2003). The processing of emotional facial expression is gated by spatial attention: evidence from event-related brain potentials. Cognitive Brain Research, 16, 174-184. https://doi.org/10.1016/S0926-6410(02)00268-9
dc.relation.referencesHuster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M., & Herrmann, C. S. (2013). Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. International journal of psychophysiology, 87 (3), 217-233. https://doi.org/10.1016/j.ijpsycho.2012.08.001
dc.relation.referencesHuster, R. J., Messel, M. S., Thunberg, C., & Raud, L. (2020). The P300 as marker of inhibitory control–fact or fiction? Cortex, 132, 334-348. https://doi.org/10.1016/j.cortex.2020.05.021
dc.relation.referencesInsel, T. R., & Cuthbert, B. N. (2015). Brain disorders? precisely. Science, 348(6234), 499-500. https://doi.org/10.1126/science.aab2358
dc.relation.referencesJames, W. (1884). II.—WHAT IS AN EMOTION ? Mind, os-IX(34), 188-205. https://doi.org/10.1093/mind/os-IX.34.188
dc.relation.referencesKensinger, E. A., & Corkin, S. (2003). Effect of negative emotional content on working memory and long-term memory. Emotion, 3(4), 378. https://doi.org/10.1037/1528-3542.3.4.378
dc.relation.referencesKessel, D., Garcı́a-Rubio, M. J., González, E. K., Tapia, M., López-Martı́n, S., Román, F. J., Capilla, A., Martı́nez, K., Colom, R., & Carretié, L. (2016). Working memory of emotional stimuli: Electrophysiological characterization. Biological Psychology, 119, 190-199. https://doi.org/10.1016/j.biopsycho.2016.07.009
dc.relation.referencesKok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity.Psychophysiology, 38(3), 557-577. https://doi.org/10.1017/S0048577201990559
dc.relation.referencesKopf, J., Dresler, T., Reicherts, P., Herrmann, M. J., & Reif, A. (2013). The effect of emotional content on brain activation and the late positive potential in a word n-back task. PloS one, 8(9), e75598. https://doi.org/10.1371/journal.pone.0075598
dc.relation.referencesKothe, C. (2014). Lab streaming layer (LSL).
dc.relation.referencesLamichhane, B., Westbrook, A., Cole, M. W., & Braver, T. S. (2020). Exploring brain- behavior relationships in the N-back task. NeuroImage, 212, 116683. https://doi.org/10.1016/j.neuroimage.2020.116683
dc.relation.referencesLang, P. J., Bradley, M. M., Cuthbert, B. N., et al. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 1, 39-58.
dc.relation.referencesLindström, B. R., & Bohlin, G. (2011). Emotion processing facilitates working memory performance. Cognition & Emotion, 25(7), 1196-1204. https://doi.org/10.1080/02699931.2010.527703
dc.relation.referencesLopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213
dc.relation.referencesLuck, S. J. (2014). An introduction to the event-related potential technique. MIT press.
dc.relation.referencesMagyar-Moe, J. L. (2009). Chapter 3-positive psychological tests and measures. Therapist's guide to positive psychological interventions, 43-72.
dc.relation.referencesMammarella, N., Borella, E., Carretti, B., Leonardi, G., & Fairfield, B. (2013). Examining an emotion enhancement effect in working memory: Evidence from age-related differences. Neuropsychological rehabilitation, 23(3), 416-428. https://doi.org/10.1080/09602011.2013.775065
dc.relation.referencesMcNicol, D. (2005). A primer of signal detection theory. Psychology Press.
dc.relation.referencesMiendlarzewska, E. A., Van Elswijk, G., Cannistraci, C. V., & van Ee, R. (2013). Working memory load attenuates emotional enhancement in recognition memory. Frontiers in psychology, 4, 112. https://doi.org/10.3389/fpsyg.2013.00112
dc.relation.referencesMiller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81. https://doi.org/10.1037/h0043158
dc.relation.referencesMishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain research, 143(2), 313-323.
dc.relation.referencesMoral de la Rubia, J. (2011). La escala de afecto positivo y negativo (PANAS) en parejas casadas mexicanas. CIENCIA ergo-sum, 18(2), 117-125.
dc.relation.referencesMorris, J. S., Öhman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393(6684), 467-470. https://doi.org/10.1038/30976
dc.relation.referencesMurray, N., & Janelle, C. M. (2007). Event-related potential evidence for the processing efficiency theory. Journal of Sports Sciences, 25(2), 161-171. https://doi.org/10.1080/02640410600598505
dc.relation.referencesNakao, Y., Kodabashi, A., Yarita, M., Fujimoto, T., & Tamura, T. (2012). Temporal activities during P3 components on the working memory-related brain regions: N-back ERP study. Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, 424-427. https://doi.org/10.1109/BHI.2012.6211606.
dc.relation.referencesNiedenthal, P. M., & Ric, F. (2017). Psychology of emotion. Psychology Press.
dc.relation.referencesNieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological bulletin, 131(4), 510. https://doi.org/10.1037/0033-2909.131.4.510
dc.relation.referencesOberauer, K. (2009). Design for a working memory. Psychology of learning and motivation, 51, 45-100. https://doi.org/10.1016/S0079-7421(09)51002-X
dc.relation.referencesOberauer, K. (2009). Design for a working memory. Psychology of learning and motivation, 51, 45-100. https://doi.org/10.1016/S0079-7421(09)51002-X
dc.relation.referencesOlofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: an integrative review of ERP findings. Biological psychology, 77 (3), 247-265. https://doi.org/10.1016/j.biopsycho.2007.11.006
dc.relation.referencesOrganization, W. H., et al. (2017). Depression and other common mental disorders: global health estimates. World Health Organization.
dc.relation.referencesOwen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59. https://doi.org/10.1002/hbm.20131
dc.relation.referencesPassingham, R. (1975). Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain research, 92(1), 89-102.
dc.relation.referencesPeirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior research methods, 51(1), 195-203.
dc.relation.referencesPerez, V. B., Vogel, E. K., Luck, S., & Kappenman, E. (2012). What ERPs can tell us about working memory. The Oxford handbook of event-related potential components, 361-372.
dc.relation.referencesPessoa, L. (2008). On the relationship between emotion and cognition. Nature reviews neuroscience, 9(2), 148-158. https://doi.org/10.1038/nrn2317
dc.relation.referencesPessoa, L. (2009). How do emotion and motivation direct executive control?, Trends in cognitive sciences, 13(4), 160-166 https://doi.org/10.1016/j.tics.2009.01.006
dc.relation.referencesPetrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental brain research, 133(1), 44-54. https://doi.org/10.1007/s002210000399
dc.relation.referencesPlutchik, R. (2003). Emotions and life: Perspectives from psychology, biology, and evolution. American Psychological Association.
dc.relation.referencesPolich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
dc.relation.referencesPolich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological psychology, 41(2), 103-146. https://doi.org/10.1016/0301-0511(95)05130-9
dc.relation.referencesPrete, G., Capotosto, P., Zappasodi, F., & Tommasi, L. (2018). Contrasting hemispheric asymmetries for emotional processing from event-related potentials and behavioral responses. Neuropsychology, 32(3), 317. https://doi.org/10.1037/neu0000443
dc.relation.referencesRaczy, K., & Orzechowski, J. (2019). When working memory is in a mood: Combined effects of induced affect and processing of emotional words. Current Psychology, 1-10. https://doi.org/10.1007/s12144-019-00208-x
dc.relation.referencesRottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., Fox, P. T., & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage, 60(1), 830-846. https://doi.org/10.1016/j.neuroimage.2011.11.050
dc.relation.referencesRussell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161. https://doi.org/10.1037/h0077714
dc.relation.referencesSaliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One, 8(5), e63701. https://doi.org/10.1371/journal.pone.0063701
dc.relation.referencesSander, D. (2013). Models of Emotion. En P. V. Jorge Armony (Ed.), The cambridge handbook of human affective neuroscience. (pp. 5-53). Cambridge University Press.
dc.relation.referencesSanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., Wang, P. S. E., & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: research domain criteria. Journal of abnormal psychology, 119(4), 631.
dc.relation.referencesSmith, J. L., Johnstone, S. J., & Barry, R. J. (2008). Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clinical neurophysiology, 119(3), 704-714. https://doi.org/10.1016/j.clinph.2007.11.042
dc.relation.referencesSoltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Review in Neurobiology, 14(3-4). https://doi.org/10.1615/CritRevNeurobiol.v14.i3-4.20
dc.relation.referencesStevenson, R. A., & James, T. W. (2008). Affective auditory stimuli: Characterization of the international Affective Digitized Sounds (IADS) by discrete emotional categories. Behavior research methods, 40(1), 315-321. https://doi.org/10.3758/BRM.40.1.315
dc.relation.referencesSzuhany, K. L., MacKenzie Jr, D., & Otto, M. W. (2018). The impact of depressed mood, working memory capacity, and priming on delay discounting. Journal of behavior therapy and experimental psychiatry, 60, 37-41. https://doi.org/10.1016/j.jbtep.2018.03.001
dc.relation.referencesTsutsui, K.-I., Oyama, K., Nakamura, S., & Iijima, T. (2016). Comparative overview of visuospatial working memory in monkeys and rats. Frontiers in systems neuroscience, 10, 99. https://doi.org/10.3389/fnsys.2016.00099
dc.relation.referencesVelasco-Matus, P. W., Rivera Aragón, S., Domı́nguez Espinosa, A. d. C., Méndez Rangel, F., & Dı́az Loving, R. (2021). Positive Affect/Negative Affect Scale for Mexicans (PANA-M): Evidences of Validity and Reliability. Acta de investigación psicológica, 11(1), 95-113. https://doi.org/10.22201/fpsi.20074719e.2021.1.377
dc.relation.referencesVeloso, G. C., & Ty, W. E. G. (2021). The Effects of Emotional Working Memory Training on Trait Anxiety. Frontiers in Psychology, 11, 549623. https://doi.org/10.3389/fpsyg.2020.549623
dc.relation.referencesWager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255-274. https://doi.org/10.3758/CABN.3.4.255
dc.relation.referencesWatson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063. https://doi.org/10.1037/0022-3514.54.6.1063
dc.relation.referencesWundt, W. M. (1912). An introduction to psychology.
dc.relation.referencesWundt, W. M., & Judd, C. H. (1902). Outlines of psychology
dc.relation.referencesXiu, L., Wu, J., Chang, L., & Zhou, R. (2018). Working memory training improves emotion regulation ability. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-31495-2
dc.relation.referencesYaple, Z. A., Stevens, W. D., & Arsalidou, M. (2019). Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage, 196, 16-31. https://doi.org/10.1016/j.neuroimage.2019.03.074
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsElectroencefalografía
dc.subject.decsElectroencephalography
dc.subject.decsEmociones/fisiología
dc.subject.decsEmotions/physiology
dc.subject.decsAnálisis de Varianza
dc.subject.decsAnalysis of Variance
dc.subject.proposalMemoria de trabajo
dc.subject.proposalEmoción
dc.subject.proposalP3
dc.subject.proposalEEG
dc.subject.proposalWorking memory
dc.subject.proposalEmotion
dc.subject.proposalP3
dc.subject.proposalEEG
dc.title.translatedEmotional working memory: assessment of brain activity and performance on a standard n-back task in college students
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito