Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorOcampo Carmona, Luz Marina
dc.contributor.advisorRojas Reyes, Néstor Ricardo
dc.contributor.authorEcheverry Vargas, Luver de Jesús
dc.date.accessioned2023-02-07T17:58:24Z
dc.date.available2023-02-07T17:58:24Z
dc.date.issued2022-11-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83360
dc.description.abstractEn esta tesis se obtuvo un concentrado de monacita [fosfato de elementos de tierras raras (ETRs)] a partir de residuos de la minería aluvial de oro, el cual es uno de los minerales más críticos del mundo, por ser fuente de ETRs. Los ETRs son de gran importancia en el desarrollo de materiales tecnológicos. En esta tesis, el concentrado de monacita fue sometido a un proceso de desfosforación con hidróxido de sodio e hidróxido de potasio. Se investigo diferentes condiciones de lixiviación con HCl y H2SO4, que permitirán la máxima extracción de cerio, lantano y neodimio, se determinó que la mayor extracción de estos elementos se logra con H2SO4. Se estableció que la adición de 10 % (v/v) de H2O2 aumenta la disolución de tierras raras hasta en un 93 %. Los ETRs se pueden recuperar hasta valores de 100 % aproximadamente, mediante precipitación con ácido oxálico. Se investigó la extracción de Ce, La y Nd utilizando D2EHP y Cyanex 572 diluidos en n-heptano como extractantes. En todas las condiciones experimentales evaluadas el D2EHP presentó mejores tasas de extracción de los ETRs. Además, se sintetizaron dieciocho solventes eutécticos profundos (DES) de los cuales ocho presentaron capacidad de extracción de Ce, La y Nd y uno de los DES alcanzó extracciones superiores al 90 % de estos elementos. Para tener un mayor entendimiento de la estructura del DES de mayor extracción y su interacción con una solución acuosa acida de lantano, se realizaron una serie de simulaciones de dinámica molecular de los sistemas involucrados y se comprobaron sus propiedades estructurales calculando las funciones de distribución radial de las interacciones principales. (tomado de la fuente)
dc.description.abstractMonazite is a rare earth element phosphate (REE) and is one of the most critical minerals in the world as it serves as a major source of REE. In this thesis, a monazite concentrate was obtained from alluvial gold mining tailings. Subsequently, the monazite concentrate was subjected to a dephosphorization process. Different leaching conditions were investigated with HCl and H2SO4, which will allow the maximum extraction of cerium, lanthanum, and neodymium, it was found that the highest extraction of these elements is achieved with H2SO4. The addition of 10 % (v/v) H2O2 was found to increase rare earth dissolution by up to 93 %. ETRs can be recovered up to ~ 100 % by precipitation with oxalic acid. The extraction of Ce, La and Nd was investigated using D2EHP and Cyanex 572 diluted in nheptane as extractants, in all experimental conditions evaluated D2EHP presented better extraction rates of the ETRs. In addition, eighteen deep eutectic solvents (DES) were synthesized of which eight presented extraction capacity of Ce, La and Nd and one reaching extractions higher than 90 % of these elements. To have a better understanding of the structure of the most extractable DES and their interaction with an acidic aqueous lanthanum solution, a series of molecular dynamics simulations of the systems involved were performed and their structural properties were tested by calculating the radial distribution functions of the main interactions.
dc.format.extentxx, 210 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.titleExtracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupCiencia y Tecnología de Materiales
dc.coverage.regionBagre (Antioquia)
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería – Ciencia y Tecnología de Materiales
dc.description.researchareaMetalurgia extractiva
dc.description.researchareaValorización de residuos
dc.description.researchareaQuímica verde
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbaka-Wood, G. B., Addai-Mensah, J., & Skinner, W. (2016). Review of Flotation and Physical Separation of Rare Earth Element Minerals. 4th UMaT Biennial International Mining and Mineral Conference , 4(August), 55–62.
dc.relation.referencesAbbott, A. P., Capper, G., Davies, D. L., Rasheed, R., & Tambyrajah, V. (2002). International Patent WO 2002026381.
dc.relation.referencesAbbott, A. P., El Ttaib, K., Ryder, K. S., & Smith, E. L. (2008). Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 86(4), 234–240. https://doi.org/10.1179/174591908X327581
dc.relation.referencesAbbott, Andrew P., Al-Barzinjy, A. A., Abbott, P. D., Frisch, G., Harris, R. C., Hartley, J., & Ryder, K. S. (2014). Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Physical Chemistry Chemical Physics, 16(19), 9047–9055. https://doi.org/10.1039/c4cp00057a
dc.relation.referencesAbbott, Andrew P., Barron, J. C., Frisch, G., Ryder, K. S., & Silva, A. F. (2011). The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 56(14), 5272–5279. https://doi.org/10.1016/j.electacta.2011.02.095
dc.relation.referencesAbbott, Andrew P., Barron, J. C., Ryder, K. S., & Wilson, D. (2007). Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry - A European Journal, 13(22), 6495–6501. https://doi.org/10.1002/chem.200601738
dc.relation.referencesAbbott, Andrew P., Bell, T. J., Handa, S., & Stoddart, B. (2006). Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chemistry, 8(9), 784–786. https://doi.org/10.1039/b605258d
dc.relation.referencesAbbott, Andrew P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142–9147. https://doi.org/10.1021/ja048266j
dc.relation.referencesAbbott, Andrew P., Capper, G., Davies, D. L., McKenzie, K. J., & Obi, S. U. (2006). Solubility of metal oxides in deep eutectic solvents based on choline chloride. Journal of Chemical and Engineering Data, 51(4), 1280–1282. https://doi.org/10.1021/je060038c
dc.relation.referencesAbbott, Andrew P., Capper, G., Davies, D. L., Munro, H. L., Rasheed, R. K., & Tambyrajah, V. (2001). Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 1(19), 2010–2011. https://doi.org/10.1039/b106357j
dc.relation.referencesAbbott, Andrew P., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Ionic liquid analogues formed from hydrated metal salts. Chemistry - A European Journal, 10(15), 3769–3774. https://doi.org/10.1002/chem.200400127
dc.relation.referencesAbbott, Andrew P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2002). International Patent WO 2002026701.
dc.relation.referencesAbbott, Andrew P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 9(1), 70–71. https://doi.org/10.1039/b210714g
dc.relation.referencesAbbott, Andrew P., Collins, J., Dalrymple, I., Harris, R. C., Mistry, R., Qiu, F., Scheirer, J., & Wise, W. R. (2009). Processing of electric arc furnace dust using deep eutectic solvents. Australian Journal of Chemistry, 62(4), 341–347. https://doi.org/10.1071/CH08476
dc.relation.referencesAbbott, Andrew P., Cullis, P. M., Gibson, M. J., Harris, R. C., & Raven, E. (2007). Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry, 9(8), 868–872. https://doi.org/10.1039/b702833d
dc.relation.referencesAbbott, Andrew P., Harris, R. C., Holyoak, F., Frisch, G., Hartley, J., & Jenkin, G. R. T. (2015). Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chemistry, 17(4), 2172–2179. https://doi.org/10.1039/c4gc02246g
dc.relation.referencesAbbott, Andrew P., Ttaib, K. El, Frisch, G., Ryder, K. S., & Weston, D. (2012). The electrodeposition of silver composites using deep eutectic solvents. Physical Chemistry Chemical Physics, 14(7), 2443–2449. https://doi.org/10.1039/c2cp23712a
dc.relation.referencesAbeidu, A. M. (1972). The separation of monazite from zircon by flotation. Journal of The Less-Common Metals, 29(2), 113–119. https://doi.org/10.1016/0022-5088(72)90181-6
dc.relation.referencesAbood, H. M. A., Abbott, A. P., Ballantyne, A. D., & Ryder, K. S. (2011). Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4- and comparison with imidazolium based systems. Chemical Communications, 47(12), 3523–3525. https://doi.org/10.1039/c0cc04989a
dc.relation.referencesAcharya, S., Mishra, S., & Misra, P. K. (2015). Studies on extraction and separation of La(III) with DEHPA and PC88A in petrofin. Hydrometallurgy, 156, 12–16. https://doi.org/10.1016/j.hydromet.2015.05.005
dc.relation.referencesAjiz, M. A., & Jennings, A. (1984). A robust incomplete choleski-conjugate. International Journal for Numerical Methods in Engineering, 20, 949–966.
dc.relation.referencesAlder, B. J., Hoover, W. G., & Young, D. A. (1968). Studies in molecular dynamics. V. High-density equation of state and entropy for hard disks and spheres. In The Journal of Chemical Physics (Vol. 49, Issue 8, pp. 3688–3696). https://doi.org/10.1063/1.1670653
dc.relation.referencesAlguacil, F. J. (2017). Non-dispersive extraction of gold(III) with ionic liquid Cyphos IL101. Separation and Purification Technology, 179, 72–76. https://doi.org/10.1016/j.seppur.2017.01.065
dc.relation.referencesAli, A. M. I., El-Nadi, Y. A., Daoud, J. A., & Aly, H. F. (2007). Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. International Journal of Mineral Processing, 81(4), 217–223. https://doi.org/10.1016/j.minpro.2006.06.006
dc.relation.referencesAlizadeh, S., Abdollahy, M., Khodadadi Darban, A., & Mohseni, M. (2022). Theoretical and experimental comparison of rare earths extraction by [P6,6,6,1,4][Decanoate] bifunctional ionic liquid and D2EHPA acidic extractant. Minerals Engineering, 180(February), 107473. https://doi.org/10.1016/j.mineng.2022.107473
dc.relation.referencesAllouche, A. (2012). Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc
dc.relation.referencesAlomar, M. K., Hayyan, M., Alsaadi, M. A., Akib, S., Hayyan, A., & Hashim, M. A. (2016). Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 215, 98–103. https://doi.org/10.1016/j.molliq.2015.11.032
dc.relation.referencesAuhl, R., Everaers, R., Grest, G. S., Kremer, K., & Plimpton, S. J. (2003). Equilibration of long chain polymer melts in computer simulations. Journal of Chemical Physics, 119(24), 12718–12728. https://doi.org/10.1063/1.1628670
dc.relation.referencesBarghusen, J. J., & Smutz, M. (1957). Processing of monazite sands. Industrial and Engineering Chemistry Research, 50, 1754–1755.
dc.relation.referencesBautista, R.G. (1988). Industrial Extraction and Purification Techniques for Rare Earths. Rare Earths in Alaska - Proceedings of Office of the Governor’s Alaska Science and Engineering Advisory Commission Symposium, Held Aug. 17-18, 1988, in Fairbanks, Alaska, 47–58.
dc.relation.referencesBecker, O. M., Mackerel, A. D., Roux, B., & Watanabe, M. (2001). Computational methods. In Computational Biochemistry and Biophysics (pp. 7–38). http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
dc.relation.referencesBinnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037
dc.relation.referencesBoyd, G. E., Schubert, J., & Adamson, A. W. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. I. Ion-exchange Equilibria. Journal of the American Chemical Society, 69(11), 281–2819.
dc.relation.referencesChang, J., Yao, Y., Xia, Y., Liu, L., & Zhang, Y. (2022). Preparation of 5-methyl-3,5-dipropyl-2-pyrazoline catalyzed by chloroaluminate ionic liquids. Journal of Molecular Structure, 1256, 132539. https://doi.org/10.1016/j.molstruc.2022.132539
dc.relation.referencesCheng, Jianjun, & Deming, T. J. (2011). synthesis of polypeptides by ROP of NCAs. Peptide-Based Materials, 310(June 2011), 1–26. https://doi.org/10.1007/128
dc.relation.referencesCheng, T. W. (2000). Point of zero charge of monazite and xenotime. Minerals Engineering, 13(1), 105–109. https://doi.org/10.1016/S0892-6875(99)00153-3
dc.relation.referencesChiu, S. W., Jakobsson, E., Subramaniam, S., & Scott, H. L. (1999). Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophysical Journal, 77(5), 2462–2469. https://doi.org/10.1016/S0006-3495(99)77082-7
dc.relation.referencesChu, L., Hou, X., Song, X., & Zhao, X. (2022). Toxicological effects of different ionic liquids on growth, photosynthetic pigments, oxidative stress, and ultrastructure of Nostoc punctiforme and the combined toxicity with heavy metals. Chemosphere, 298(February), 134273. https://doi.org/10.1016/j.chemosphere.2022.134273
dc.relation.referencesCiro, E., Alzate, A., López, E., Serna, C., & Gonzalez, O. (2019). Neodymium recovery from scrap magnet using ammonium persulfate. Hydrometallurgy, 186(March), 226–234. https://doi.org/10.1016/j.hydromet.2019.04.016
dc.relation.referencesCostis, S., Mueller, K. K., Coudert, L., Neculita, C. M., Reynier, N., & Blais, J. F. (2021). Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. Journal of Geochemical Exploration, 221(November 2020), 106699. https://doi.org/10.1016/j.gexplo.2020.106699
dc.relation.referencesDai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether. J. Chem. Soc.Dalt. Trans, 8(3), 1201.
dc.relation.referencesDai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether. J. Chem. Soc.Dalt. Trans, 8(3), 1201.
dc.relation.referencesDavis, S. (2015). Deep Eutectic Solvents Derived From Inorganic Salts (Issue December). University of Leicester.
dc.relation.referencesDemol, J., Ho, E., Soldenhoff, K., & Senanayake, G. (2019). The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: A review. Hydrometallurgy, 188(December 2018), 123–139. https://doi.org/10.1016/j.hydromet.2019.05.015
dc.relation.referencesDodda, L. S., Vilseck, J. Z., Tirado-Rives, J., & Jorgensen, W. L. (2017). 1.14∗CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. Journal of Physical Chemistry B, 121(15), 3864–3870. https://doi.org/10.1021/acs.jpcb.7b00272
dc.relation.referencesDong, Q., Muzny, C. D., Kazakov, A., Diky, V., Magee, J. W., Widegren, J. A., Chirico, R. D., Marsh, K. N., & Frenkel, M. (2007). ILThermo: A free-access web database for thermodynamic properties of ionic liquids. In Journal of Chemical and Engineering Data (Vol. 52, Issue 4, pp. 1151–1159). https://doi.org/10.1021/je700171f
dc.relation.referencesDuan, Y., Zhan, G., Chang, F., Shi, S., Zeng, S., Dong, H., Abildskov, J., Kjøbsted Huusom, J., & Zhang, X. (2022). Process simulation and evaluation for NH3/CO2 separation from melamine tail gas with protic ionic liquids. Separation and Purification Technology, 288(February), 120680. https://doi.org/10.1016/j.seppur.2022.120680
dc.relation.referencesEl-Nadi, Y. A., Daoud, J. A., & Aly, H. F. (2005). Modified leaching and extraction of uranium from hydrous oxide cake of Egyptian monazite. International Journal of Mineral Processing, 76(1–2), 101–110. https://doi.org/10.1016/j.minpro.2004.12.005
dc.relation.referencesFerron, C. J., Bulatovic, S. M., & Salter, R. S. (1991). Beneficiation of Rare Earth Oxide Minerals. Materials Science Forum, 70–72, 251–270. https://doi.org/10.4028/www.scientific.net/msf.70-72.251
dc.relation.referencesFuerstenau, M.C.; Jameson, G.; Yoon, R. (2007). Froth Flotation: A Century of Innovation. http://books.google.com/books?hl=pt-BR&lr=&id=8zpjAhBViC0C&pgis=1
dc.relation.referencesGómez, E., Cojocaru, P., Magagnin, L., & Valles, E. (2011). Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry, 658(1–2), 18–24. https://doi.org/10.1016/j.jelechem.2011.04.015
dc.relation.referencesGupta, Bina, Malik, P., & Deep, A. (2003). Solvent extraction and separation of tervalent Lanthanides and Yttrium using Cyanex 923. Solvent Extraction and Ion Exchange, 21(2), 239–258. https://doi.org/10.1081/SEI-120018948
dc.relation.referencesHan, X., & Armstrong, D. W. (2005). Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Organic Letters, 7(19), 4205–4208. https://doi.org/10.1021/ol051637w
dc.relation.referencesHasegawa, Y., Yamamuro, M., Wada, Y., Kanehisa, N., & Kai, Y. (2003). Luminescent Polymer Containing the Eu ( III ) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency. 3(Iii), 1697–1702.
dc.relation.referencesHefiny, N. E., & Daoud, J. A. (2004). Extraction and separation of thorium(IV) and praseodymium (III) with CYANEX 301 and CYANEX 302 from nitrate medium. Journal of Radioanalytical and Nuclear Chemistry, 261, 357–363. https://doi.org/10.1023/B
dc.relation.referencesHoover, W. G. (1986). Constant-pressure equations of motion. Physical Review A, 34(3), 2499–2500. https://doi.org/10.1103/PhysRevA.34.2499
dc.relation.referencesHuang, J., Chen, M., Chen, H., Chen, S., & Sun, Q. (2014). Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Management, 34(2), 483–488. https://doi.org/10.1016/j.wasman.2013.10.027
dc.relation.referencesInakollu, V. S., Geerke, D. P., Rowley, C. N., & Yu, H. (2020). Polarisable force fields: what do they add in biomolecular simulations? Current Opinion in Structural Biology, 61, 182–190. https://doi.org/10.1016/j.sbi.2019.12.012
dc.relation.referencesJordens, A., Cheng, Y. P., & Waters, K. E. (2013a). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017
dc.relation.referencesJorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
dc.relation.referencesJorjani, E., Bagherieh, A. H., & Chelgani, S. C. (2011). Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions. Korean Journal of Chemical Engineering, 28(2), 557–562. https://doi.org/10.1007/s11814-010-0383-4
dc.relation.referencesKetelle, B. H., & Boyd, G. E. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. IV. The Separation of the Yttrium Group Rare Earths. Journal of the American Chemical Society, 69(11), 2800–2812.
dc.relation.referencesKim, E., & Osseo-Asare, K. (2012). Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh-pH diagrams for the systems Th-, Ce-, La-, Nd- (PO 4)-(SO 4)-H 2O at 25 °c. Hydrometallurgy, 113–114, 67–78. https://doi.org/10.1016/j.hydromet.2011.12.007
dc.relation.referencesKleman, M., & Lavrentovich, O. D. (2004). Soft Matter Physics: An Introduction. In Soft Matter Physics: An Introduction. https://doi.org/10.1007/b97416
dc.relation.referencesKuzmin, V. I., Pashkov, G. L., Lomaev, V. G., Voskresenskaya, E. N., & Kuzmina, V. N. (2012a). Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129–130, 1–6. https://doi.org/10.1016/j.hydromet.2012.06.011
dc.relation.referencesLi, D., Zuo, Y., & Meng, S. (2004). Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. Journal of Alloys and Compounds, 374(1–2), 431–433. https://doi.org/10.1016/j.jallcom.2003.11.055
dc.relation.referencesLuo, H., Dai, S., Bonnesen, P. V., Buchanan, A. C., Holbrey, J. D., Bridges, N. J., & Rogers, R. D. (2004). Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert.octylbenzo-crown-6) in ionic liquids. Analytical Chemistry, 76(11), 3078–3083. https://doi.org/10.1021/ac049949k
dc.relation.referencesMcNeice, J., Kim, R., & Ghahreman, A. (2019). Oxidative precipitation of cerium in acidic chloride solutions: part I – Fundamentals and thermodynamics. Hydrometallurgy, 184(December 2018), 140–150. https://doi.org/10.1016/j.hydromet.2018.12.018
dc.relation.referencesNarajanan, N. S., Thulasidoss, S., Ramachandran, T. V., Swaminathan, T. V., & Prasad, K. R. (1991). Processing of Monazite at the Rare Earths Division, Udyogamandal. Rare Earths-Applications and Technology, 30, 45–56. https://doi.org/10.4028/www.scientific.net/msf.30.45
dc.relation.referencesOrris, G. J., & Grauch, R. I. (2002). Rare earth element mines, deposits, and occurrences. In Geological Survey Open-File Report 2002–0189 (Issue January 2002).
dc.relation.referencesPan, X., Li, L., Huang, H. H., Wu, J., Zhou, X., Yan, X., Jia, J., Yue, T., Chu, Y. H., & Yan, B. (2022). Biosafety-inspired structural optimization of triazolium ionic liquids based on structure-toxicity relationships. Journal of Hazardous Materials, 424(PC), 127521. https://doi.org/10.1016/j.jhazmat.2021.127521
dc.relation.referencesParks, M. L., Lehoucq, R. B., Plimpton, S. J., & Silling, S. A. (2008). Implementing peridynamics within a molecular dynamics code. Computer Physics Communications, 179(11), 777–783. https://doi.org/10.1016/j.cpc.2008.06.011
dc.relation.referencesPlimpton, S. (1993). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(6), 1–31. https://doi.org/10.1006/jcph.1995.1039
dc.relation.referencesPreston, J. S., Cole, P. M., Du Preez, A. C., Fox, M. H., & Fleming, A. M. (1996). The recovery of rare earth oxides from a phosphoric acid by-product. Part 2: The preparation of high-purity cerium dioxide and recovery of a heavy rare earth oxide concentrate. Hydrometallurgy, 41(1), 21–44. https://doi.org/10.1016/0304-386X(95)00067-Q
dc.relation.referencesShahbaz, K., Mjalli, F. S., Hashim, M. A., & AlNashef, I. M. (2011). Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy and Fuels, 25(6), 2671–2678. https://doi.org/10.1021/ef2004943
dc.relation.referencesSmith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162p
dc.relation.referencesSun, X. Q., Peng, B., Chen, J., Li, D. Q., & Luo, F. (2008). An effective method for enhancing metal-ions’ selectivity of ionic liquid-based extraction system: Adding water-soluble complexing agent. Talanta, 74(4), 1071–1074. https://doi.org/10.1016/j.talanta.2007.07.031
dc.relation.referencesTait, B. K. (1992). The extraction of some base metal ions by cyanex 301, cyanex 302 and their binary extractant mixtures with aliquat 336. Solvent Extraction and Ion Exchange, 10(5), 799–809. https://doi.org/10.1080/07366299208918136
dc.relation.referencesTunsu, C., Menard, Y., Eriksen, D. Ø., Ekberg, C., & Petranikova, M. (2019). Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. Journal of Cleaner Production, 218, 425–437. https://doi.org/10.1016/j.jclepro.2019.01.312
dc.relation.referencesXu, Y., Liu, H., Meng, Z., Cui, J., Zhao, W., & Li, L. (2012). Decomposition of bastnasite and monazite mixed rare earth minerals calcined by alkali liquid. Journal of Rare Earths, 30(2), 155–158. https://doi.org/10.1016/S1002-0721(12)60014-3
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTierras raras
dc.subject.lembPreparación mecánica de minerales
dc.subject.lembLixiviación
dc.subject.lembDinámica molecular
dc.subject.proposalElementos de tierras raras
dc.subject.proposalMonacita
dc.subject.proposalHidrometalurgia
dc.subject.proposalExtracción con solventes
dc.subject.proposalSolventes eutécticos profundos
dc.subject.proposalSimulación dinámica molecular
dc.subject.proposalValorización de residuos
dc.subject.proposalValorización de residuos
dc.subject.proposalMonazite
dc.subject.proposalHydrometallurgy
dc.subject.proposalSolvent extraction
dc.subject.proposalDeep eutectic solvents
dc.subject.proposalMolecular dynamic simulation
dc.title.translatedExtraction of rare earth elements from monazite by deep eutectic solvents and comparison with conventional organic solvents
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleRecuperación de elementos de tierras raras a partir de minerales presentes en arenas negras, residuos de minería de oro aluvial en El Bagre-Antioquia
oaire.fundernameMinisterio de Ciencia de Colombia
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología
dc.contributor.orcid0000-0001-7365-4361


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito