Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorUribe-Velez, Daniel
dc.contributor.advisorCastellanos Hernandez, Leonardo
dc.contributor.authorMiranda Martinez, Yessica Lorena
dc.date.accessioned2023-02-07T16:45:55Z
dc.date.available2023-02-07T16:45:55Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83355
dc.descriptionilustraciones, fotografías a color
dc.description.abstractEl uso de organismos biocontroladores como estrategia que permita disminuir el uso de agroquímicos en los cultivos, es una práctica que está en aumento. Particularmente se hace relevante el desarrollo de productos de origen biológico que permitan el control de patógenos de arroz de manera específica y eficaz disminuyendo las tasas de contaminación y la reincidencia de enfermedades por la aparición de patógenos resistentes. Sin embargo, para llegar al desarrollo de un producto de origen biológico que tenga las características necesarias para ser efectivo en el control de enfermados fitosanitarias, es necesario tener un conocimiento amplio del organismo productor de los principios activos que harán parte de dicho producto. Bajo este contexto, el estudio de la cepa Bacillus velezensis IBUN 2755 se hace relevante ya que ha demostrado tener una fuerte actividad antibacteriana y antifúngica in vitro, contra tres patógenos que han sido reportados como los causantes de grandes pérdidas en cultivos de arroz y por tanto esta cepa se perfila como un potencial microorganismo biocontrolador. El estudio extensivo de la cepa incluye la caracterización de los posibles metabolitos secundarios bioactivos que produzca la cepa, que estén involucrados de manera directa en la actividad antibacterial y antifúngica conocida, asi como el efecto que tienen diferentes factores bióticos y abióticos sobre su producción. Este es precisamente el objetivo principal de este trabajo de investigación. El primer paso para llegar a este objetivo fue describir el efecto que tiene el crecimiento de la cepa IBUN 2755 en diferentes medios de cultivo, sobre la actividad antagónica de la cepa contra los patógenos Burkholderia. glumae, Rhizoctonia solani y Gaeumannomyces graminis. Para esto, se incubó la cepa IBUN 2755 en los medios de cultivo Landy, MES, MES modificado y MOLP P.E y MOLP P.U, que se caracterizan por tener condiciones nutricionales diferenciales. Se recuperaron los sobrenadantes libres de células de cada medio posterior al crecimiento de la cepa y se evaluó la actividad antagónica de los mismos sobre los tres patógenos antes mencionados. Se pudo concluir, que la composición nutricional de los medios tiene un efecto directo sobre la actividad antagónica de la cepa IBUN 2755, siendo el medio MES el que presentó sobrenadantes menos activos contra los tres patógenos y el medio MOLP P.U el que rindió los sobrenadantes más activos. Posteriormente con el fin de evaluar los metabolitos bioactivos que se estaban expresando en estos dos medios de cultivo que mostraron tener una actividad antagónica diferencial (MOLP.U y MES), se decidió hacer la extracción de estos usando dos metodologías de extracción: la partición liquido - liquido usando acetato de etilo y butanol y la precipitación ácida. Asi mismo estos procesos de extracción se realizaron sobre dos volúmenes diferentes de cada medio: 25 y 200 ml. De esta forma, al finalizar esta sección se tendrían tres parámetros a evaluar: primero, el efecto de la composición nutricional del medio de cultivo sobre la producción de metabolitos secundarios, segundo el efecto de la metodología de extracción sobre los metabolitos bioactivos recuperados de cada medio y tercero el efecto del volumen del medio de cultivo sobre la producción de metabolitos secundarios bioactivos por parte de la cepa IBUN 2755. La evaluación de la actividad biológica de los extractos de acetato de etilo, butanol y precipitación ácida obtenidos a partir de los sobrenadantes recuperados de los medios MOLP P.U y MES de 200 y 25 ml, sobre los tres patógenos, mostró que el extracto por precipitación acida del medio MOLP P.U de 25 ml, era el que demostraba una actividad antagónica consistente contra los tres patógenos. Asi mismo, se caracterizó el perfil metabolómico de cada uno estos extractos usando LC-MS/MS la construcción de redes moleculares y la derreplicación de compuestos, con esto se pudo establecer que la expresión de metabolitos secundarios por parte de la cepa IBUN 2755, era mayor en los medios de 25ml para el caso del medio MOLP P.U, además se evidencio que los extractos por precipitación acida y de acetato de etilo eran los más enriquecidos en compuestos con respecto a los extractos butanólicos y finalmente, se logró establecer que si bien la cepa IBUN 2755, es capaz de producir las mismas familias de compuestos, en los dos medios de cultivo (MOLP P.U y MES) esto no implica que se produzcan los mismos compuestos y en la misma proporción. Así mismo se evidencio la expresión de moléculas de interés como surfactinas, fengicinas e Iturinas. Una vez establecido el efecto de diferentes factores sobre la producción de metabolitos secundarios por parte de la cepa IBUN 2755, el siguiente paso fue identificar los compuestos responsables de la actividad antagónica de la cepa contra los patógenos B. glumae, R. solani y G. graminis, para esto se fracciono el extracto por precipitación con ácido del medio MOLP P.U y se evaluó la actividad de cada una de las fracciones, las fracciones activas fueron evaluadas por RMN y LC-MS/MS. Las fracciones F4 y F5 mostraron ser las más activas contra los tres patógenos y se logró determinar que los compuestos activos mayoritarios de estas fracciones eran la Surfactina C14 ß-OH ácido graso-MeO-Glu-Leu-Leu-Val-Asp-Leu-Leu y la surfactina C14 ß-OH ácido graso-Glu-Leu-Leu-Val-Asp-Leu-Leu. Finalmente, se decidió caracterizar de manera descriptiva haciendo uso de redes moleculares, el perfil metabolómico de la cepa IBUN 2755 bajo condiciones de cocoltivo con cada uno de los patógenos evaluados en este proyecto, con el fin de evaluar el efecto del crecimiento de la cepa en conjunto con otro microorganismo, sobre la producción de metabolitos secundarios potencialmente bioactivos. Este análisis metabolómico incluyo datos de LC-MS/MS tanto de los monocultivos de cada microorganismo, como de los cocultivos entre la cepa biocontroladora y cada una de los patógenos. Los resultados mostraron que en efecto cuando la cepa se encuentra bajo condiciones de estrés, como lo es enfrentarse a otro microorganismo, la expresión de metabolitos secundarios bioactivos se eleva drásticamente y se difunden hacia el área de crecimiento del patógeno, esto es especialmente cierto para los cocultivos de la cepa IBUN 2755 - B. glumae y IBUN 2755 - G. graminis. (Texto tomado de la fuente)
dc.description.abstractThe use of biocontrol organisms as a strategy to reduce the use of agrochemicals in crops is a practice that is on the rise. Particularly relevant is the development of products of biological origin that allow the control of rice pathogens in a specific and effective way, reducing contamination rates and the recurrence of diseases due to the appearance of resistant pathogens. However, to develop a product of biological origin that has the necessary characteristics to be effective in controlling phytosanitary diseases, it is necessary to have extensive knowledge of the organism that produces the active ingredients that will be part of said product. In this context, the study of the Bacillus velezensis IBUN 2755 strain becomes relevant since it has been shown to have a strong antibacterial and antifungal activity in vitro, against three pathogens that have been reported as the cause of great losses in rice crops and therefore this strain is outlined as a potential biocontrol microorganism The extensive study of the strain includes the characterization of the possible bioactive secondary metabolites produced by the strain, which are directly involved in the known antibacterial and antifungal activity, as well as the effect that different biotic and abiotic factors have on its production. This is precisely the main objective of this research work. The first step to reaching this goal was to describe the effect of the growth of the IBUN 2755 strain in different culture media on the antagonistic activity of the strain against the pathogens B. glumae, R. solani and G. graminis. For this, the IBUN 2755 strain was incubated in Landy, MES, modified MES and MOLP P.E, and MOLP P.U culture media, which are characterized by having differential nutritional conditions. Cell-free supernatants were recovered from each medium after the growth of the strain and their antagonistic activity on the three aforementioned pathogens was evaluated. It was concluded that the nutritional composition of the media has a direct effect on the antagonistic activity of the IBUN 2755 strain, with the MES medium being the one that presented less active supernatants against the three pathogens and the MOLP P.U medium the one that yielded the most active supernatants. assets. Subsequently, to evaluate the bioactive metabolites that were being expressed in these two culture media that showed a differential antagonistic activity (MOLP.U and MES), it was decided to extract them using two extraction methodologies: liquid partition - liquid using ethyl acetate and butanol and acid precipitation. Likewise, these extraction processes were carried out on two different volumes of each medium: 25 and 200 ml. In this way, at the end of this section there would be three parameters to evaluate: first, the effect of the nutritional composition of the culture medium on the expression of secondary metabolites, second, the effect of the extraction methodology on the bioactive metabolites recovered from each medium and third, the effect of the volume of the culture medium on the production of bioactive secondary metabolites by the IBUN 2755 strain The evaluation of the biological activity of the extracts of ethyl acetate, butanol, and acid precipitation obtained from the supernatants recovered from the MOLP P.U and MES media of 200 and 25 ml, on the three pathogens, showed that the extract by acid precipitation of the 25ml MOLP P.U medium was the one that demonstrated consistent antagonistic activity against the three pathogens. Likewise, the metabolic profile of each of these extracts was characterized using LC-MS/MS, the construction of molecular networks, and the dereplication of compounds, with this it was possible to establish that the expression of secondary metabolites by the IBUN 2755 strain was higher in the 25ml media for the case of the MOLP P.U medium, it was also evidenced that the extracts by acid precipitation and ethyl acetate were the most enriched in compounds concerning the butanol extracts and finally, it was possible to establish that although the IBUN 2755 strain, is capable of expressing the same families of compounds, in the two culture media (MOLP P.U and MES) this does not imply that the same compounds are expressed and in the same proportion. Likewise, the expression of molecules of interest such as surfactins, fengycins and Iturins was evidenced. Once the effect of different factors on the production of secondary etabolites by the IBUN 2755 strain had been established, the next step was to identify the compounds responsible for the antagonistic activity of the strain against the pathogens B. glumae, R. solani and G. graminis, for this, the extract was fractionated by acid precipitation of the MOLP P.U medium and the activity of each of the fractions was evaluated, the active fractions were evaluated by NMR and LC-MS/MS. Fractions F4 and F5 showed to be the most active against the three pathogens and it was possible to determine that the main active compounds of these fractions were Surfactin C14 ß-OH fatty acid-MeO-Glu-Leu-Leu-Val-Asp-Leu- Leu and surfactin C14 ß-OH fatty acid-Glu-Leu-Leu-Val-Asp-Leu-Leu. Finally, it was decided to characterize descriptively, using molecular networks, the metabolic profile of the IBUN 2755 strain under co-culture conditions with each of the pathogens evaluated in this project, to evaluate the effect of the growth of the strain on together with another microorganism, on the expression of potentially bioactive secondary metabolites. This metabolomic analysis included LC-MS/MS data from both the monocultures of each microorganism and the co-cultures between the biocontrol strain and each of the pathogens. The results showed that, in effect, when the strain is under stress conditions, such as facing another microorganism, the expression of bioactive secondary metabolites rises drastically and diffuses towards the area of growth of the pathogen, this is especially true for microorganisms. cocultures of strain IBUN 2755 - B. glumae and IBUN 2755 - G. graminis.
dc.format.extentxxix, 260 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.titleCaracterización de los metabolitos secundarios producidos por la cepa IBUN- 2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupEstudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.contributor.researchgroupMicrobiologia Agricola
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.researchareaMetabolomica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá - Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesPan, H. Q., Li, Q. L., & Hu, J. C. (2017). The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. Journal of Biotechnology, 247, 25–28. https://doi.org/10.1016/j.jbiotec.2017.02.022
dc.relation.referencesPandin, Caroline et al. 2018. “Complete Genome Sequence of Bacillus Velezensis QST713: A Biocontrol Agent That Protects Agaricus Bisporus Crops against the Green Mould Disease.” Journal of Biotechnology 278: 10–19. https://hal.archives-ouvertes.fr/hal-02353465.
dc.relation.referencesPatel, Hiren et al. 2011. “All-or-None Membrane Permeabilization by Fengycin-Type Lipopeptides from Bacillus Subtilis QST713.” Biochimica et Biophysica Acta - Biomembranes 1808(8): 2000–2008.
dc.relation.referencesPathak, Khyati v., and Hareshkumar Keharia. 2014. “Identification of Surfactins and Iturins Produced by Potent Fungal Antagonist, Bacillus Subtilis K1 Isolated from Aerial Roots of Banyan (Ficus Benghalensis) Tree Using Mass Spectrometry.” 3 Biotech 4(3): 283–95.
dc.relation.referencesPathma, J., Rahul, G. R., Kennedy, R. K., Subashri, R., & Sakthivel, N. (2011). Secondary Metabolite Production by Bacterial Antagonists. Journal of Biological Control, 25(3), 165–181. https://doi.org/10.18311/jbc/2011/3716
dc.relation.referencesPedraza, L. (2022). Genomic comparative reveal that biocontroler strain IBUN 2755 is a Bacillus velezensis 2755 asociated with plants. In preparation.
dc.relation.referencesPedraza, L. A., Bautista, J., & Uribe-Vélez, D. (2018). Seed-born burkholderia glumae infects rice seedling and maintains bacterial population during vegetative and reproductive growth stage. Plant Pathology Journal, 34(5), 393–402. https://doi.org/10.5423/PPJ.OA.02.2018.0030
dc.relation.referencesPedraza, L. A., López, C. E., & Uribe-Vélez, D. (2020). Mechanisms of action of bacillus spp. (bacillaceae) against phytopathogenic microorganisms during their interaction with plants. Acta Biologica Colombiana, 25(1), 112–125. https://doi.org/10.15446/abc.v25n1.75045
dc.relation.referencesPedraza, Luz. 2022. “Genomic Comparative Reveal That Biocontroler Strain IBUN 2755 Is a Bacillus Velezensis 2755 Asociated with Plants. In Preparation.”
dc.relation.referencesPedraza-Herrera, L. A., Bautista, J. P., Cruz-Ramírez, C. A., & Uribe-Vélez, D. (2021). IBUN2755 Bacillus strain controls seedling root and bacterial panicle blight caused by Burkholderia glumae. Biological Control, 153, 104494. https://doi.org/10.1016/j.biocontrol.2020.104494
dc.relation.referencesPeixoto, C. N., Ottoni, G., Filippi, M. C. C., Silva-Lobo, V. L., & Prabhu, A. S. (2013). Biology of Gaeumannomyces graminis var. graminis isolates from rice and grasses and epidemiological aspects of crown sheath rot of rice. Tropical Plant Pathology, 38(6), 495–504. https://doi.org/10.1590/s1982-56762013000600005
dc.relation.referencesPellegrini, M., Pagnani, G., Bernardi, M., Mattedi, A., Spera, D. M., & Del Gallo, M. (2020). Cell-free supernatants of plant growth-promoting bacteria: A review of their use as biostimulant and microbial biocontrol agents in sustainable agriculture. Sustainability (Switzerland), 12(23), 1–22. https://doi.org/10.3390/su12239917
dc.relation.referencesPerez C, C., & Saavedra, E. (2018). Avances en el manejo integrado de la bacteria burkholderia glumae en el cultivo de arroz en el caribe colombiano. Revista Colombiana de Ciencia Animal - RECIA, 3(1), 111. https://doi.org/10.24188/recia.v3.n1.2011.344
dc.relation.referencesPhulpoto, Irfan Ali et al. 2020. “Production and Characterization of Surfactin-like Biosurfactant Produced by Novel Strain Bacillus Nealsonii S2MT and It’s Potential for Oil Contaminated Soil Remediation.” Microbial Cell Factories 19(1).
dc.relation.referencesPigrau, C., & Almirante, B. (2009). Oxazolidinones, glycopeptides and cyclic lipopeptides. Enfermedades Infecciosas y Microbiologia Clinica, 27(4), 236–246. https://doi.org/10.1016/j.eimc.2009.02.004
dc.relation.referencesPluskal, Tomáš, Sandra Castillo, Alejandro Villar-Briones, and Matej Orešič. 2010. “MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data.” BMC Bioinformatics 11.
dc.relation.referencesPrabhu, A., & Filippi, M. (2002). OCORRÊNCIA DO MAL-DO-PÉ CAUSADO POR Gaeumannomyces graminis var . Fitopatologia Brasileira, 27(4), 417–419.
dc.relation.referencesPrado, G. A., Correa, F., Aricapa, M. G., & Escobar, F. (2001). Caracterización preliminar de la resistencia de germoplasma de arroz al añublo de la vaina (Rhizoctonia solani Kuhn). 7(1), 8–11.
dc.relation.referencesQin, Tianzhu, Lamia Goual, and Mohammad Piri. 2019. “Synergistic Effects of Surfactant Mixtures on the Displacement of Nonaqueous Phase Liquids in Porous Media.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 582.
dc.relation.referencesQuinn, Robert A et al. 2017. “Molecular Networking As a Drug Discovery , Drug Metabolism , and Precision Medicine Strategy.” Trends in Pharmacological Sciences 38(2): 143–54. http://dx.doi.org/10.1016/j.tips.2016.10.011.
dc.relation.referencesRaaijmakers, J. M., Bruijn, I. De, & Kock, M. J. D. De. (2006). Cyclic Lipopeptide Production by Plant-Associated Pseudomonas spp .: Diversity , Activity , Biosynthesis , and Regulation. 19(7), 699–710.
dc.relation.referencesRaaijmakers, J. M., Bruijn, I. De, Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas : more than surfactants and antibiotics. https://doi.org/10.1111/j.1574-6976.2010.00221.x
dc.relation.referencesRabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 1–13. https://doi.org/10.3390/molecules24061046
dc.relation.referencesRabbee, Muhammad Fazle et al. 2019. “Bacillus Velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes.” Molecules: 1–13.
dc.relation.referencesRahman, Faisal bin, Bishajit Sarkar, Ripa Moni, and Mohammad Shahedur Rahman. 2021. “Molecular Genetics of Surfactin and Its Effects on Different Sub-Populations of Bacillus Subtilis.” Biotechnology Reports 32.
dc.relation.referencesRaj, A., Kumar, A., & Dames, J. F. (2021). Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Frontiers in Microbiology, 12(December). https://doi.org/10.3389/fmicb.2021.791723
dc.relation.referencesRamírez, J. M., Gómez, D., & Becerra, A. (2014). Efectos sobre bienestar y pobreza de la política comercial agrícola : el caso del arroz en Colombia. 63, 60.
dc.relation.referencesRamos-Molina, L. M., Chavarro-Mesa, E., Pereira, D. A. dos S., Silva-Herrera, M. del R., & Ceresini, P. C. (2016). Rhizoctonia solani AG-1 IA infects both rice and signalgrass in the Colombian Llanos. Pesquisa Agropecuária Tropical, 46(1), 65–71. https://doi.org/10.1590/1983-40632016v4638696
dc.relation.referencesRani, A., Saini, K. C., Bast, F., Varjani, S., Mehariya, S., Bhatia, S. K., Sharma, N., & Funk, C. (2021). A review on microbial products and their perspective application as antimicrobial agents. Biomolecules, 11(12). https://doi.org/10.3390/biom11121860
dc.relation.referencesRivera, M. V, & Gómez, L. C. (2012). Identificación y patogenicidad de Fusarium spp y Rhizoctonia solan i en cultivos de arroz del Cesar . Identification and pathogenicity of Fusarium spp and Rhizoctonia solani in rice crops of Cesar . Revista Colombiana de Microbiología, 2(2), 63–68.
dc.relation.referencesRives, N., Acebo, Y., & Hernández, A. (2007). BACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL EN EL CULTIVO DEL ARROZ (Oryza sativa L.). PERSPECTIVAS DE SU USO EN CUBA. Cultivos Tropicales, 28(2), 29–38.
dc.relation.referencesRomero-Rodríguez, A., Maldonado-Carmona, N., Ruiz-Villafán, B., Koirala, N., Rocha, D., & Sánchez, S. (2018). Interplay between carbon, nitrogen, and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(5), 761–781. https://doi.org/10.1007/s10482-018-1073-1
dc.relation.referencesRuiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Snchez, M., Rocha, D., Snchez, B., Rodríguez-Sanoja, R., Sánchez, S., & Langley, E. (2010). Production of microbial secondary metabolites: Regulation by the carbon source. Critical Reviews in Microbiology, 36(2), 146–167. https://doi.org/10.3109/10408410903489576
dc.relation.referencesRuiz, Beatriz et al. 2010. “Production of Microbial Secondary Metabolites: Regulation by the Carbon Source.” Critical Reviews in Microbiology 36(2): 146–67.
dc.relation.referencesRuiz-Villafán, B., Cruz-Bautista, R., Manzo-Ruiz, M., Passari, A. K., Villarreal-Gómez, K., Rodríguez-Sanoja, R., & Sánchez, S. (2021). Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system. Microbial Biotechnology, 0, 1–15. https://doi.org/10.1111/1751-7915.13791
dc.relation.referencesSaggese, A., De Luca, Y., Baccigalupi, L., & Ricca, E. (2022). An antimicrobial peptide specifically active against Listeria monocytogenes is secreted by Bacillus pumilus SF214. BMC Microbiology, 22(1), 1–11. https://doi.org/10.1186/s12866-021-02422-9
dc.relation.referencesSánchez, Sergio et al. 2010. “Carbon Source Regulation of Antibiotic Production.” Journal of Antibiotics 63(8): 442–59.
dc.relation.referencesSansinenea, E., & Ortiz, A. (2011). Secondary metabolites of soil Bacillus spp . 1523–1538. https://doi.org/10.1007/s10529-011-0617-5
dc.relation.referencesSarwar, Ambrin et al. 2018. “Biocontrol Activity of Surfactin A Purified from Bacillus NH-100 and NH-217 against Rice Bakanae Disease.” Microbiological Research 209: 1–13.
dc.relation.referencesSavary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519–537. https://doi.org/10.1007/s12571-012-0200-5
dc.relation.referencesSayler, R. J., Cartwright, R. D., & Yang, Y. (2006). Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. Plant Disease, 90(5), 603–610. https://doi.org/10.1094/PD-90-0603
dc.relation.referencesSeydlová, Gabriela, and Jaroslava Svobodová. 2008. “Review of Surfactin Chemical Properties and the Potential Biomedical Applications.” Central European Journal of Medicine 3(2): 123–33.
dc.relation.referencesShafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950
dc.relation.referencesShannon, Paul et al. 2003. “Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks.” Genome Research 13(11): 2498–2504. http://ci.nii.ac.jp/naid/110001910481/.
dc.relation.referencesShew, A. M., Durand-Morat, A., Nalley, L. L., Zhou, X.-G., Rojas, C., & Thoma, G. (2019). Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production. Plos One, 14(7), e0219199. https://doi.org/10.1371/journal.pone.0219199
dc.relation.referencesShin, Daniel et al. 2018. “Coculture of Marine Streptomyces Sp. with Bacillus Sp. Produces a New Piperazic Acid-Bearing Cyclic Peptide.” Frontiers in Chemistry 6(OCT).
dc.relation.referencesShrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N., & Ham, J. H. (2016). Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE, 11(1), 1–18. https://doi.org/10.1371/journal.pone.0146764
dc.relation.referencesSiddiqui, Z. A. (2006). PGPR: Biocontrol and Biofertilization. In PGPR: Biocontrol and Biofertilization.
dc.relation.referencesSingh Nee Nigam, Poonam, and Ashok Pandey. 2009. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues. Springer Netherlands.
dc.relation.referencesSkrodzka, V. (2017). Organic agricultural products in Europe and USA. Management, 21(2), 151–164. https://doi.org/10.1515/manment-2017-0011
dc.relation.referencesSomerville, Greg A., and Richard A. Proctor. 2013. “Cultivation Conditions and the Diffusion of Oxygen into Culture Media: The Rationale for the Flask-to-Medium Ratio in Microbiology.” BMC Microbiology 13(1).
dc.relation.referencesSouza, E. C., Kuramae, E. E., Nakatani, A. K., Basseto, M. A., Prabhu, A. S., & Ceresini, P. C. (2007). Caracterização citomorfológica, cultural, molecular e patogênica de Rhizoctonia solani Kühn associado ao arroz em Tocantins, Brasil. Summa Phytopathologica, 33(2), 129–136. https://doi.org/10.1590/s0100-54052007000200005
dc.relation.referencesStulke, J., & Hillen, W. (2000). REGULATION OF CARBON CATABOLISM IN BACILLUS SPECIES.
dc.relation.referencesSuárez-Moreno, Z. R., Vinchira-Villarraga, D. M., Vergara-Morales, D. I., Castellanos, L., Ramos, F. A., Guarnaccia, C., Degrassi, G., Venturi, V., & Moreno-Sarmiento, N. (2019). Plant-Growth Promotion and Biocontrol Properties of Three Streptomyces spp. Isolates to Control Bacterial Rice Pathogens. Frontiers in Microbiology, 10(FEB), 1–17. https://doi.org/10.3389/fmicb.2019.00290
dc.relation.referencesSuchinina, T v, T S Shestakova, V M Petrichenko, and V Novikova. 2010. 44 MEDICINAL PLANTS SOLVENT POLARITY EFFECT ON THE COMPOSITION OF BIOLOGICALLY ACTIVE SUBSTANCES, UV SPECTRAL CHARACTERISTICS, AND ANTIBACTERIAL ACTIVITY OF EUPHRASIA BREVIPILA HERB EXTRACTS.
dc.relation.referencesSudarmono, Pratiwi, Ahmad Wibisana, Lira W. Listriyani, and Saleha Sungkar. 2019. “Characterization and Synergistic Antimicrobial Evaluation of Lipopeptides from Bacillus Amyloliquefaciens Isolated from Oil-Contaminated Soil.” International Journal of Microbiology 2019.
dc.relation.referencesSun, Yu dfgfg et al. 2022. “Co-Culture of Aspergillus Sydowii and Bacillus Subtilis Induces the Production of Antibacterial Metabolites.” Fungal Biology 126(4): 320–32.
dc.relation.referencesSun, Yu et al. 2021. “Inducing Secondary Metabolite Production of Aspergillus Sydowii through Microbial Co-Culture with Bacillus Subtilis.” Microbial Cell Factories 20(1).
dc.relation.referencesSuzuki, Fumihiko, Hiroyuki Sawada, Koji Azegami, and Kenichi Tsuchiya. 2004. “Molecular Characterization of the Tox Operon Involved in Toxoflavin Biosynthesis of Burkholderia Glumae.” Journal of General Plant Pathology 70(2): 97–107.
dc.relation.referencesSyed, Chandini S., Mantri Sairam, and Amrutha v. Audipudi. 2019. “Exploration of Antibacterial and Antiproliferative Secondary Metabolites from Marine Bacillus.” Journal of Microbiology, Biotechnology and Food Sciences 9(3): 628–33.
dc.relation.referencesTakahashi, Masato, and Hideki Aoyagi. 2018. “Practices of Shake-Flask Culture and Advances in Monitoring CO2 and O2.” Applied Microbiology and Biotechnology 102(10): 4279–89.
dc.relation.referencesTakahashi, Masato, and Hideki Aoyagi. 2020. “Analysis of Porous Breathable Stopper and Development of PID Control for Gas Phase during Shake-Flask Culture with Microorganisms.” Applied Microbiology and Biotechnology 104(20): 8925–36.
dc.relation.referencesTanaka, Keijitsu, Yusuke Amaki, Atsushi Ishihara, and Hiromitsu Nakajima. 2015. “Synergistic Effects of [Ile7]Surfactin Homologues with Bacillomycin D in Suppression of Gray Mold Disease by Bacillus Amyloliquefaciens Biocontrol Strain SD-32.” Journal of Agricultural and Food Chemistry 63(22): 5344–53.
dc.relation.referencesTang, Jin Shan et al. 2010. “Characterization and Online Detection of Surfactin Isomers Based on HPLC-MSn Analyses and Their Inhibitory Effects on the Overproduction of Nitric Oxide and the Release of TNF-α and IL-6 in LPS-Induced Macrophages.” Marine Drugs 8(10): 2605–18.
dc.relation.referencesTang, Qunyong et al. 2014. “Effects of Fengycin from Bacillus Subtilis FmbJ on Apoptosis and Necrosis in Rhizopus Stolonifer.” Journal of Microbiology 52(8): 675–80.
dc.relation.referencesThéatre, Ariane et al. 2021. “The Surfactin-Like Lipopeptides From Bacillus Spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range.” Frontiers in Bioengineering and Biotechnology 9(March).
dc.relation.referencesToral, L., Rodríguez, M., Béjar, V., & Sampedro, I. (2018). Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Frontiers in Microbiology, 9(JUN), 1–12. https://doi.org/10.3389/fmicb.2018.01315
dc.relation.referencesTran, C., Cock, I. E., Chen, X., & Feng, Y. (2022). Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics, 11(1). https://doi.org/10.3390/antibiotics11010088
dc.relation.referencesTsushima, S., Naito, H., & Koitabashi, M. (1996). Population Dynamics of Pseudomonas the Causal Agent of Bacterial Grain Rot of Rice , on Leaf Sheaths of Rice Plants in Relation to Disease Development in the Field. 113, 108–113.
dc.relation.referencesTyc, O., Song, C., Dickschat, J. S., Vos, M., & Garbeva, P. (2017). The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. Trends in Microbiology, 25(4), 280–292. https://doi.org/10.1016/j.tim.2016.12.002
dc.relation.referencesUeda, Kenji, and Teruhiko Beppu. 2017a. “Antibiotics in Microbial Coculture.” Journal of Antibiotics 70(4): 361–65.
dc.relation.referencesUllah Khan, Saif et al. 2019. “Optimization of Growth Conditions for the Maximum Production of Secondary Metabolites from Trichoderma Harzianum and Their Biological Activities.” International Journal of Pharmacology 15(3): 351–60.
dc.relation.referencesVan Wees, S. C., Van der Ent, S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443–448. https://doi.org/10.1016/j.pbi.2008.05.005
dc.relation.referencesVera, C., Madariaga, R., & Moya-Elizondo, E. (2014). Use of fluquinconazole as a seed treatment for the control of take-all disease (Gaeumannomyces graminis var. tritici) of wheat. Chilean Journal of Agricultural and Animal Sciences, 30(3).
dc.relation.referencesVillegas-Escobar, Valeska et al. 2013. “Fengycin C Produced by Bacillus Subtilis EA-CB0015.” Journal of Natural Products 76(4): 503–9.
dc.relation.referencesVitullo, D. et al. 2012. “Role of New Bacterial Surfactins in the Antifungal Interaction between Bacillus Amyloliquefaciens and Fusarium Oxysporum.” Plant Pathology 61(4): 689–99.
dc.relation.referencesWakefield, Jennifer et al. 2017. “Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-Cultivation.” Frontiers in Microbiology 8(JUL): 1–10.
dc.relation.referencesWan, C., Fan, X., Lou, Z., Wang, H., Olatunde, A., & Rengasamy, K. R. R. (2021). Iturin: cyclic lipopeptide with multifunction biological potential. Critical Reviews in Food Science and Nutrition, 0(0), 1–13. https://doi.org/10.1080/10408398.2021.1922355
dc.relation.referencesWang, Buqing et al. 2021. “Genomics-Guided Isolation and Identification of Active Secondary Metabolites of Bacillus Velezensis BA-26.” Biotechnology and Biotechnological Equipment 35(1): 895–904.
dc.relation.referencesWang, Mingxun et al. 2016. “Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking.” Nature Biotechnology 34(8): 828–37.
dc.relation.referencesWillenbacher, J., Yeremchuk, W., Mohr, T., Syldatk, C., & Hausmann, R. (2015). Enhancement of Surfactin yield by improving the medium composition and fermentation process. AMB Express, 5(1). https://doi.org/10.1186/s13568-015-0145-0
dc.relation.referencesWu, Shimei et al. 2019. “Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus Sp. CS30.” Marine Drugs 17(4).
dc.relation.referencesXie, Yudan et al. 2021. “Isolation and Identification of Antibacterial Bioactive Compounds From Bacillus Megaterium L2.” Frontiers in Microbiology 12.
dc.relation.referencesXiong, Zirui Ray et al. 2022. “Purification and Characterization of Antifungal Lipopeptide Produced by Bacillus Velezensis Isolated from Raw Honey” ed. Filippo Giarratana. PLOS ONE 17(4): e0266470. https://dx.plos.org/10.1371/journal.pone.0266470.
dc.relation.referencesXu, Yuxiang et al. 2020. “Enhanced Production of Iturin A in Bacillus Amyloliquefaciens by Genetic Engineering and Medium Optimization.” Process Biochemistry 90: 50–57.
dc.relation.referencesYakimov, Michail M, Kenneth N Timmis, Victor Wray, and Herbert L Fredrickson. 1995. 61 APPLIED AND ENVIRONMENTAL MICROBIOLOGY Characterization of a New Lipopeptide Surfactant Produced by Thermotolerant and Halotolerant Subsurface Bacillus Licheniformis BAS50.
dc.relation.referencesYánez-Mendizábal, Viviana et al. 2012. “Biological Control of Peach Brown Rot (Monilinia Spp.) by Bacillus Subtilis CPA-8 Is Based on Production of Fengycin-like Lipopeptides.” European Journal of Plant Pathology 132(4): 609–19.
dc.relation.referencesYang, Huan et al. 2015. “Identification of Lipopeptide Isoforms by MALDI-TOF-MS/MS Based on the Simultaneous Purification of Iturin, Fengycin, and Surfactin by RP-HPLC.” Analytical and Bioanalytical Chemistry 407(9): 2529–42.
dc.relation.referencesYang, Jane Y et al. 2013. “Molecular Networking as a Dereplication Strategy.”
dc.relation.referencesYang, R., Lei, S., Xu, X., Jin, H., Sun, H., Zhao, X., Pang, B., & Shi, J. (2020). Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Applied Microbiology and Biotechnology, 104(19), 8077–8087. https://doi.org/10.1007/s00253-020-10801-x
dc.relation.referencesYang, Y., Wu, Z. ming, & Li, K. tai. (2019). The peculiar physiological responses of Rhizoctonia solani under the antagonistic interaction coupled by a novel antifungalmycin N2 from Streptomyces sp. N2. Archives of Microbiology, 201(6), 787–794. https://doi.org/10.1007/s00203-019-01645-9
dc.relation.referencesYang, Yu Dong et al. 2021. “Design and Discovery of Novel Antifungal Quinoline Derivatives with Acylhydrazide as a Promising Pharmacophore.” Journal of Agricultural and Food Chemistry 69(30): 8347–57.
dc.relation.referencesYe, Yun-Feng et al. 2012. 2012 Journal of Integrative Agriculture Identification of Antifungal Substance (Iturin A 2 ) Produced by Bacillus Subtilis B47 and Its Effect on Southern Corn Leaf Blight.
dc.relation.referencesYu, Yu Hsiang et al. 2021. “Effectiveness of Bacillus Licheniformis-Fermented Products and Their Derived Antimicrobial Lipopeptides in Controlling Coccidiosis in Broilers.” Animals 11(12).
dc.relation.referencesYuniarti, A., Arifin, N. B., Fakhri, M., & Hariati, A. M. (2019). Effect of C:N ratio on the spore production of Bacillus sp. indigenous shrimp pond. IOP Conference Series: Earth and Environmental Science, 236(1). https://doi.org/10.1088/1755-1315/236/1/012029
dc.relation.referencesZarbafi, S. S., & Ham, J. H. (2019). An overview of rice QTLs associated with disease resistance to three major rice diseases: Blast, sheath blight, and bacterial panicle blight. Agronomy, 9(4). https://doi.org/10.3390/agronomy9040177
dc.relation.referencesZeriouh, H., de Vicente, A., Pérez-García, A., & Romero, D. (2014). Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology, 16(7), 2196–2211. https://doi.org/10.1111/1462-2920.12271
dc.relation.referencesZeriouh, Houda et al. 2011. “The Iturin-like Lipopeptides Are Essential Components in the Biological Control Arsenal of Bacillus Subtilis Against Bacterial Diseases of Cucurbits.” Molecular Plant-Microbe Interactions MPMI 24(12): 1540–52.
dc.relation.referencesZhang, Kelly, Kenji L. Kurita, Cadapakam Venkatramani, and David Russell. 2019. “Seeking Universal Detectors for Analytical Characterizations.” Journal of Pharmaceutical and Biomedical Analysis 162: 192–204.
dc.relation.referencesZhao, C. J., Wang, A. R., Shi, Y. J., Wang, L. Q., Liu, W. De, Wang, Z. H., & Lu, G. D. (2008). Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. Theoretical and Applied Genetics, 116(4), 501–516. https://doi.org/10.1007/s00122-007-0686-y
dc.relation.referencesZhao, H., Shao, D., Jiang, C., Shi, J., Li, Q., Huang, Q., Rajoka, M. S. R., Yang, H., & Jin, M. (2017). Biological activity of lipopeptides from Bacillus. Applied Microbiology and Biotechnology, 101(15), 5951–5960. https://doi.org/10.1007/s00253-017-8396-0
dc.relation.referencesZhao, Haobin et al. 2021. “Effects of Bacillus Subtilis Iturin A on HepG2 Cells in Vitro and Vivo.” AMB Express 11(1).
dc.relation.referencesZhao, J., Liu, H., Liu, K., Li, H., Peng, Y., Liu, J., Han, X., Liu, X., Yao, L., Hou, Q., Wang, C., Ding, Y., & Du, B. (2019). crossm Complete Genome Sequence of Bacillus velezensis DSYZ , a. February, 21–23
dc.relation.referencesZhou, X.-G. (2016). Sustainable Strategies for Managing Bacterial Panicle Blight in Rice. In Intech: Vol. i (Issue tourism, p. 13). https://doi.org/http://dx.doi.org/10.5772/57353
dc.relation.referencesZhou-qi, C., Bo, Z., Guan-lin, X., Bin, L., & Shi-wen, H. (2016). Research Status and Prospect of Burkholderia glumae, the Pathogen Causing Bacterial Panicle Blight. Rice Science, 23(3), 111–118. https://doi.org/10.1016/j.rsci.2016.01.007
dc.relation.referencesZhu, B., Lou, M. miao, Huai, Y., Xie, G. lin, Luo, J. yan, & Xu, L. hui. (2008). Isolation and Identification of Burkholderia glumae from Symptomless Rice Seeds. Rice Science, 15(2), 145–149. https://doi.org/10.1016/S1672-6308(08)60033-5
dc.relation.referencesZuluaga, K. T., & Uribe-Velez, D. (2019a). Efecto de las condiciones de cultivo sobre la producción del principio activo de Bacillus velezensis ( IBUN 2755 ) y su actividad antimicrobiana contra patógenos de arroz (Issue IBUN 2755). Tesis de pregrado, Universidad del bosque, Universidad Nacional de Colombia, Bogotá.
dc.relation.referencesAndrić, S., Meyer, T., & Ongena, M. (2020). Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Frontiers in Microbiology, 11(June), 1–9. https://doi.org/10.3389/fmicb.2020.01350
dc.relation.referencesAbarca, C., Martinez, A., Caro, M., & Quintero, R. (1992). Optimización del proceso de fermentación para producir Bacillus thuringiensis Var. Aisawai. Universidad: Ciencia y Tecnología, 2(3), 51–56.
dc.relation.referencesAbràmofff, M. D., Magalhães, P. J., & Ram, S. J. (2005). Image processing with ImageJ Part II. Biophotonics International, 11(7), 36–43.
dc.relation.referencesAhimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27(10), 749–754. https://doi.org/10.1016/S0141-0229(00)00295-7
dc.relation.referencesAit Kaki, Asma et al. 2020. “Characterization of New Fengycin Cyclic Lipopeptide Variants Produced by Bacillus Amyloliquefaciens (ET) Originating from a Salt Lake of Eastern Algeria.” Current Microbiology 77(3): 443–51.
dc.relation.referencesAjesh, K., Sudarslal, S., Arunan, C., & Sreejith, K. (2013). Kannurin, a novel lipopeptide from Bacillus cereus strain AK1: Isolation, structural evaluation, and antifungal activities. Journal of Applied Microbiology, 115(6), 1287–1296. https://doi.org/10.1111/jam.12324
dc.relation.referencesAkone, Sergi Herve et al. 2016. “Inducing Secondary Metabolite Production by the Endophytic Fungus Chaetomium Sp. through Fungal–Bacterial Co-Culture and Epigenetic Modification.” Tetrahedron 72(41): 6340–47.
dc.relation.referencesAkpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H., & Thonart, P. (2001). Influence of culture conditions on lipopeptide production by Bacillus subtilis. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 91–93, 551–561. https://doi.org/10.1385/ABAB:91-93:1-9:551
dc.relation.referencesAl-Ajlani, M. M., Sheikh, M. A., Ahmad, Z., & Hasnain, S. (2007). Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factories, 6, 1–8. https://doi.org/10.1186/1475-2859-6-17
dc.relation.referencesAlbarracín Orio, Andrea G. et al. 2020. “Fungal–Bacterial Interaction Selects for Quorum Sensing Mutants with Increased Production of Natural Antifungal Compounds.” Communications Biology 3(1).
dc.relation.referencesAlenezi, Faizah N. et al. 2021. “Bacillus Velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance.” Forests 12(12): 2022.
dc.relation.referencesAljowaie, R. M., Abdel Gawwad, M. R., Al Farraj, D. A., H, J. K., & Rajendran, P. (2021). In-vitro antimicrobial susceptibility pattern of lipopeptide against drug resistant Vibrio species. In Journal of Infection and Public Health (Vol. 14, Issue 12, pp. 1887–1892). https://doi.org/10.1016/j.jiph.2021.10.015
dc.relation.referencesArguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 1–12. https://doi.org/10.1186/1475-2859-8-63
dc.relation.referencesAron, Allegra T. et al. 2020. “Reproducible Molecular Networking of Untargeted Mass Spectrometry Data Using GNPS.” Nature Protocols 15(6): 1954–91. http://dx.doi.org/10.1038/s41596-020-0317-5.
dc.relation.referencesArora, Divya et al. 2017. “Bacillus Amyloliquefaciens Induces Production of a Novel Blennolide k in Co-Culture of Setophoma Terrestris.” Journal of Applied Microbiology.
dc.relation.referencesArrebola, E., R. Jacobs, and L. Korsten. 2010. “Iturin A Is the Principal Inhibitor in the Biocontrol Activity of Bacillus Amyloliquefaciens PPCB004 against Postharvest Fungal Pathogens.” Journal of Applied Microbiology 108(2): 386–95.
dc.relation.referencesBarale, Sagar S., Savaliram G. Ghane, and Kailas D. Sonawane. 2022. “Purification and Characterization of Antibacterial Surfactin Isoforms Produced by Bacillus Velezensis SK.” AMB Express 12(1).
dc.relation.referencesBarraza R, Z., Bravo J, A., & Pérez-Cordero, A. (2017). Pseudomonas aeruginosa productora de metabolito con actividad antimicrobiana contra Burkholderia glumae. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 114–121. https://doi.org/10.24188/recia.v9.ns.2017.529
dc.relation.referencesBehera, Sunita et al. 2022. “Antibacterial Properties of Quinoline Derivatives: A Mini-Review.” Biointerface Research in Applied Chemistry 12(5): 6078–92.
dc.relation.referencesBen Ayed, H., Jemil, N., Maalej, H., Bayoudh, A., Hmidet, N., & Nasri, M. (2015). Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. International Biodeterioration and Biodegradation, 99, 8–14. https://doi.org/10.1016/j.ibiod.2014.12.009
dc.relation.referencesBerić, Tanja, Milan Kojic, and Slaviša Stanković. 2012. Antimicrobial Activity of Bacillus Sp. Natural Isolates and Their Potential Use in the Biocontrol of Phytopathogenic Bacteria. https://www.researchgate.net/publication/258433474.
dc.relation.referencesBie, Xiaomei, Zhaoxin Lu, and Fengxia Lu. 2009. “Identification of Fengycin Homologues from Bacillus Subtilis with ESI-MS/CID.” Journal of Microbiological Methods 79(3): 272–78.
dc.relation.referencesBizani, D., & Brandelli, A. (2004). Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation. Applied Microbiology and Biotechnology, 65(2), 158–162. https://doi.org/10.1007/s00253-004-1570-1
dc.relation.referencesBlanco Zapata, D. C. (2012). Evaluación de bacilos aerobios formadores de endosporas (bafes) para el control biológico de Rhizoctonia solani Kuhn en el cultivo de papa criolla (solanum tuberosum Grupo Phureja). 89. http://www.bdigital.unal.edu.co/10703/
dc.relation.referencesBlunt, John, Murray Munro, and Meg Upjohn. 2012. The Role of Databases in Marine Natural Products Research.
dc.relation.referencesBöcker, Sebastian, and Kai Dührkop. 2016. “Fragmentation Trees Reloaded.” Journal of Cheminformatics 8(1).
dc.relation.referencesBonmatin, Jean-Marc, Olivier Laprévote, and Françoise Peypoux. 2003. 6 Combinatorial Chemistry & High Throughput Screening Diversity Among Microbial Cyclic Lipopeptides: Iturins and Surfactins. Activity-Structure Relationships to Design New Bioactive Agents.
dc.relation.referencesBoukaew, S., Plubrukam, A., & Prasertsan, P. (2013). Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl, 58(4), 471–482. https://doi.org/10.1007/s10526-013-9510-6
dc.relation.referencesButcher, Rebecca A et al. 2007. The Identification of Bacillaene, the Product of the PksX Megacomplex in Bacillus Subtilis. www.pnas.org/cgi/content/full/.
dc.relation.referencesCalvo, Héctor et al. 2020. “Antifungal Activity of the Volatile Organic Compounds Produced by Bacillus Velezensis Strains against Postharvest Fungal Pathogens.” Postharvest Biology and Technology 166.
dc.relation.referencesCaulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology, 10(FEB), 1–19. https://doi.org/10.3389/fmicb.2019.00302
dc.relation.referencesCeballos, I., Mosquera, S., Angulo, M., Mira, J. J., Argel, L. E., Uribe-Velez, D., Romero-Tabarez, M., Orduz-Peralta, S., & Villegas, V. (2012). Cultivable Bacteria Populations Associated with Leaves of Banana and Plantain Plants and Their Antagonistic Activity Against Mycosphaerella fijiensis. Microbial Ecology, 64(3), 641–653. https://doi.org/10.1007/s00248-012-0052-8
dc.relation.referencesChandra Dev Sharma, Subed et al. 2013. Journal of Microbiology ANTIBACTERIAL AND CYTOTOXIC ACTIVITY OF BACILLUS METHYLOTROPHICUS-SCS2012 ISOLATED FROM SOIL.
dc.relation.referencesChen, H. et al. 2008. “Isolation and Characterization of Lipopeptide Antibiotics Produced by Bacillus Subtilis.” Letters in Applied Microbiology 47(3): 180–86.
dc.relation.referencesChen, Huiqin et al. 2015. “Inducing Secondary Metabolite Production by the Soil-Dwelling Fungus Aspergillus Terreus through Bacterial Co-Culture.” Phytochemistry Letters 12: 35–41.
dc.relation.referencesChen, L. (2017). Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau. Journal of Biotechnology, 251, 124–127. https://doi.org/10.1016/j.jbiotec.2017.04.034
dc.relation.referencesChen, L., Heng, J., Qin, S., & Bian, K. (2018). A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS ONE, 13(6), 1–22. https://doi.org/10.1371/journal.pone.0198560
dc.relation.referencesChen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218(August 2018), 41–48. https://doi.org/10.1016/j.micres.2018.10.002
dc.relation.referencesChen, Liang Yu et al. 2019. “Analysis of the Complete Genome Sequence of a Marine-Derived Strain Streptomyces Sp. S063 CGMCC 14582 Reveals Its Biosynthetic Potential to Produce Novel Anti-Complement Agents and Peptides.” PeerJ 2019(1).
dc.relation.referencesChen, M. C., Wang, J. P., Zhu, Y. J., Liu, B., Yang, W. J., & Ruan, C. Q. (2019). Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. Journal of Applied Microbiology, 126(5), 1519–1529. https://doi.org/10.1111/jam.14213
dc.relation.referencesChen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., & Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 140(1–2), 27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011
dc.relation.referencesChen, Yulin et al. 2017. “Characterization of Lipopeptide Biosurfactants Produced by Bacillus Licheniformis MB01 from Marine Sediments.” Frontiers in Microbiology 8(MAY): 1–11.
dc.relation.referencesChen, Z., Zhao, L., Dong, Y., Chen, W., Li, C., Gao, X., Chen, R., Li, L., & Xu, Z. (2021). The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: Evaluation of ZW10 as a potential biopesticide. PLoS ONE, 16(8 August), 1–14. https://doi.org/10.1371/journal.pone.0256807
dc.relation.referencesChen, Zongxiao et al. 2020. “Identification and Quantification of Surfactin, a Nonvolatile Lipopeptide in Moutai Liquor.” International Journal of Food Properties 23(1): 189–98.
dc.relation.referencesChica L., J., Tirado O., Y. C., & Barreto O., J. M. (2016). Indicadores de competitividad del cultivo del arroz en Colombia y Estados Unidos. Revista de Ciencias Agrícolas, 33(2), 16. https://doi.org/10.22267/rcia.163302.49
dc.relation.referencesChien, C. C., & Chang, Y. C. (1987). The susceptibility of rice plants at different growth stages and of 21 commercial rice varieties to Pseudomonas glumae. Journal of Agricultural Research of China, 36(3), 302–310.
dc.relation.referencesChou, H., Xiao, Y.-T., Tsai, J.-N., Li, T.-T., Wu, H.-Y., Liu, L. D., Tzeng, D.-S., & Chung, C.-L. (2019). In vitro and in planta evaluation of Trichoderma asperellum TA as a biocontrol agent against Pyrrhoderma noxium , the cause of brown root rot disease of trees . Plant Disease, 250, 1–40. https://doi.org/10.1094/pdis-01-19-0179-re
dc.relation.referencesChowdhury, S. P., Hartmann, A., Gao, X. W., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - A review. Frontiers in Microbiology, 6(JUL), 1–11. https://doi.org/10.3389/fmicb.2015.00780
dc.relation.referencesChowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., & Hartmann, A. (2015). Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani . Molecular Plant-Microbe Interactions, 28(9), 984–995. https://doi.org/10.1094/mpmi-03-15-0066-r
dc.relation.referencesConrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6
dc.relation.referencesCortes Osorio, N., Endrika, R., Kalbitz, K., & Vogel, C. (2020). Effects of carbon to nitrogen ratios on amounts and composition of Bacillus subtilis biofilms Effects of carbon to nitrogen ratios on amounts and composition of Bacillus subtilis biofilms. May. https://doi.org/10.5194/egusphere-egu2020-10286
dc.relation.referencesCotes Prado, A. M., Fargetton, X., Köhl, J., Díaz García, A., Gómez Álvarez, M. I., Grijalba Bernal, E. P., Santos Diaz, A. M., Cruz Barrera, F. M., León Moreno, D. M., Alarcón Torres, E. A., Uribe, L. A., Torres Torres, L., Moreno, F., Betancourt, R. A., Aragón Rodríguez, S. M., Martínez Vargas, Y. A., Sabogal, A. E., Rodríguez, M. L., Borrero Echeverry, F., … Kondo, T. (2018b). Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas (volumen 2). In Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas (volumen 2). https://doi.org/10.21930/agrosavia.investigation.7402544
dc.relation.referencesDaas, Mohamed Seghir et al. 2018. “Bacillus Amyloliquefaciens Ssp. Plantarum F11 Isolated from Algerian Salty Lake as a Source of Biosurfactants and Bioactive Lipopeptides.” FEMS Microbiology Letters 365(1).
dc.relation.referencesDame, Z. T., Rahman, M., & Islam, T. (2021). Bacilli as sources of agrobiotechnology : recent advances and future directions. https://doi.org/10.1080/17518253.2021.1905080
dc.relation.referencesDANE. (2020). Encuesta nacional de arroz mecanizado (ENAM) Históricos 2019. Boletín Técnico, 1–29.
dc.relation.referencesDang, Yulei et al. 2019. “Enhanced Production of Antifungal Lipopeptide Iturin A by Bacillus Amyloliquefaciens LL3 through Metabolic Engineering and Culture Conditions Optimization.” Microbial Cell Factories 18(1).
dc.relation.referencesDatta, S., Sarkar, M., Chowdhury, A., Rakwal, R., Agrawal, G. K., & Sarkar, A. (2021). A comprehensive insight into the biology of Rhizoctonia solani AG1-IA Kühn, the causal organism of the sheath blight disease of rice. Journal of Plant Pathology, 79–98. https://doi.org/10.1007/s42161-021-00974-3
dc.relation.referencesDavis, D. A., Lynch, H. C., & Varley, J. (1999). The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme and Microbial Technology, 25(3–5), 322–329. https://doi.org/10.1016/S0141-0229(99)00048-4
dc.relation.referencesde Faria, Andreia Fonseca et al. 2011. “Production and Structural Characterization of Surfactin (C 14/Leu7) Produced by Bacillus Subtilis Isolate LSFM-05 Grown on Raw Glycerol from the Biodiesel Industry.” Process Biochemistry 46(10): 1951–57.
dc.relation.referencesDebois, Delphine et al. 2008. “In Situ Localisation and Quantification of Surfactins in a Bacillus Subtilis Swarming Community by Imaging Mass Spectrometry.” Proteomics 8(18): 3682–91.
dc.relation.referencesDeFilippi, Stefanie et al. 2018. “Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus Subtilis Strain B9–5.” Journal of Chemical Ecology 44(4): 374–83.
dc.relation.referencesDeleu, Magali et al. 2003. “Interaction of Surfactin with Membranes: A Computational Approach.” Langmuir 19(8): 3377–85.
dc.relation.referencesDesmyttere, Hélène et al. 2019. “Antifungal Activities of Bacillus Subtilis Lipopeptides to Two Venturia Inaequalis Strains Possessing Different Tebuconazole Sensitivity.” Frontiers in Microbiology 10(OCT).
dc.relation.referencesDeutscher, J. (2008). The mechanisms of carbon catabolite repression in bacteria. Current Opinion in Microbiology, 11(2), 87–93. https://doi.org/10.1016/j.mib.2008.02.007
dc.relation.referencesDevescovi, G., Bigirimana, J., Degrassi, G., Cabrio, L., LiPuma, J. J., Kim, J., Hwang, I., & Venturi, V. (2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Applied and Environmental Microbiology, 73(15), 4950–4958. https://doi.org/10.1128/AEM.00105-07
dc.relation.referencesDimkic, Ivica et al. 2017a. “The Profile and Antimicrobial Activity of Bacillus Lipopeptide Extracts of Five Potential Biocontrol Strains.” Frontiers in Microbiology 8(MAY).
dc.relation.referencesDing, Haixia et al. 2021. “Whole Genome Sequence of Bacillus Velezensis Strain GUMT319: A Potential Biocontrol Agent Against Tobacco Black Shank Disease.” Frontiers in Microbiology 12.
dc.relation.referencesDing, Wenping et al. 2022. “Structures and Antitumor Activities of Ten New and Twenty Known Surfactins from the Deep-Sea Bacterium Limimaricola Sp. SCSIO 53532.” Bioorganic Chemistry 120.
dc.relation.referencesDonelli, Gianfranco. 2019. “Advances-in-Microbiology-Infectious-Diseases-and-Public-Health-2020.” : 37–70.
dc.relation.referencesDong, Xiaoyan et al. 2022. “The Genome of Bacillus Velezensis SC60 Provides Evidence for Its Plant Probiotic Effects.” Microorganisms 10(4): 767. https://www.mdpi.com/2076-2607/10/4/767.
dc.relation.referencesDoran, Pauline M. 2013. “Mass Transfer.” In Bioprocess Engineering Principles, Elsevier, 379–444. https://linkinghub.elsevier.com/retrieve/pii/B9780122208515000101.
dc.relation.referencesDührkop, Kai et al. 2015. “Searching Molecular Structure Databases with Tandem Mass Spectra Using CSI:FingerID.” Proceedings of the National Academy of Sciences of the United States of America 112(41): 12580–85.
dc.relation.referencesDührkop, Kai et al. 2019. “SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information.” Nature Methods 16(4): 299–302.
dc.relation.referencesDunlap, Christopher A., Michael J. Bowman, and Daniel R. Zeigler. 2020. “Promotion of Bacillus Subtilis Subsp. Inaquosorum, Bacillus Subtilis Subsp. Spizizenii and Bacillus Subtilis Subsp. Stercoris to Species Status.” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 113(1): 1–12.
dc.relation.referencesEcheverri R., J. (2016). “MAL DEL PIE”, OBJETIVO PRIORITARIO DE LA INVESTIGACION EN ARROZ. Investigación - Fedearroz - Fondo Nacional Del Arroz En.
dc.relation.referencesElsorra, E. I., H, B., H, R., & R, B. (2004). Use of Bacillus subtilis as biocontrol agent . VI . Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24 , FZB42 , FZB45 and Bacillus subtilis FZB37 / Nutzung von Bacillus subtilis als Mittel f.
dc.relation.referencesEspinal, Carlos., Martinez, H., & Acevedo, Ximena. (2006). LA CADENA DEL ARROZ EN COLOMBIA UNA MIRADA GLOBAL DE SU ESTRUCTURA Y DINAMICA 1991-2005. 123, 17.
dc.relation.referencesFan, Haiyan et al. 2017. “Fengycin Produced by Bacillus Subtilis 9407 Plays a Major Role in the Biocontrol of Apple Ring Rot Disease.” Microbiological Research 199: 89–97.
dc.relation.referencesFAO, F. and A. O. of the U. N. (2021). Perspectivas alimentarias. Perspectivas Alimentarias, 1–4.
dc.relation.referencesFAO. (2004). Año internacional del arroz. Cuadro 1, 2.
dc.relation.referencesFAO. (2020). Food and Agricultural Organization of the United Nations Statistics Division.
dc.relation.referencesFifani, Barbara et al. 2022. “Coculture of Trichoderma Harzianum and Bacillus Velezensis Based on Metabolic Cross-Feeding Modulates Lipopeptide Production.” Microorganisms 10(5): 1059. https://www.mdpi.com/2076-2607/10/5/1059.
dc.relation.referencesFira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044
dc.relation.referencesFlórez, N. M. V., & Uribe, D. (2011). Determinación de la Infección de Burkholderia glumae en Semillas de Variedades Comerciales Colombianas de Arroz Determination of the Infeccion of Burkholderia glumae in Comercial Colombian Rice Varieties. Revista Facultad Nacional de Agronomía, 64(2), 6093–6104.
dc.relation.referencesFonseca, R. R., Silva, A. J. R., De França, F. P., Cardoso, V. L., & Sérvulo, E. F. C. (2007). Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Applied Biochemistry and Biotechnology, 137–140(1–12), 471–486. https://doi.org/10.1007/s12010-007-9073-z
dc.relation.referencesFory, P. A., Triplett, L., Ballen, C., Abello, J. F., Duitama, J., Aricapa, M. G., Prado, G. A., Correa, F., Hamilton, J., Leach, J. E., Tohme, J., & Mosquera, G. M. (2014). Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology, 104(5), 436–444. https://doi.org/10.1094/PHYTO-07-13-0186-R
dc.relation.referencesFrancius, Grégory et al. 2008. “Nanoscale Membrane Activity of Surfactins: Influence of Geometry, Charge and Hydrophobicity.” Biochimica et Biophysica Acta - Biomembranes 1778(10): 2058–68.
dc.relation.referencesFranke, P., Vater, J., & Borriss, R. (2004). Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in. Society, 186(4), 1084–1096. https://doi.org/10.1128/JB.186.4.1084
dc.relation.referencesFraterrigo Garofalo, S., Tommasi, T., & Fino, D. (2021). A short review of green extraction technologies for rice bran oil. Biomass Conversion and Biorefinery, 11(2), 569–587. https://doi.org/10.1007/s13399-020-00846-3
dc.relation.referencesGañán Betancur, L. (2011). MANEJO INTEGRADO DEL AÑUBLO BACTERIAL DE LA PANÍCULA DEL ARROZ (Oryza sativa L.) CAUSADO POR Burkholderia glumae KURITA & TABEI: UNA REVISIÓN. Agron, 19(2), 79–90.
dc.relation.referencesGao, Zhenfeng et al. 2017. “Identification of Endophytic Bacillus Velezensis ZSY-1 Strain and Antifungal Activity of Its Volatile Compounds against Alternaria Solani and Botrytis Cinerea.” Biological Control 105: 27–39.
dc.relation.referencesGhasem, D.Najafpour. 2007. “Gas and Liquid System (Aeration and Agitation).” In Biochemical Engineering and Biotechnology, , 22–28.
dc.relation.referencesGhazala, I., Bouassida, M., Krichen, F., Manuel Benito, J., Ellouz-Chaabouni, S., & Haddar, A. (2017). Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: Production, characterization, and identification. Engineering in Life Sciences, 17(12), 1244–1253. https://doi.org/10.1002/elsc.201700020
dc.relation.referencesGhosh, S., Gupta, S. K., & Jha, G. (2014). Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani. Current Genetics, 60(4), 327–341. https://doi.org/10.1007/s00294-014-0438-x
dc.relation.referencesGnanamanickam, S. S. (2009). Biological Control of Rice Diseases Progress in Biological Control.
dc.relation.referencesGoldman, Emanuel, and Lorrence Green. 2009. Practical Handbook of MICROBIOLOGY.
dc.relation.referencesGómez, M. I., Alarcón, A., León, M., Oehlschlager, C., & Solórzano, L. (2018). Comercialización de agentes de control biológico. 762–793.
dc.relation.referencesGong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J., Zhang, J. B., & Liao, Y. C. (2015). Antagonistic mechanism of iturin a and plipastatin a from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE, 10(2), 1–18. https://doi.org/10.1371/journal.pone.0116871
dc.relation.referencesGonzález-Jaramillo, Lina María et al. 2017. “Antimycotic Activity of Fengycin C Biosurfactant and Its Interaction with Phosphatidylcholine Model Membranes.” Colloids and Surfaces B: Biointerfaces 156: 114–22.
dc.relation.referencesGörke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology, 6(8), 613–624. https://doi.org/10.1038/nrmicro1932
dc.relation.referencesGrabski, Anthony C. 2009. “Chapter 18 Advances in Preparation of Biological Extracts for Protein Purification.” In Methods in Enzymology, Academic Press Inc., 285–303.
dc.relation.referencesGrady, Elliot Nicholas et al. 2019. “Characterization and Complete Genome Analysis of the Surfactin-Producing, Plant-Protecting Bacterium Bacillus Velezensis 9D-6.” BMC Microbiology 19(1): 1–14.
dc.relation.referencesGrangemard, Isabelle, Jean Wallach, Regine Maget-Dana, and Françoise Peypoux. 2001. 90 Applied Biochemistry and Biotechnology Lichenysin A More Efficient Cation Chelator Than Surfactin.
dc.relation.referencesGregan, Kalusha Chitalu. 2016. Antifungal and Antibacterial Properties of Surfactin Produced by Bacillus Subtilis Cultured on Molasses. http://www.globalscienceresearchjournals.org/.
dc.relation.referencesHam, J. H., Melanson, R. A., & Rush, M. C. (2011). Burkholderia glumae: Next major pathogen of rice? Molecular Plant Pathology, 12(4), 329–339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
dc.relation.referencesHam, Jong Hyun, Rebecca A. Melanson, and Milton C. Rush. 2011. “Burkholderia Glumae: Next Major Pathogen of Rice?” Molecular Plant Pathology 12(4): 329–39. Insuasty, Daniel et al. 2019. “Antimicrobial Activity of Quinoline-Based Hydroxyimidazolium Hybrids.” Antibiotics 8(4).
dc.relation.referencesHamdache, A., Lamarti, A., & Collado, I. G. (2011). Non-peptide Metabolites from the Genus Bacillus. 893–899. https://doi.org/10.1021/np100853e
dc.relation.referencesHamley, I. W. (2015). Lipopeptides: from self-assembly to bioactivity. Chemical Communications, 51, 8574–8583. https://doi.org/10.1039/C5CC01535A
dc.relation.referencesHamzah, N. A., R. Fatiah, and J. Jamsari. 2021. “Fractionation of Secondary Metabolites from Serratia Plymuthica UBCF_13 Based on Polarity Properties.” In IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd.
dc.relation.referencesHan, X., Shen, D., Xiong, Q., Bao, B., Zhang, W., Dai, T., Zhao, Y., Borriss, R., & Fan, B. (2021). The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen phytophthora sojae due to bacilysin production. Applied and Environmental Microbiology, 87(23). https://doi.org/10.1128/AEM.01601-21
dc.relation.referencesHao, Kun et al. 2019. “Effectiveness of Bacillus Pumilus PDSLzg-1, an Innovative Hydrocarbon-Degrading Bacterium Conferring Antifungal and Plant Growth-Promoting Function.” 3 Biotech 9(8).
dc.relation.referencesHawerroth, C., Araujo, L., & Rodrigues, F. Á. (2017). Infection process of Gaeumannomyces graminis var. graminis on the roots and culms of rice. Journal of Phytopathology, 165(10), 692–700. https://doi.org/10.1111/jph.12608
dc.relation.referencesHue, Nathalie, Laurent Serani, and Olivier Lapré. 2000. Structural Investigation of Cyclic Peptidolipids from Bacillus Subtilis by High-Energy Tandem Mass Spectrometry.
dc.relation.referencesJacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E., & Thonart, P. (1999). Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 Plackett-Burman design. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 77–79, 223–233. https://doi.org/10.1385/abab:77:1-3:223
dc.relation.referencesJeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T., & Hwang, I. (2007). Toxoflavin Produced by Burkholderia glumae Causing Rice Grain Rot Is Responsible for Inducing Bacterial Wilt in Many Field Crops . Plant Disease, 87(8), 890–895. https://doi.org/10.1094/pdis.2003.87.8.890
dc.relation.referencesK.T, Rasiya, and Denoj Sebastian. 2021. “Iturin and Surfactin from the Endophyte Bacillus Amyloliquefaciens Strain RKEA3 Exhibits Antagonism against Staphylococcus Aureus.” Biocatalysis and Agricultural Biotechnology 36.
dc.relation.referencesKanamoto, Shoichi, Nagai Sotoo, Ohki Kazuhiro, and Yasuda Yuka. 1995. Study on Surfactin, a Cyclic Depsipeptide. I. Isolation and Structure of Eight Surfactin Analogs Produced by Bacillus Natto KMD 2311.
dc.relation.referencesKaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110
dc.relation.referencesKatajamaa, Mikko, Jarkko Miettinen, and Matej Orešič. 2006. “MZmine: Toolbox for Processing and Visualization of Mass Spectrometry Based Molecular Profile Data.” Bioinformatics 22(5): 634–36.
dc.relation.referencesKeswani, C., Singh, H. B., García-Estrada, C., Caradus, J., He, Y. W., Mezaache-Aichour, S., Glare, T. R., Borriss, R., & Sansinenea, E. (2020). Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology, 104(3), 1013–1034. https://doi.org/10.1007/s00253-019-10300-8
dc.relation.referencesKim, Ji Hun et al. 2021. “Discovery of Novel Secondary Metabolites Encoded in Actinomycete Genomes through Coculture.” Journal of industrial microbiology & biotechnology 48(3–4): 1–16.
dc.relation.referencesKim, S. Y., Lee, S. Y., Weon, H., Sang, M. K., & Song, J. (2016). Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. Journal of Biotechnology. https://doi.org/10.1016/j.jbiotec.2016.11.023
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845
dc.relation.referencesKrishnan, Natarajan, Balasubramanian Velramar, and Rajesh Kannan Velu. 2019. “Investigation of Antifungal Activity of Surfactin against Mycotoxigenic Phytopathogenic Fungus Fusarium Moniliforme and Its Impact in Seed Germination and Mycotoxicosis.” Pesticide Biochemistry and Physiology 155: 101–7.
dc.relation.referencesKumar Gupta, Vijai, and Maria G Tuohy. 2022. Fungal Biology. http://www.springer.com/series/11224.
dc.relation.referencesKurnianto, Muhammad Alfid, Harsi Dewantari Kusumaningrum, Hanifah Nuryani Lioe, and Ekowati Chasanah. 2021. “Antibacterial and Antioxidant Potential of Ethyl Acetate Extract from Streptomyces AIA12 and AIA17 Isolated from Gut of Chanos.” Biodiversitas 22(8): 3196–3206.
dc.relation.referencesLacerda, A., De Carvalho, U., Henrique, F., Corrêa De Oliveira, P., De Lima, R., Mariano, R., Gouveia, E. R., & Souto-Maior, A. M. (2010). Growth, Sporulation and Production of Bioactive Compounds by Bacillus subtilis R14. Arch. Biol. Technol. v, 53353(3), 643–652.
dc.relation.referencesLandy, M., Warren, G. H., Rosenmanm, S. B., & Colio, L. G. (1948). Bacillomycin: An Antibiotic from Bacillus subtilis Active against Pathogenic Fungi. Proceedings of the Society for Experimental Biology and Medicine, 67(4), 539–541. https://doi.org/10.3181/00379727-67-16367
dc.relation.referencesLegein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology, 11(July). https://doi.org/10.3389/fmicb.2020.01619
dc.relation.referencesLeggett, M., Leland, J., Kellar, K., & Epp, B. (2011). Formulation of microbial biocontrol agents-an industrial perspective. Canadian Journal of Plant Pathology, 33(2), 101–107. https://doi.org/10.1080/07060661.2011.563050
dc.relation.referencesLei, Shuzhen et al. 2019. “Capability of Iturin from Bacillus Subtilis to Inhibit Candida Albicans in Vitro and in Vivo.” Applied Microbiology and Biotechnology 103(11): 4377–92.
dc.relation.referencesLi, D., Li, S., Wei, S., & Sun, W. (2021). Strategies to Manage Rice Sheath Blight: Lessons from Interactions between Rice and Rhizoctonia solani. Rice, 14(1). https://doi.org/10.1186/s12284-021-00466-z
dc.relation.referencesLI, L., Qiao, B., & Yuan, Y. (2007). Nitrogen Sources Affect Streptolydigin Production and Related Secondary Metabolites Distribution of Streptomyces lydicus AS 4.2501. Chinese Journal of Chemical Engineering, 15(3), 403–410. https://doi.org/10.1016/s1004-9541(07)60099-8
dc.relation.referencesLi, Tingting et al. 2020a. “Co-Culture of Trichoderma Atroviride SG3403 and Bacillus Subtilis 22 Improves the Production of Antifungal Secondary Metabolites.” Biological Control 140: 104122.
dc.relation.referencesLi, Xinxin et al. 2020. “Antifungal Effect of Volatile Organic Compounds from Bacillus Velezensis CT32 against Verticillium Dahliae and Fusarium Oxysporum.” Processes 8(12): 1–14.
dc.relation.referencesLim, Seong Mi et al. 2017. “Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus Velezensis G341 against Various Phytopathogenic Fungi.” Plant Pathology Journal 33(5): 488–98.
dc.relation.referencesLiu, Kang et al. 2020. “Rational Design, Properties, and Applications of Biosurfactants: A Short Review of Recent Advances.” Current Opinion in Colloid and Interface Science 45: 57–67.
dc.relation.referencesLiu, Qiang et al. 2014. “Production of Surfactin Isoforms by Bacillus Subtilis BS-37 and Its Applicability to Enhanced Oil Recovery under Laboratory Conditions.” Biochemical Engineering Journal 93: 31–37.
dc.relation.referencesLiu, Xiangyang et al. 2010. “Production and Characterization of a Group of Bioemulsifiers from the Marine Bacillus Velezensis Strain H3.” Applied Microbiology and Biotechnology 87(5): 1881–93.
dc.relation.referencesLiu, Xiangyang et al. 2012. “Optimization for the Production of Surfactin with a New Synergistic Antifungal Activity.” PLoS ONE 7(5).
dc.relation.referencesLiu, Z., Zhu, Y., Shi, H., Qiu, J., Ding, X., & Kou, Y. (2021). Recent progress in rice broad-spectrum disease resistance. International Journal of Molecular Sciences, 22(21), 1–17. https://doi.org/10.3390/ijms222111658
dc.relation.referencesLudwig, Marcus et al. 2020. “Database-Independent Molecular Formula Annotation Using Gibbs Sampling through ZODIAC.” Nature Machine Intelligence 2(10): 629–41.
dc.relation.referencesLuzzatto-Knaan, Tal, Alexey v. Melnik, and Pieter C. Dorrestein. 2019. “Mass Spectrometry Uncovers the Role of Surfactin as an Interspecies Recruitment Factor.” ACS Chemical Biology 14(3): 459–67.
dc.relation.referencesMa, Yunxiao et al. 2016. “Identification of Lipopeptides in Bacillus Megaterium by Two-Step Ultrafiltration and LC–ESI–MS/MS.” AMB Express 6(1).
dc.relation.referencesMa, Zongwang et al. 2020. “Isolation and Characterization of a New Cyclic Lipopeptide Surfactin from a Marine-Derived Bacillus Velezensis SH-B74.” Journal of Antibiotics 73(12): 863–67.
dc.relation.referencesMacwilliams, Maria P, and Min-Ken Liao. 2016. Luria Broth (LB) and Luria Agar (LA) Media and Their Uses Protocol. www.asmscience.org.
dc.relation.referencesMadhusoodanan, Geethu, Raghu Chandrashekar Hariharapura, and Divyashree Somashekara. 2022. “Dissolved Oxygen as a Propulsive Parameter for Polyhydroxyalkanoate Production Using Bacillus Endophyticus Cultures.” Environment, Development and Sustainability 24(4): 4641–58.
dc.relation.referencesMartinez B., Andrea Paola. 2019. Co-Cultivo de Microorganismos de Origen Marino Como Estrategia Para La Producción Diferencial de Metabolitos Especializados.
dc.relation.referencesMcDowell, T., Solomon, O., Yuan, Z.-C., MacDonald, J., Weselowski, B., Grady, E. N., Renaud, J., & Ho, M. T. (2019). Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiology, 19(1), 1–14. https://doi.org/10.1186/s12866-018-1380-8
dc.relation.referencesMeena, K. R., Dhiman, R., Singh, K., Kumar, S., Sharma, A., Kanwar, S. S., Mondal, R., Das, S., Franco, O. L., & Mandal, A. K. (2021). Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016. Microbial Cell Factories, 20(1), 1–12. https://doi.org/10.1186/s12934-021-01519-0
dc.relation.referencesMeena, K. R., Tandon, T., Sharma, A., & Kanwar, S. S. (2018). Lipopeptide antibiotic production by Bacillus velezensis KLP2016. Journal of Applied Pharmaceutical Science, 8(3), 91–98. https://doi.org/10.7324/JAPS.2018.8313
dc.relation.referencesMeena, Khem Raj, and Shamsher S. Kanwar. 2015. “Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics.” BioMed Research International 2015: 1–9.
dc.relation.referencesMeena, Khem Raj, Tanuja Tandon, Abhishek Sharma, and Shamsher S. Kanwar. 2018. “Lipopeptide Antibiotic Production by Bacillus Velezensis KLP2016.” Journal of Applied Pharmaceutical Science 8(3): 91–98.
dc.relation.referencesMeng, Yong et al. 2016. “Structural Analysis of the Lipopeptide Produced by the Bacillus Subtilis Mutant R2-104 with Mutagenesis.” Applied Biochemistry and Biotechnology 179(6): 973–85.
dc.relation.referencesMnif, Inès et al. 2016. “Purification and Identification of Bacillus Subtilis SPB1 Lipopeptide Biosurfactant Exhibiting Antifungal Activity against Rhizoctonia Bataticola and Rhizoctonia Solani.” Environmental Science and Pollution Research 23(7): 6690–99.
dc.relation.referencesMohimani, Hosein et al. 2017. “Dereplication of Peptidic Natural Products through Database Search of Mass Spectra.” Nature Chemical Biology 13(1): 30–37. http://dx.doi.org/10.1038/nchembio.2219.
dc.relation.referencesMondol, Muhammad Abdul Mojid, Hee Jae Shin, and Mohammad Tofazzal Islam. 2013. “Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity.” Marine Drugs 11(8): 2846–72.
dc.relation.referencesMora, I., Cabrefiga, J., & Montesinos, E. (2015). Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLoS ONE, 10(5), 1–21. https://doi.org/10.1371/journal.pone.0127738
dc.relation.referencesMoreno-Velandia, C. A., Ongena, M., Kloepper, J. W., & Cotes, A. M. (2021). Biosynthesis of Cyclic Lipopeptides by Bacillus velezensis Bs006 and its Antagonistic Activity are Modulated by the Temperature and Culture Media Conditions. Current Microbiology, 78(9), 3505–3515. https://doi.org/10.1007/s00284-021-02612-8
dc.relation.referencesMosquera, S., González-Jaramillo, L. M., Orduz, S., & Villegas-Escobar, V. (2014). Multiple response optimization of Bacillus subtilis EA-CB0015 culture and identification of antifungal metabolites. Biocatalysis and Agricultural Biotechnology, 3(4), 378–385. https://doi.org/10.1016/j.bcab.2014.09.004
dc.relation.referencesMoyne, A.-L, R Shelby, T E Cleveland, and S Tuzun. 2001. Bacillomycin D: An Iturin with Antifungal Activity against Aspergillus ¯avus.
dc.relation.referencesNair, A., & Sarma, S. J. (2021). The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiological Research, 251(September 2020), 126831. https://doi.org/10.1016/j.micres.2021.126831
dc.relation.referencesNandakumar, R., Bollich, P. A., Shahjahan, A. K. M., Groth, D. E., & Rush, M. C. (2008). Evidence for the soilborne nature of the rice sheath rot and panicle blight pathogen, burkholderia gladioli. Canadian Journal of Plant Pathology, 30(1), 148–154. https://doi.org/10.1080/07060660809507505
dc.relation.referencesNandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E., Clark, C. A., Cartwright, R. D., & Rush, M. C. (2009). Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States . Plant Disease, 93(9), 896–905. https://doi.org/10.1094/pdis-93-9-0896
dc.relation.referencesNarayanasamy, P. (2013). Biological Management of Diseases of Crops. In Biological Management of Diseases of Crops (Vol. 2). https://doi.org/10.1007/978-94-007-6380-7
dc.relation.referencesNasser, E. B., & Samar, S. Q. (2016). Antimicrobial activity of Bacillus cereus: Isolation, identification and the effect of carbon and nitrogen source on its antagonistic activity. Journal of Microbiology and Antimicrobials, 8(2), 7–13. https://doi.org/10.5897/jma2015.0340
dc.relation.referencesNaughton, L. M., An, S. qi, Hwang, I., Chou, S. H., He, Y. Q., Tang, J. L., Ryan, R. P., & Dow, J. M. (2016). Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environmental Microbiology, 18(3), 780–790. https://doi.org/10.1111/1462-2920.13189
dc.relation.referencesNayak, S. K., Nayak, S., & Mishra, B. B. (2016). Antimycotic Role of Soil Bacillus sp. Against Rice Pathogens: A Biocontrol Prospective. In Applied Molecular Biotechnology: The Next Generation of Genetic Engineering (Issue January). https://doi.org/10.1007/978-981-10-6847-8
dc.relation.referencesNetzker, Tina et al. 2015. “Microbial Communication Leading to the Activation of Silent Fungal Secondary Metabolite Gene Clusters.” Frontiers in Microbiology 6(MAR): 1–13.
dc.relation.referencesNgalimat, M. S., Mohd Hata, E., Zulperi, D., Ismail, S. I., Ismail, M. R., Mohd Zainudin, N. A. I., Saidi, N. B., & Yusof, M. T. (2021). Characterization of Streptomyces spp. from Rice Fields as a Potential Biocontrol Agent against Burkholderia glumae and Rice Plant Growth Promoter. Agronomy, 11(9), 1850. https://doi.org/10.3390/agronomy11091850
dc.relation.referencesNgalimat, M. S., Yahaya, R. S. R., Baharudin, M. M. A. A., Yaminudin, S. M., Karim, M., Ahmad, S. A., & Sabri, S. (2021). A review on the biotechnological applications of the operational group bacillus amyloliquefaciens. Microorganisms, 9(3), 1–18. https://doi.org/10.3390/microorganisms9030614
dc.relation.referencesNicolaisen, M. H., Cuong, N. D., Herschend, J., Jensen, B., Loan, L. C., Van Du, P., Sørensen, J., Sørensen, H., & Olsson, S. (2018). Biological control of rice sheath blight using hyphae-associated bacteria: development of an in planta screening assay to predict biological control agent performance under field conditions. BioControl, 63(6), 843–853. https://doi.org/10.1007/s10526-018-09908-y
dc.relation.referencesNothias, Louis Félix et al. 2020. “Feature-Based Molecular Networking in the GNPS Analysis Environment.” Nature Methods 17(9): 905–8.
dc.relation.referencesNwachukwu, B. C., & Ayangbenro, A. S. (2021). Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability.
dc.relation.referencesNyamundanda, Gift, Lorraine Brennan, and Isobel C. Gormley. 2010. “Probabilistic Principal Component Analysis for Metabolomic Data.” BMC Bioinformatics 11.
dc.relation.referencesOhashi, Kazuto, Shigeyuki Kawai, and Kousaku Murata. 2013. “Secretion of Quinolinic Acid, an Intermediate in the Kynurenine Pathway, for Utilization in NAD+ Biosynthesis in the Yeast Saccharomyces Cerevisiae.” Eukaryotic Cell 12(5): 648–53.
dc.relation.referencesOhno, Akihiro, Takashi Ano, and Makoto Shoda. 1995. “Production of a Lipopeptide Antibiotic, Surfactin, by Recombinant Bacillus Subtilis in Solid State Fermentation.” Biotechnology and Bioengineering 47(2): 209–14.
dc.relation.referencesOla, Antonius R.B. et al. 2013. “Inducing Secondary Metabolite Production by the Endophytic Fungus Fusarium Tricinctum through Coculture with Bacillus Subtilis.” Journal of Natural Products 76(11): 2094–99.
dc.relation.referencesOlishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0
dc.relation.referencesOlson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management, 26(5), 203–206. https://doi.org/10.1564/v26_oct_04
dc.relation.referencesOngena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009
dc.relation.referencesOrtega, L., & Rojas, C. M. (2021). Bacterial Panicle Blight and Burkholderia glumae : From Pathogen Biology to Disease Control. Phytopathology®, 111(5), 772–778. https://doi.org/10.1094/PHYTO-09-20-0401-RVW
dc.relation.referencesPalareti, G., Legnani, C., Cosmi, B., Antonucci, E., Erba, N., Poli, D., Testa, S., & Tosetto, A. (2016). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology, 38(1), 42–49. https://doi.org/10.1111/ijlh.12426
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCultivos (Biología)
dc.subject.lembCultures (Biology)
dc.subject.lembTécnicas de cultivo (Biología)
dc.subject.lembCulture techniques(Biology)
dc.subject.proposalMetabolitos secundarios
dc.subject.proposalMedios de cultivo
dc.subject.proposalBiocontrol
dc.subject.proposalRedes moleculares
dc.subject.proposalderreplicación
dc.subject.proposalEspectrometría de masas
dc.subject.proposalcocultivos
dc.subject.proposalSecondary metabolites
dc.subject.proposalCulture media
dc.subject.proposalBiocontrol
dc.subject.proposalMolecular networking
dc.subject.proposaldereplication
dc.subject.proposalCoculture
dc.subject.proposalMass spectrometry
dc.title.translatedCharacterization of the secondary metabolites produced by strain IBUN-2755, involved in antimicrobial and antifungal activity against rice pathogens
dc.title.translatedCharacterization of the secondary metabolites produced by strain IBUN-2755, involved in antimicrobial and antifungal activity against rice pathogens
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentWorkflow
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito